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Introduction

• Course objective
– deeper insight into basic and specific methods and algorithms

– ����������	�
 - not exact details of equations

– no derivation of theorems and algorithms

– Not covered
• Phonetics, linguistics

– Signal processing relevant parts (short time spectral analysis)

– theory of probabilistics and pattern recognition overviewed

– merit 5p

• Recommended background
– GSLT course in “Speech and speaker recognition”

or equivalent
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Background

• Acoustic phonetics

• Speech analysis
– Short Time Spectral Analysis

– MFCC

• Recognition
– Dynamic programming and DTW

– Fundamentals of hidden Markov models

– Viterbi decoding

– Phoneme-based speech recognition methods
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Literature

• Spoken Language Processing
– A Guide to Theory, Algorithm and System Development

– X. Huang, A. Acero and H-W Hon

– Contains theoretically heavy parts and many equations but it is not
necessary to follow all derivations. The verbose explanations of
their functions are easier to follow.

• Separate papers
– Finite State Transducers

– Bayesian Networks

– Articulatory inspired approaches

– ...
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Course organization

• 3 - 4 course one-day meetings (10.15 - 16.00)
– #1 (19 Sep) : Introduction, Lecture 1st 1/3 of the course

– #2 (end Oct): Lecture 2nd 1/3, discussion, HTK tutorial, exercise
presentation, presentation of subjects for term paper

– #3 (end Nov): Lecture 3rd 1/3, discussion

– #4 (January): Students’ presentation of individual term papers

• Exercises

• Term paper + review + presentation

• How many meetings and when?
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Course overview
• Day #1

• Probability, Statistics and Information Theory (pp 73-131: 59 pages)

• Pattern Recognition (pp 133-197: 65 pages)

• Speech Signal Representations (pp 275-336 62 pages)

• Hidden Markov Models (pp 377-413: 37 pages)

• Day #2
• Acoustic Modeling (pp 415-475: 61 pages)

• Environmental Robustness (pp 477-544: 68 pages)

• Language Modeling (pp 545-590: 46 pages)

• Basic Search Algorithms (pp 591-643: 53 pages)

• HTK tutorial

• Day #3
• Large-Vocabulary Search Algorithms (pp 645-685: 41 pages)

• Applications and User Interfaces (pp 919-956: 38 pages)

• Other topics

• Day #4
• Presentations of term papers
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Term paper

• Choose subject from a list or suggest one yourself

• Review each others reports

• Suggested topics
– Language models for speech recognition

– Limitations in standard HMM and ways to reduce them

– Pronunciation variation and their importance for speech
recognition

– New search methods

– Techniques for robust recognition of speech

– Own work and experiments after discussion with the teacher
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Book organization 1(2)

– Ch 1 Introduction

• Part I: Fundamental theory
– Ch 2 Spoken Language Structure

– Ch 3 Probability, Statistics and Information Theory

– Ch 4 Pattern Recognition

• Part II: Speech Processing
– Ch 5 Digital Signal Processing

– Ch 6 Speech Signal Representation

– Ch 7 Speech Coding
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Book organization 2(2)

• Part III: Speech Recognition
– Ch 8 Hidden Markov Models

– Ch 9 Acoustic Modeling

– Ch 10 Environmental Robustness

– Ch 11 Language Modeling

– Ch 12 Basic Search Algorithms

– 13 Large-Vocabulary Search Algorithms

• Part IV: Text-to-Speech Systems
– Ch 14 Text and Phonetic Analyses

– Ch 15 Prosody

– Ch 16 Speech Synthesis

• Part V: Spoken Language systems
– Ch 17 Spoken Language Understanding

– Ch 18 Applications and User Interfaces
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Ch 3. Probability, Statistics and
Information Theory

• Conditional Probability and Bayes’ Rule

• Covariance and Correlation

• Gaussian Distributions

• Bayesian Estimation and MAP Estimation

• Entropy

• Conditional Entropy

• Mutual Information and Channel Coding
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Conditional Probability and Bayes’ Rule

• Bayes’ rule  - the common basis for all pattern recognition
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Example: P(A) = 0.1, P(B) = 0.08, P(B|A)=0.24
P(A|B) = 0.24*0.1/0.08 = 0.3
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Sannolikhetsbaserad igenkänning
 Bayes’ regel för betingade sannolikheter
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������������ för en ordföljd givet den akustiska

informationen.

