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General courseinfo

e Exercises
— Return solutions by Dec. 5
e Term paper
— Choose topic by Nov 21
— Around 6 pages, max 10
— Send to reviewers ( 2 course participants) by Dec 19
— Reviewer return comments by Jan 10
Final paper to Mats by Jan. 24
¢ Closing seminar
— Feb6
— Presentation of own paper
— Activediscussions
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Exercises

e Questions?

» Corrections
— Ex 1. VQ: Modified initialisation values
— Ex. 3. Viterbi and Forward probabilities
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Course overview
e Day #1

— Probability, Statistics and Information Theory (pp 73-131: 59 pages)

— Pattern Recognition (pp 133-197: 65 pages)
— Speech Signal Representations (pp 275-336 62 pages)
— Hidden Markov Models (pp 377-413: 37 pages)
e Day #2
— Hidden Markov Models (cont.)
— Acoustic Modeling (pp 415-475: 61 pages)
— Environmental Robustness (pp 477-544: 68 pages)
— HTK tutoria (Giampi)
» Day #3

— Language Modeling (pp 545-590: 46 pages) (Mats)
— Basic Search Algorithms (pp 591-643: 53 pages) (Kjell)

— targeVVeeabulary-Seareh-Algerithms—
— Finite State Transducers (Alec Seward)
— (Applications and User Interfaces)

» Day #4 Closing seminar
— Presentations of term papers
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Ch 11 Language Modeling

» Formal Language Theory

» Stochastic Language Models

o Complexity Measure of Language Models
» N-gram Smoothing

» Adaptive Language Models

» Practical Issues
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11.1 Formal Language Theory

* Important aspects of syntactic grammar
— Generality - cover typical sentences for an application
— Selectivity - distinguish different kind of intended actions
— Understandability - easy maintenance and improvement

e Grammar

— formal specification of the permissible structures for a language
* Parsing

— Analysisto seeif asentence is compliant with the grammar
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Tree representation

* The most common way to represent the grammatical
structure of a sentence

Rewrite Rules:

I 5= NPVP

VP > VNP
VP-> AUX VP
NP—> ARTNPI
NP = ADJ NP
. NP[— ADJNPI
NPI—> N

. NP NAME

. NP— PRON
10. NAME - Mary
11, ¥-=loves

12. ADJ — that

13. N—= person

O PN D A N

person
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11.1.1 Chomsky Hierarchy

» Chomsky’sformal language theory
* A grammar isdefinedasG = (V,T,P, S)
— V: non-terminal
— T:termina
— P: Set of production rules
— S start symbol

» Analysis by sequential application of production rules
* Productionruletypea -, a, B stringsof V and T
» Four major languages, hierarchically structured
» Major implementation tool in comp. linguistics
— finite state automaton
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Chomsky hierarchy and corresponding
machines

Types Constraints Automata

Phrase structure grammear | a— 3. Themost generd | Turing mechine
grammar.

a, B: grings of non-
terminds and termind's
Context-sengtive Subset of phrase structure | Linear bounded automata
grammear grammar. (h2040

Context-freegrammar (| Subset of context- Push down automata
senditive grammear

A - A: nontermind,
Lwor BC

Regular grammear Subset of CFG Finite-date automata
A-wandA4 -wB
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Push-down automata

» Also called Recursive Transition Network

» Transition Network: nodes and labeled arcs

* Parsing

Start at the initial state S

Traverse an arc if current word isin the arc category

If arcisfollowed, update current word

A phrase is parsed if thereis a path from Sto apop (final) arc
More than one parseis possible
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11.1.2 Chart Parsing for Context-Free

Grammars
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Top Down or Bottom Up Parsing?

» Top-down
— Start from the root of the tree, successive rewrites into
terminal symbols matching the input text

— Goal-directed search

— Example “Mary loves that person”
S
+ -~ NPVP
* - NAME VP (rewrite Susing S— NP)
e - Mary VP (rewrite NP using NAME - Mary)

* - Mary lovesthat person (rewrite N using N — person)
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Rewrite Rules:

. §—= NPVP

VP > VNP
VP-= AUX VP
NP— ARTNP!
NP > ADJNP!
NPi— ADJNP{
NPi—= N

. NP> NAME

. NP— PRON
10. NAME - Mary
11 V- loves

12. ADJ — that

13. N—= person

e NN P N T
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Top Down or Bottom Up Parsing?

» Bottom-up
— Start with the words in the input text
— Usethe rewrite rules backwards
— Example “Mary lovesthat person”

Rewrite Rules:
¢ - NAME lovesthat person (rewrite Mary using [ S NPVP
NAME - Mary 2 VP > VNP
. ; ; 3. VP> AUXVP
- NAMEV that person (rewrite lovesusing V o NP ARTNPI
- loves 5. NP > ADJNPI
. 6. NP1~ ADJNPI
7. NPI>N
*« _NPVP 8 NP-» NAME
9. NP— PRON

e S(rewriteNPusing S - NPVP) 10. NAME - Mary

1. V- loves
12. ADJ — that
13. N— person
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Top Down or Bottom Up Parsing?

