

	Course overview	
• Day • Day • Day 	 #1 Probability, Statistics and Information Theory (pp 73-131: 59 pages) Pattern Recognition (pp 133-197: 65 pages) Speech Signal Representations (pp 275-336 62 pages) Hidden Markov Models (pp 377-413: 37 pages) #2 Hidden Markov Models (cont.) Acoustic Modeling (pp 415-475: 61 pages) Environmental Robustness (pp 477-544: 68 pages) HTK tutorial (Giampi) #3 Language Modeling (pp 545-590: 46 pages) (Mats) Basic Search Algorithms (pp 591-643: 53 pages) (Kjell) Large Vocabulary Search Algorithms – Finite State Transducers (Alec Seward) (Applications and User Interfaces) #4 Closing samingr. 	
-	Presentations of term papers	
November 28, 2003	Speech recognition course 2003 Mats Blomberg	4

machines					
Types	Constraints	Automata			
Phrase structure grammar	$\alpha \rightarrow \beta$. The most general grammar. $\alpha \beta$: strings of non-terminals and terminals	Turing machine			
Context-sensitive grammar	Subset of phrase structure grammar. $ \alpha \le \beta $	Linear bounded automata			
Context-free grammar (Subset of context- sensitive grammar $A \rightarrow \beta$, A: non-terminal, β : w or BC	Push down automata			
Regular grammar	Subset of CFG $A \rightarrow w$ and $A \rightarrow wB$	Finite-state automata			

Top Down or Bottom Up Parsing?						
 Top-down Start from the root of the tree, successive rewrites into terminal symbols matching the input text Goal-directed search Example "Mary loves that person" S → NP VP → NAME VP (rewrite S using S→NP) → Mary VP (rewrite NP using NAME→Mary) … → Mary loves that person (rewrite N using N→person) 	Rewrite Rules: 1. $S \rightarrow NP VP$ 2. $VP > VNP$ 3. $VP \rightarrow AUX VP$ 4. $NP \rightarrow ART NP1$ 5. $NP > ADJ NP1$ 6. $NP1 \rightarrow ADJ NP1$ 7. $NP1 \rightarrow N$ 8. $NP \rightarrow NAME$ 9. $NP \rightarrow PRON$ 10. $NAME \rightarrow Mary$ 11. $V \rightarrow loves$ 12. $ADJ \rightarrow that$ 13. $N \rightarrow person$					
November 28, 2003 Speech recognition course 2003 Mats Blomberg	12					

11.2.1 Probabilistic Context-Free Grammars (PCFGs)

- Bridge between formal and n-gram grammars
- Each rule is assigned a probability
- Recognition problem
 - What is the probability that the language generates the word sequence $\mathbf{W}, P(S \Rightarrow \mathbf{W}|G)$
- · Training problem
 - Determine a set of rules and estimate their probabilities
 - With fixed rule set, count the number of times each rule is used
 - If annotated corpus use ML estimation

$$P(A \to \alpha_j | G) = C(A \to \alpha_j) / \sum_{i=1}^m C(A \to \alpha_i)$$

23

 Else use EM algorithm (here also known as inside-outside)
 November 28, 2003
 Speech recognition course 2003 Mats Blomberg

11.3 Complexity Measure of Language Models