����	
�������
 är 
�������������att ordföljden genererar den akustiska informationen

och beräknas i ett träningsmaterial.

�����
 ges av språkmodellen och är ���������
������������ för ordföljden (N-gram).

����	
���
 kan ses som en ���
���� eftersom den är oberoende av ordföljden och kan

ignoreras

Kombinerar akustisk och språklig kunskap!
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Mean, Covariance and Correlation

• Mean

• Covariance

• Correlation

• Multidimensional (Mean vector, covariance matrix)
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Gaussian Distributions

• One-dimensional

• Multivariate n-dimensional
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3.2 Estimation theory

• The basis for training a speech recogniser

• Estimate parameters of a probability distribution function
– Minimum/Least Mean Squared Error Estimation

• Minimize the difference between the distribution of the data and the
model

– Maximum Likelihood Estimation
• Find the distribution with the maximum likelihood of generating the

data

– Bayesian Estimation and MAP Estimation
• Assumes that we have a prior distribution that is modified by the new

data
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Minimum/Least Mean Squared Error
Estimation

• Modify a model of the distribution to approximate the data with
minimum error

• Find a function that predicts the value of Y from having observed X

• Estimation is made on joint observations of X and Y

• Minimize:

• Minimum Mean Squared Error (MMSE) when the joint distribution is
known

• Least Squared Error (LSE) when the distribution is unknown, only
observation pairs (Ex. curve fitting)

• MMSE and LSE becomes equivalent with infinite number of samples

22 ))(()ˆ( ������� −=−
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Maximum Likelihood Estimation (MLE)

• The most widely used parametric estimation method

• Find the distribution that maximizes the likelihood of
generating the observed data

• Corresponds to intuition
– Max likelihood is achieved when the model has the same

distribution as the observed data

• Example: univariate Gaussian pdf
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Bayesian Estimation and MAP
Estimation

• Assumes that we have a prior distribution that is modified
by the new data

• Use Bayes’ rule to find the new posterior distribution Φ

• Univariate Gaussian    Mean: Var:

• MAP: Maximum A Posteriori probability is a Bayesian
Estimator

• MAP becomes MLE with uniform prior distribution or
infinite number of training data

• Valuable for limited training data and for adaptation
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Entropy and Perplexity

• Information in seeing event �
�
 with probability ���

�
�:

• Entropy is the average information over all possible x values

• Perplexity
– The equivalent size of an imaginary list with equi-probable words

– Perplexity for English letters: 2.39, English words: 130

• Conditional Entropy
– Input X is distorted by a noisy channel into output Y

– Example: Confusion matrix
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3.4.4 Mutual Information and Channel
Coding

• Mutual Information I(X;Y): The difference between the
entropy of X and the conditional entropy of X given Y

• The average difference between the number of bits
required to specify X outcome when Y is not known and
when Y is known

• If X and Y independent: I = 0
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Ch 4. Pattern Recognition 1(3)

• Bayes’ Decision Theory
– Minimum-Error-Rate Decision Rules

– Discriminant Functions

• How to Construct Classifiers
– Gaussian Classifiers

– The Curse of Dimensionality

– Estimating the Error Rate

– Comparing Classifiers (McNemar’s test)
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Pattern Recognition 2 (3)

• Discriminative Training
– Maximum Mutual Information Estimation

– Minimum-Error-Rate Estimation

– Neural networks

• Unsupervised Estimation Methods
– Vector Quantization

– The K-Means Algorithm

– The EM Algorithm

– Multivariate Gaussian Mixture Density Estimation
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Pattern Recognition 3 (3)