» Top-down parsing features

— Very predictive

— Only considers grammatical combinations

— Predicts constituents that does not have a match in the text
 Bottom-up parsing features

— Checksinput only once

— May build treesthat can’t lead to full parse

— Suitable for robust language processing (see Ch. 17)
» Similar performance
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Bottom-Up Chart Parsing

» Basic principle: Store partial parsing resultsin a chart to
eliminate duplicate work

» Parsing does not need to be |eft-to-right

» The chart maintains derived constituents and partially
matched rules (active arcs)

» Active constituents represent subparts of the sentence
according to the rewrite rules

» Active constituents are stored in an agenda
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Bottom-Up Chart Parsing cont.

* Operation

— ldentify rules starting with the active constituent or rules that are
partialy identified and extend these

— Combine partially matched records with completed constituent to
form anew completed constituent or a new partially matched
consitutent

— Depth-first or breadth-first search

« Breadth-first better if probabilities are used
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ALGORITHM 11.1: A BoTTOM-UP CHART PARSER

Step1: Initialization: Define a list called chart to store active arcs, and a list called an agenda
to store active constituents unti! they are added to the chart.

Step 2: Repeat: Repeat Step 2 to 7 until there is no input left.

Step 3: Push and pop the agenda: if the agenda is empty, look up the inlerpretations of the
next word in the input and push them te the agenda. Pop a constituent C from the agenda. If C
corresponds to position from w, to w, of the input sentence, we denote it Cfi,j].

Step 4: Add Cto the chart: Insert GJi,j] into the chart,

Step 5: Add key-marked active arcs to the chart: For each tule in the grammar of the form
X—C Y, add to the chart an active arc (partially matched constituent) of the form Xfijj—°CY,
where ° denoles the critical position called the key that indicates that everything before © has
been seen, but things after * are yet to be matched (incomplete constituent).

Step 6: Move ° forward: For any active arc of the form X{1,j/—=Y...°C...Z (everything before
w, ) inthe chart, add a new active arc of the form Xj1,j] — Y...C®...Z o the chart.

Step 7: Add new constituents to the agenda: For any active arc of the form X[1,ij—Y...°C,
add a new constituent of type X[1,[/to the agenda.

Step 8: Exit: If S[1,n]is in the chart, where n is the length of the input sentence, we can exit
successfully unless we want to find all possible interpretations of the sentence. The chart may
contain many S structures covering the entire set of positions.
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Algorithm: A Bottom-Up Chart Parser

1. Initialization
2. Repeat 2 to 7 until all input words are processed

3. Push input word interpretation to, pop constituent from
the agenda

* 4. Add the constituent to the chart

» 5. Find and add partial matches (key-marked) to the chart
» 6. Extend partia matches (Move the keys forward)

» 7. Put the partial matches to the agenda

» 8. Exit, successfully if the whole sentence is interpreted
— continueif all sentence interpretations are required
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Bottom-Up Chart Parsing example (1)

Chart Agenda

Name[1,1] = Mary

Mary loves that person

Look up interpretations of the next input word — push to Agenda
Pop constituent from Agenda, insert in the chart
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Bottom-Up Chart Parsing example (2)

V[2,2] loves

Mary loves that person

(b) After Mary, the chart now has rules Name »Mary, NP—Name, and S—NP°VP.

Find partially matched rules
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Bottom-Up Chart Parsing example (3)

Mary loves that person

(c) The chart after the whole sentence is parsed. $— NP VP covers the whole sentence, indicating that
the sentence is parsed successfully by the grammar.
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11.2 Stochastic Language Models (SLM)

In formal languages, P(W) = 1 or O for accept/reject

Inappropriate for spoken language since
— Incomplete grammar coverage
— Speech is often ungrammatical

Probabilistic Context-Free Grammars (PCFG)
* N-gram Language models
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11.2.1 Probabilistic Context-Free
Grammars (PCFGS)

Bridge between formal and n-gram grammars
» Eachruleisassigned a probability
» Recognition problem

— What isthe probability that the language generates the word
sequence W, P(STO W|G)

» Training problem
— Determine a set of rules and estimate their probabilities
— With fixed rule set, count the number of times each ruleis used
— If annotated corpus use ML estimation

P4~ a|G)=C(4 - a].)/iC(A L a)

— Else use EM agorithm (here also known as inside-outside)
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The inside-outside algorithm

» Analogous to Forward-Backward algorithm
* PCFG rule format A - A4, and 4 - w

* Inside probability inside(j, A, k) (~ forward prob.)
— The probability of 4; generating the word sequence ww,_,...w,
— Computed bottom-up

* Outside probability outside(s, A, t)  (~ backward prob.)

