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Introduction

• Course objective
– deeper insight into basic and specific methods and algorithms
– understanding - not exact details of equations
– no derivation of theorems and algorithms
– Not covered

• Phonetics, linguistics
– Signal processing relevant parts (short time spectral analysis)
– theory of probabilistics and pattern recognition overviewed
– merit 7.5p in GSLT (5p in old system))

• Recommended background
– GSLT or TMH course in “Speech technology”

or equivalent
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Recommended Background

• Basic mathematics, statistics and programming
• Acoustic phonetics
• Speech analysis

– Short Time Spectral Analysis
– MFCC

• Recognition
– Dynamic programming and DTW
– Fundamentals of hidden Markov models
– Viterbi decoding
– Phoneme-based speech recognition methods
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Literature

• Spoken Language Processing
– A Guide to Theory, Algorithm and System Development
– X. Huang, A. Acero and H-W Hon
– Contains theoretically heavy parts and many equations but it is not 

necessary to follow all derivations. The verbose explanations of
their functions are easier to follow.

• Separate papers
– Speaker recognition
– Finite State Transducers
– Bayesian Networks
– Articulatory inspired approaches
– ...
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Course organization

• 3 lecture days
– March 29-30, May 11

• Practical and computational exercises
• Write term paper + review + presentation
• Closing seminar day

– June 8
– Students’ presentation of individual term papers
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Course overview
• Day #1 March 29

• Probability, Statistics and Information Theory (pp 73-131: 59 pages)
• Pattern Recognition (pp 133-197: 65 pages)
• Speech Signal Representations (pp 275-336 62 pages)
• Hidden Markov Models (pp 377-413: 37 pages)
• HTK tutorial & practical exercise

• Day #2 March 30
• Acoustic Modeling (pp 415-475: 61 pages)
• Environmental Robustness (pp 477-544: 68 pages)
• Computational problems exercise

• Day #3 May 11
• Language Modeling (pp 545-590: 46 pages)
• Basic and Large-Vocabulary Search Algorithms (pp 591-685: 94 pages)
• Applications and User Interfaces (pp 919-956: 38 pages)
• Speaker recognition

• Day #4 June 8
• Presentations of term papers & Solutions to exercises
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Term paper

• Choose subject from a list or suggest one yourself
• Review each others reports
• Suggested topics

– Further experiments on the practical exercise corpus
– Phoneme recognition experiments on larger corpus (e.g. TIMIT or 

WAXHOLM)
– Language models for speech recognition
– Limitations in standard HMM and ways to reduce them
– Pronunciation variation and their importance for speech recognition
– New search methods
– Techniques for robust recognition of speech
– Speaker recognition topics: impersonation, forensics, channel and score

normalisation
– Own work and experiments after discussion with the teacher
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Course Book

• The authors work for Microsoft Research
• Topics

– Fundamental theory
• Speech & Language, Statistics, Pattern Recognition, Information 

Theory
– Speech processing
– Speech recognition
– Text-to-Speech
– Spoken Language systems

• Historical Perspective and Further Reading in each chapter
• Important algorithms described in step-by-step
• Examples from Microsoft’s own research
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Book organization 1(2)

– Ch 1 Introduction
• Part I: Fundamental theory

– Ch 2 Spoken Language Structure
– Ch 3 Probability, Statistics and Information Theory
– Ch 4 Pattern Recognition

• Part II: Speech Processing
– Ch 5 Digital Signal Processing
– Ch 6 Speech Signal Representation
– Ch 7 Speech Coding
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Book organization 2(2)
• Part III: Speech Recognition

– Ch 8 Hidden Markov Models
– Ch 9 Acoustic Modeling
– Ch 10 Environmental Robustness
– Ch 11 Language Modeling
– Ch 12 Basic Search Algorithms
– 13 Large-Vocabulary Search Algorithms

• Part IV: Text-to-Speech Systems
– Ch 14 Text and Phonetic Analyses
– Ch 15 Prosody
– Ch 16 Speech Synthesis

• Part V: Spoken Language systems
– Ch 17 Spoken Language Understanding
– Ch 18 Applications and User Interfaces



March 29, 2007 Speech & speaker recognition course 
2007

11

Ch 3. Probability, Statistics and 
Information Theory

• Conditional Probability and Bayes’ Rule
• Covariance and Correlation
• Gaussian Distributions
• Bayesian Estimation and MAP Estimation
• Entropy
• Conditional Entropy
• Mutual Information and Channel Coding
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Conditional Probability and Bayes’ Rule
• Bayes’ rule  - the common basis for all pattern recognition
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AcousticsP
WordPWordAcousticsPAcousticsWordP ×