• Classification and Regression Trees (CART)
– Choice of question set

– Splitting criteria

– Growing the tree

– Missing values and conflict resolution

– Complex questions

– The Right-Sized Tree
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4.1.1 Minimum-Error-Rate Decision
Rules

– Bayes’ decision rule

– The decision is based on choosing the candidate that maximizes
the posterior probability (results in minimum decision error)

)()|()|( maxargmaxarg
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4.1.2 Discriminant Functions

• The decision problem viewed as classification problem
– Classify unknown data into one of � known categories

– Using � discriminant functions

• Minimum-error-rate classifier:
– Maximize a posteriori probability: Bayes’ decision rule

• For two-class problem:
– Likelihood ratio:

• Fig 4.3 Decision boundaries
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Discriminant Functions

Fig 4.2 A classifier based on discriminant functions



14

September 19, 2003 Speech recognition course 2003 27

Decision boundaries
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4.2.1 Gaussian classifiers

• The class-conditional probability density is assumed to
have a Gaussian distribution

• Decision boundary
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4.2.2 The Curse of Dimensionality

• More features (e.g. higher dimensions or more parameters
in density function) lead (in theory) to lower classification
error rate

• In practice: may lead to worse results due to too little
training data

• Paradox called ��� !���� �� �	"���	���#	�$

• Fig 4.6 Curve fitting

• Fig 4.7 Phoneme classification
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The curse of dimensionality: curve
fitting
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The curse of dimensionality: Two-
phoneme classification

Error rate as a function of the number of Gaussian mixture
densities and the number of training samples
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4.2.3 Estimating the Error Rate

• Computation from parametrical model has problems (error
under-estimation, bad model assumptions, very difficult)

• Recognition error on training data is a lower bound
(Warning!)

• Use independent test data

• How to partition the available speech data
– Holdout method

– V-fold cross validation (Leave-one-out method)



17

September 19, 2003 Speech recognition course 2003 33

4.2.4 Comparing classifiers
• McNemar’s test

– Compares two classifiers by looking at samples where only one
made an error

n = N01 + N10  Nxx has binomial distribution B(n,1/2)

Test the null hypothesis that the classifiers have the same
error rates (z-test)

Correct

Incorrect

IncorrectCorrect

N00
N01

N10 N11

Q1

Q2
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4.3 Discriminative Training

• Maximum Likelihood Estimation models each class
separately, independent of other classes

• Discriminative Training aims at models that maximize the
discrimination between the classes
– Maximum Mutual Information Estimation (MMIE)

– Minimum-Error-Rate Estimation

– Neural networks
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4.3.1 Maximum Mutual Information
Estimation (MMIE)

• Discriminative criterion:
– For each model to estimate, find a setting that maximizes the

probability ratio between the model and the sum of all other
models

• Maximize

• Gives different result compared to MLE. MLE maximizes
the numerator only

• Theoretically appealing but computationally expensive
– Every sample used for all classes

– Gradient descent algorithm

∑
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4.3.2 Minimum-Error-Rate Estimation

• Also called Minimum-classification-error (MCE) training,
discriminative training,

• Iterative procedure (gradient descent)
– Re-estimate models, classification, improve correctly recognized

models and suppress mis-recognized models

• Computationally intensive, used for few classes

• Corrective training
– Simple and faster error-correcting procedure

– Move the parameters of the correct class towards the training data

– Move the parameters of the near-miss class away from the training
data

– Good results
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4.3.3 Neural Networks

• Inspired by nerve cells in biological nervous systems

• Many simple processing elements connected to a complex
network.