— The sum of probabilities of all partial parses outside the word
sequence w, ... w, , which is covered by 4,

— Computed top-down after the inside probabilities are computed

» Sentence prob. isthe sum of al products of inside and
outside probs to each node
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Theinside algorithm

k-1

inside(j, 4,,k) = P(4, 0 ww,,..w,) = z P4, — 4,4)PA4, 0 w,.w)P(4,0 w,..w,)

m*in
nm =]

k-1

= z P(A4, - A4,4)inside(j, A, l)inside(l +1, 4, ,k)
nm 1=]
4;
4, A
w; w; Wi e Wil

Figure 11.3 Inside probability is computed recursively as sum of all the derivations.
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The outside algorithm

 Outside probability outside(s, A, t)
— The sum of probabilities of all partial parses outside the word
sequence w, ... w, , which is covered by 4,

outside(s, 4,,t) = P(S O wy..w _ AW, ..w;) =...

i

h)
A4;
W W W w, Wi o Wr
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PCFG Rule probability

* Probability of rule4, - 4,,4, covering words w,...w,
E@,mn,s,t)=P(4 0 w..w,, 4 - 4,4S0O W,G)

1 -1
=— VP4 - 4 A
P(SDW‘G); (7 m*'n

G)inside(s, A,,,k)inside(k +1, A, ,t)outside(s, A,,t)

* Probability on all word spansin the sentence

s if(i.m,n,s,t)
P(4, — 4,4,|G) =155

z Z Zg‘(i,m,n,s,t)

1=s5+1
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PCFG Rule estimation aspects

» Only select rules with sufficient probabilities

— Risk that low probability rules generate too many greedy symbols
* Only local maximum guaranteed (asin F-B)
* Problems

— Assumes independence between the expansion of non-terminals
— Lack of word sensitivity within word class
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11.2.2 N-gram Language Models

* A stochastic language model gives the probability P(W)
that aword string W occurs as a sentence
PW)=Pw,w,,..,w,)
:P(Wl)P(WZ‘Wl)P(WS

= rJ P(w,

» Theoretically, every word depends on all previous words
— Huge number of possible unique preceding strings
— Very low occurrence in training data

» Assume dependence only on recent words
— unigram, bigram, trigram, ..., n-gram
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W, W,)..P(w,

Wy, Wy ety W, 1)

Unigram, bigram, etc., estimation

e Unigram: P(W) = |‘J P(w)
* Bigram: P(W) = |'J P(w,|w,4)
e Trigram: Py = |_J o)

Probability estimation is simple occurrence count
— (why not EM algorithm?)

P(w, CWyp: Wigs W,)

Wy W,,) =
) C(W,2:w,4)
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11.3 Complexity Measure of Language
Models

* Test-set perplexity

— Evaluates the generalization capability of the language model
» Training-set perplexity

— Measures how the language model fits the training data

* Typica perplexity values

— Digit strings: 10
— n-gram on English text 50 - 1000
— Wall Street Journal test set
* trigram 128
* bigram 176
November 28, 2003 Speech recognition course 2003 31
Mats Blomberg

11.4 N-Gram Smoothing

* Problem
— Many very possible word sequences may have been observed in
zero or very low numbersin the training data
— Leadsto extremely low probabilities, effectively disabling this
word sequence, no matter how strong the acoustic evidence is
* Solution: smoothing

— produce more robust probabilities for unseen data at the cost of
modeling the training data slightly worse
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N-gram Smoothing - simple technique

* Add constant (often 1) to al word sequence counts
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Interpolation and Backoff Smoothing

* Interpolation models
— Linear combination with lower order n-grams
— Modifies the probabilities of both nonzero and zero count n-grams

o Backoff models

— Uselower order n-grams when the requested n-gram has zero or
very low count in the training data

— Computes models with zero count from lower order n-grams.
— Nonzero count n-grams are unchanged
— Discounting
» Reduce the probability of seen n-grams and distribute among unseen ones
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11.4.1 Deleted Interpolation Smoothing

Interpolation between n-grams of different length
Example on combination of unigrams and bigrams

P (w,w,2) = AP(ww, ) + (L= A) P(w,)

The optimal A is specific for each word history
— A high-frequent context generally gets higher weight
— Requires enormous amount of training data

Cluster into moderate number of weights
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11.4.2 Backoff Smoothing

Good-Turing Estimate
— Partition n-grams into groups depending on their frequency in the training
data
— Change the number of occurrences of an n-gram according to
r=(r+l) fra