=

P( Word | Acoustics ) is the a posteriori probability for a word sequence given the 
acoustic information

P( Acoustics | Word ) is the probability that the word sequence generates the acoustic 
information and is calculated from the training data

P( Word ) is given by the language model and is the a priori probability for the word 
sequence

P( Acoustics ) may be seen as constant since it is independent of the word sequence 
and may be ignored

A combination of acoustic and language knowledge!
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Mean, Covariance and Correlation

• Mean

• Variance

• Covariance

• Correlation

• Multidimensional (Mean and variance vectors, covariance matrix)
YX

XY
YXCov

σσ
ρ ),(

=

[ ]))((),( yx YXEYXCov μμ −−=

∑==
x

x xxfXE )()(μ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(

)(
)(

1

nXE

XE
E MX

⎢
⎢
⎢

⎣

⎡
==

,(),(

,(),(
)(

1

111

nn XCovXXCov

XXCovXXCov
Cov

L

MM

L

XΣX

⎥
⎥
⎥

⎦

⎤

)

)

n

n

X

1
)(

])[()(
2

22

−
−

=−== ∑
n
x

XEXVar xi
xx

μ
μσ



March 29, 2007 Speech & speaker recognition course 
2007

15

Gaussian Distributions

• One-dimensional

• Multivariate n-dimensional
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3.2 Estimation theory

• The basis for training a speech recogniser
• Estimate parameters of a probability distribution function

– Minimum/Least Mean Squared Error Estimation
• Minimize the difference between the distribution of the data and the 

model
– Maximum Likelihood Estimation

• Find the distribution with the maximum likelihood of generating the 
data

– Bayesian Estimation and MAP Estimation
• Assumes that we have a prior distribution that is modified by the new 

data
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Minimum Mean / Least Squared Error 
Estimation

• Modify a model of the distribution to approximate the data with 
minimum error

• Find a function that predicts the value of Y from having observed X
• Estimation is made on joint observations of X and Y
• Minimize: 
• Minimum Mean Squared Error (MMSE) when the joint distribution is

known
• Least Squared Error (LSE) when the distribution is unknown, only

observation pairs (Ex. curve fitting)
• MMSE and LSE becomes equivalent with infinite number of samples

22 ))(()ˆ( XgYEYYE −=−
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Maximum Likelihood Estimation (MLE)

• The most widely used parametric estimation method
• Find the distribution that maximizes the likelihood of 

generating the observed data

• Corresponds to intuition
– Max likelihood is normally achieved when the model has the same 

distribution as the observed data

• Example: univariate Gaussian pdf
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Bayesian and MAP Estimation

• Assumes that we have a prior distribution that is modified 
by the new data

• Use Bayes’ rule to find the new posterior distribution Φ

• Univariate Gaussian    Mean: Var:
• MAP: Maximum A Posteriori probability is a Bayesian 

Estimator
• MAP becomes MLE with uniform prior distribution or 

infinite number of training data
• Valuable for limited training data and for adaptation
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3.3 Significance testing

• For practical methods, see Chapter 4
• How certain are the achieved results?

– The true result is within an interval around the measured value with a 
certain probability

– Confidence level and interval
– Rule of thumb in speech recognition (Doddington, 198x)

• To assure that the true error rate is within the measured value ± 30% with a 
probability of 0.9, requires at least 30 errors to have been made

• Is algorithm A better than B?
– Matched-Pairs Test 

• Compare results on the same test data,
• Sign Test
• Magnitude difference Test
• McNemar Test (Ch 4)
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Entropy and Perplexity
• The information in seeing event xi with probability P(xi) is defined as:

• Entropy is the average information over all possible x values:

• Perplexity
– The equivalent size of an imaginary list with equi-probable words
– Perplexity for English letters: 2.39, English words: 130

• Conditional Entropy
– Input X is distorted by a noisy channel into output Y
– What is the uncertainty of X after observing Y?
– Example: Confusion matrix

– If only diagonal values, the conditional entropy is 0
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3.4.4 Mutual Information and Channel 
Coding

• Mutual Information I(X;Y)
– How much does Y tell us about X?
– The difference between the entropy of X and the conditional entropy of X 

given Y

• H(X|Y)
– "the amount of uncertainty remaining about X after Y is known”
– represents the noise in the channel

• If X and Y are independent: I = 0
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