• Single-Layer Perceptron Fig. 4.10

• Multi-Layer Perceptron (MLP) Fig 4.11
– Back propagation training
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Artificiella NeuronNät - ANN

Θ

Modell av nervcell
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4.3.3 Multi-Layer Perceptron
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The Back Propagation Algorithm
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4.4 Unsupervised Estimation Methods

• Vector Quantization

• The EM Algorithm

• Multivariate Gaussian Mixture Density Estimation
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4.4.1 Vector Quantization (VQ)

• Described by a codebook, a set of prototype vectors
(codewords)

• An input vector is replaced by the index of the codeword
with the smallest distortion

• Distortion Measures
– Euclidean

– Mahalanobis distance

• Codebook generation algorithms
– The K-Means Algorithm

– The LBG Algorithm
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Vector Quantization

Partitioning of a two-dimensional space into 16 cells
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The K-Means Algorithm

• 1. Choose an initial division between the codewords

• 2. Classify each training vector into one of the cells by
choosing the closest codeword

• 3. Update all codewords by computing the centroids of the
training vectors

• 4. Repeat steps 2 and 3 until the distortion ratio between
current and previous codebooks is above a preset threshold

• Comment
– Converges to 	�
�	 optimum

– Initial choice is critical
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The LBG Algorithm

• 1. Initialization.
– Set number of cells M = 1. Find the centroid of all training data.

• 2. Splitting.
– Split M into 2M by finding two distant points in each cell. Set

these as centroids for 2M cells.

• 3. K-Means Stage.
– Use K-Means algorithm to modify the centroids for minimum

distortion.

• 4. Termination
– If  M equals the required codebook size, STOP. Otherwise go to 2.
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4.4.2 The Expectation Maximization
(EM) Algorithm

• Used for training of  hidden Markov models

• Generalisation of Maximum-Likelihood Estimation

• Problem approached
– Estimate distributions (ML) of several classes when the training data is

not classified (e.g. into states of the models)

– Is it possible to train the classes anyway? (Yes - 	�
�	 maximum)

• Simplified iterative procedure (similar to K-Means procedure for VQ)
– 1. Initialise class distributions

– 2. Using current parameters, compute the class probability for each
training sample.

– 3. Each sample updates ��
� class distribution by the probability weights
• Maximum-likelihood estimate of distributions, replace current distr.

– 4. Repeat 2+3 until convergence (Will converge)
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Simplified illustration of EM estimation
Say, three paths have been found in a training utterance. The
probabilities of the state sequences for the initial HMM are 0.13, 0.35
and 0.22.

New E(s2) = (0.13 X(t1) + 0.35 X (t2) + 0.22 X(t3)) / 0.70

P = 0.13

P = 0.35
P = 0.22

t

s

s3

s2

s1

t1 t2 t3 T

Not as simple as it may look, though
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4.4.3 Multivariate Gaussian Mixture
Density Estimation

• Probability density is weighted sum of Gaussians:

– ck is the probability of component k, 

�

�
���
�
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• Analogy
–  GM - VQ,

– EM algorithm - K-means algorithm

– VQ minimizes codebook distortion; GM maximizes the likelihood
of the observed data

– VQ performs hard assignment; EM performs soft assignment
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Partitioning space into Gaussian density
functions
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4.5 Classification and Regression Trees
(CART)

• Binary decision tree

• An automatic and data-driven framework to construct a
decision process based on objective criteria

• Handles data samples with mixed types, nonstandard
structures

• Handles missing data, robust to outliers and mislabeled
data samples

• Used in speech recognition for model tying
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Binary tree structure for height
classification
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Steps in constructing a CART

• 1. Find set of questions

• 2. Put all training samples in root

• 3. Recursive algorithm
– Find the best combination of question and node. Split the node into

two new nodes

– Move the corresponding data into the new nodes

– Repeat until right-sized tree is obtained

• Greedy algorithm, only locally optimal, splitting without
regard to subsequent splits
– Dynamic programming would help but computationally heavy

– Works well in practice
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4.5.1 Choice of Question Set

• Can be manually selected

• Automatic procedure:

• Simple (singleton) - complex questions
– Simple questions about a single variable

• Discrete variable questions
– Does xi belong to set S? S is any possible subset of the training

samples

• Continuous variable questions
– Is xi <= cn? cn is midpoint between two training samples
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4.5.2 Splitting Criteria

• Find the pair of node and question for which split gives
– Discrete variable

• Maximum reduction in entropy

– Continuous variables
• The maximum gain in likelihood

– For regression purposes
• The largest reduction in squared error from a regression of the data in

the node
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4.5.3 Growing the Tree

• Stop growing a node when either
– All samples in the node belong to the same class

– The greatest entropy reduction falls below threshold

– The number of data samples in the node is too small
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4.5.4 Missing Values and Conflict
Resolution

• Missing values
– ?