» wherer is the occurrence number

* n, isthe number of n-grams that occur » times
The Katz smoothing extends the Good-Turing estimate by combining
higher and lower order models

Bigram example: . o, r if r>0 d=rlr
C (wyw) =0 . ’
w(w_)P(w,) ifr=0
a(w, ;) is computed to satisfy the probability constraints

Discount non-zero bigrams and distribute among zero-count bigrams
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Alternative Backoff Models

Kneser-Ney smoothing
— Background
« Lower order n-grams are often used as backoff model if the count of a higher-
order n-gram is too low (e.g. unigram instead of bigram)
— Problem example

» Some words with relatively high unigram probability only occur in afew
bigrams. E.g. Francisco, which ismainly found in San Francisco. However,
infrequent word pairs, such as New Francisco, will be given too high probability
if the unigram probabilities of New and Francisco are used. Maybe instead, the
Francisco unigram should have alower value to prevent it from occurring in
other contexts.

— Method

« Instead of counting the occurrences of a unigram, count the number of word
identities that it follows.

o Pyn(Wi) = (The number of word identities that it follows) / (The vocabulary size)

« Discount and interpolate to estimate smoothed bigrams from KN unigrams and
low-frequency bigrams
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11.4.3 Class N-grams

» Group words into semantic or grammatical classes and
build n-grams for class sequences

P, | ¢, pgecig) = Pw; | c)P(c; | €opign€iy)

* Benefits

— rapid adaptation, small training sets, reduced memory requirement
» Very helpful for limited domain recognition
» Classes can be rule-based or data-driven

— Rule-based classes useful in domain-specific systems

— Data-driven in general-purpose systems
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11.4.4 Performance of N-gram
Smoothing
* Best: Kneser-Ney

* Next: Katz and Deleted Interpolation
» All three significantly better than No Smoothing
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11.5 Adaptive Language Models

» Dynamic adjustment of the language model
— Conversation topic is unstationary
— Topic remains for some period of time
» Techniques
— Cache Language Models
— Topic-Adaptive Models
— Maximum Entropy Models
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11.5.1 Cache Language Models

* Basicidea
— Accumulate n-grams spoken so far
— Usethese to create local (low-order) dynamic n-gram models
— Interpolate with static n-gram

])cache (WI I Wi—n+1"'wi—1)
= APie W A WirooW,0) + A=A, 0 | W)

¢’ static

— Accounts for the fact that many words tend to be repeated during

e.g. aconversation or dictation

— But doesn’'t account for higher probability of wordsin the same
category (topic-specific words)
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11.5.2 Topic-Adaptive Models

» Topic information can improve the static language model
— The most probable word after “the operating” in ahospital is
different from that in an office
» Topic-clustered language models
— Manua or data-driven (better)
— Useinformation retrieval techniques to find the appropriate
documentsin the training database
e Step 1: Use what is recognized so far to find similar documents
» Step 2: Adapt the topi c-independent model to these documents

¢ Retrieval measure: TFIDF (Term Frequency - Inverse Document
Frequency) for determining document similarity
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11.5.3 Maximum Entropy Models

» Combine n-gram models with another method than linear
interpolation

» Hasnot offered significant improvement in comparison to
linear interpolation
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11.6 Practical Issues

* Vocabulary size 50

— Conflict confusion rate vs. 400

out-of-vocabulary (OOV) rate  § 20

200

100

— For 99.5% English coverage ° i i ,
200 000 word vocabulary is 1ok 30K cattory size 60k
required

— Larger for inflectional 25 -
languages 20
(e.g. Swedish, German) g

— Combine fixed and personal ° ':
vocabularies o : .

10k 30k 40k 60k
Vocabulary Size
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11.6.2 N-gram Pruning

* Then-gram model size becomes easily too large for
practical applications

— Pruning necessary
* Remove low-count n-grams (those with lowest effect on entropy)
« Theremaining probabilities are unchanged
¢ The backoff weights are recomputed

— Pruning is effective
¢ Trigrams can be compressed 25% with no performance degradation

¢ Pruned 4-gram model better than unpruned (much larger) trigram
model
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11.6.3 CFG vs. N-gram Models

» Combine the portability of n-grams with the domain-
specificity of CFG
— Similar to class n-grams but the categories can be CFGs
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Relation n-gram length and per

vs. word error rate

plexity

16
& Unigram
14
12 -
® Bigram
10 =
B e Trigram o Katz
E m Kneser-Ney
6
4
2
0 T T T
1 10 100 1000 10000
Perplexity
MS Whisper results
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How large training data to reach human

listening performance?

Extrapolated word error rates for increasing
quantities of training data

(Moore, Eurospeech 2003)

0

Heard during alife-time

S,

NN

N ™

NN

R N

Word Error Rate (%)

TN

Human

N

Saturation effect
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