• Conflict resolution
– Two questions may achieve the same entropy reduction and the

same partitioning

– One question may be sub-question to the other

– Select the sub-question (since more specific)
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4.5.5 Complex Questions

• Problem
– Simple (one-variable) questions

may result in similar leaves in
different locations

– Over-fragmenting

• Solution
– Form composite questions by all

possible combinations of the
simple-question leaf nodes in
the tree
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4.5.6 The Right-Sized Tree

• Too many splits improves classification on training data
but reduction on test data (Curse of dimensionality)

• Use a pruning strategy to gradually cut back the over-
grown tree until the minimum misclassification on the test
data is achieved
– Minimum Cost-Complexity Pruning

• Produces a sequence of trees with increased pruning

– Select the best tree using either of
• Independent Test Sample Estimation (fixed test data)

• V-fold Cross Validation (train on (v-1) parts, test on 1, circulate)
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Ch 5 Digital Signal Processing

• Digital Signals and Systems

• Continuous Frequency transforms
– The Fourier Transform

– Discrete-Frequency Transforms
• The Discrete Fourier Transform (DFT)

• The Fast Fourier Transform (FFT)

• Digital Filters and Windows
– Rectangular, Hamming and Hanning window functions
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Window Functions

• The frequency spectrum of the window
function affects the signal spectrum

• Rectangular Window
– discontinuities at boundaries smear the

spectrum

• Hamming and Hanning windows

• α = 0.5  Hanning window

• α = 0.46  Hamming window

[ ]


 ≤≤−−

=
���������

	
	


�

� 0

0)/2cos()1( παα



31

September 19, 2003 Speech recognition course 2003 61

5.3.3 The Discrete and Fast Fourier
Transforms ( DFT & FFT)

• The Discrete Fourier Transform (DFT)

– Direct computation of DFT: N2 operations

• FFT: A fast algorithm to compute the DFT
– Nlog2N operations

– For 256 points window, FFT is ≈ 256/8 = 32 times faster than
direct computation
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5.5.2 The Sampling Theorem

• The analog signal cannot be
uniquely recovered from the digital
signal if the analog signal has energy
above the ������� frequency Fs/2

• Aliasing (Sw. vikningsdistorsion)
will occur.

• An analog anti-aliasing low-pass
filter is necessary



32

September 19, 2003 Speech recognition course 2003 63

Ch 6 Speech Signal Representations

• Short-Time Fourier Analysis
– Effect of different window functions

• Linear Predictive Coding
– Spectral Analysis via LPC

– Equivalent Representations
• Reflection Coefficients

• Log-Area Ratios

• Cepstral Processing

• Perceptually Motivated Representations
– Mel-Frequency Cepstrum

– Perceptual Linear Prediction (PLP)

September 19, 2003 Speech recognition course 2003 64

Analys av signalen till en följd av
korttidsspektra (ramar)

Ram nr n n+1 n+2 n+3 n+4

Analysfönster (här 20 ms)

Analys
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6.1 Short-Time Fourier Analysis
Effect of different window functions

Male voice /ah/   F0 = 110 Hz

Rectangular
30 ms

Hamming
15 ms

Rectangular
15 ms

Hamming
30 ms

Window should be long enough to cover 2 pitch pulses
Short enough to capture short events and transitions
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Linear Predictive Coding (LPC)
• Predicts the next sample as a linear combination of the past
� samples

• Results in an all-pole filter which matches the signal
spectrum

• Better match at spectral peaks than at valleys
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LPC-based representations used for
recognition

• Line Spectral Frequencies
– popular in speech coding (GSM telephony)

• Reflection Coefficients
– same as partial correlation coefficients (PARCOR)

• Log-Area Ratios
– log of the ratio of the areas of adjacent sections of a lossless tube

equivalent of the vocal tract

• LPC-Cepstrum
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Perceptual Linear Prediction

• Transformation to the Bark frequency scale before
computing the LPC coefficients

• Cubic root of energy instead of logarithm
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RASTA

• Hermansky & Morgan “RASTA Processing of Speech”,
IEEE Trans. On Speech and Audio Proc., 1994, �(4)

• Filtering (BP 2-10 Hz) of each channel amplitude in the
short time spectrum

• Removes the filtering effect of the transmission channel

• Perceptually motivated
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Cepstrumanalys
• Invers Fouriertransform av logaritmerat frekvensspektrum

• Bogert, Healy & Tukey ( 1963)*

• Ordlek: Spectrum-cepstrum, filtering-liftering,frequency-quefrency,
phase-saphe

• Hög fonemdiskrimination (har det visat sig)

• Ortogonala koefficienter

• Grovstrukturen i spektrum beskrivs med ett litet antal parametrar

• Bra för grundtonsföljning

* “The * “The Quefrency AlanysisQuefrency Alanysis of Time Series for Echoes:  of Time Series for Echoes: CepstrumCepstrum,,
 Pseudo- Pseudo-autocovarianceautocovariance, Cross-, Cross-Cepstrum Cepstrum and and Saphe Saphe Cracking”Cracking”
ProcProc. . SympSymp. Time Series Analysis, J. Wiley & Sons, 1963. Time Series Analysis, J. Wiley & Sons, 1963
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Cepstral Processing

From Oppenheim & Schafer, 1975

September 19, 2003 Speech recognition course 2003 72

Mel-Frequency Cepstrum Coefficients (MFCC)
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Ch 7 Speech Coding

• Not included
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Ch 8 Hidden Markov Models

• The Markov chain

• Definition of the Hidden Markov Model

• Continuous and Semicontinuous HMMs

• Practical Issues in Using HMMs

• HMM Limitations
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8.1 The Markov Chain

• A Markov process

– Can be in one of several states with random transition in state
occupance

• �=�
�
"�

�
"#�

�
 is a sequence of random variables (states)

• First order Markov chain:

• The Markov assumption: The probability that the Markov
chain will be in a particular state at a given time depends
only on the state of the Markov chain at the previous time

• Parameters:

– �
��
�
������$�������

transition probability from state i to j

– π� = ������ initial probability

)|()|( 1
1

1 −
− =

��

�

�
������
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Fig 8.1 A Markov chain for the Dow
Jones Industrial average
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8.2 Def. of the Hidden Markov Model
• A Markov chain where the state cannot be observed

• The observation is a probabilistic function of the state

• Defined by

– � = {��"
��"#��} - An observation alphabet

– Ω = {%"&"#"�} - A set of states

– � = {���} - A transition probability matrix
 ����is the probability of transition state � to �

– � = {'����} - An output probability matrix
 '����: probability of emitting �� in state �

– π = {π�} - An initial probability distribution

– Φ�����	��	�π
 ��The parameter set of an HMM

• Output independence assumption: the probability of emitting a symbol
depends only on the state, not on previous observations
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Fig 8.2 A hidden Markov model for the
Dow Jones industrial average

The states have no deterministic meaning
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HMM - Three basic problems

• The Evaluation Problem
– What is the probability that the model generates the observations?

• The Decoding Problem
– What is the most likely state sequence in the model that produces

the observations?

• The Learning Problem
– How to adjust the model parameters to maximize the probability of

producing the training data?
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8.2.1 Dynamic Programming and DTW

• DTW and HMM are closely related
– DTW computes spectral distance between two template patterns

– In HMM a likelihood is computed that the model has produced the
observed pattern

– Many similarities (particularly DTW - Viterbi decoding)
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8.2.2 How to Evaluate an HMM - The
Forward Algorithm

• Calculate the probability (likelihood) of the observation sequence
given the model

• Compute the probability for every possible state sequence

• Add them up

• Direct evaluation - very heavy computationally: O(NT) sequences

• Forward algorithm: fast since storing intermediate results: O(N2T)

• Similar to DP

),()()(
Sall

���� ∑= ���

��
������

�

�

�
��������

1211
),()()( 1

2
1 −

== −
=
∏ �π�

)()()(),(),(),( 21
1

11 21 �����

�

�

�

��
�������������

�

�=== ∏
=

��

∑ −
=

Sall
21 )()()()(

1221110 ����������
����������

���

��

)()()(
1

1 ��

�

�

���� ����� 



= ∑
=

−ααForward probability
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Fig 8.4 Forward Trellis Computation

The forward trellis computation for the
Dow Jones Industrial average
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Algorithm 8.2 The Forward Algorithm
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8.2.3 How to Decode an HMM - The
Viterbi Algorithm

• Find the best path and calculate its probability

• Dynamic programming technique to lower the number of
operations

• Very similar to the Forward algorithm (max instead of
addition)
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Viterbi-matchning mellan en HMM och
ett yttrande

Yttrande
TidEndBeg

H
M

M

Förenklad algoritm för modellen nedan:
for(t=1; t<=T,++t)
   for(s=1; s<=S,++s)
      P(t,s) = P(Ot|Ss) * Max[P(t-1,s)*Ptr(s|s),  P(t-1,s-1)*Ptr(s|s-1),  P(t-1,s-2)*Ptr(s|s-2) 
return( P(T,S));
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Fig 8.5 The Viterbi trellis computation
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Alg. 8.3 The Viterbi Algorithm

September 19, 2003 Speech recognition course 2003 88

8.2.4 How to Estimate HMM Parameters
- Baum-Welch Algorithm

• The most difficult of the three HMM problems

• Solved by the iterative Baum-Welch algorithm (forward-
backward)

• Unsupervised learning. Incomplete data. State sequence
unknown.
– Use the EM algorithm
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Simplified illustration of EM estimation
Say, three paths have been found. The probabilities of the state
sequences for the initial HMM are 0.13, 0.35 and 0.22.

New E(s2) = (0.13 X(t1) + 0.35 X (t2) + 0.32 X(t3)) / 0.70

P = 0.13

P = 0.35
P = 0.22

t

s

s3

s2

s1

t1 t2 t3 T

Not as simple as it may look, though
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The Baum-Welch Algorithm - discrete HMM
• Forward probability

– The probability of generating a partial observation X1 …Xt ending at time
� and state �

• Backward probability
– The probability of generating a partial observation Xt+1 …XT starting from

time � and state ����������	�
������

���������

�

�

������ ≤≤−=







= ∑

=
++ 11,....,1)()()(

1
11 ββ

T
)(),( ��

��
βα

)(�
�
β

)(�
�
α
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The Baum-Welch Algorithm (cont.)
Def γ�����
: The probability of the model having
taken the transition from state � to state � at time �

) at time   to state from switched has elmodThe(),( ������
�

=γ

sequence) observed  thegenerates model P(The

 t)at time j  toi state from switches and sequence observed  thegenerates model P(The=

∑
=

−=
�

�

�

������

�

�����

1

1

)(

)()()(

α

βα
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The Baum-Welch Algorithm (cont.)

New model estimates:

)40.8(
),(

),(
ˆ

1 1

1

∑∑

∑
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γ

γ

)41.8(
),(

),(

)(ˆ

1
∑∑

∑ ∑

=

=∈=
�

� �

�

��� �

�

�

��

��

�� ��

γ

γ

The ratio between the expected number of
transitions from state � to ��and the expected number
of all transitions from state �

The ratio between the expected number of times the
observation data emitted from state j is ok and the
expected number of times any observation data is
emitted from state j

Quite intuitive equations!


