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Ch 4. Pattern Recognition 1(3)

• Bayes’ Decision Theory
– Minimum-Error-Rate Decision Rules
– Discriminant Functions 

• How to Construct Classifiers
– Gaussian Classifiers
– The Curse of Dimensionality
– Estimating the Error Rate
– Comparing Classifiers (McNemar’s test)
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Pattern Recognition 2 (3)

• Discriminative Training
– Maximum Mutual Information Estimation
– Minimum-Error-Rate Estimation
– Neural networks

• Unsupervised Estimation Methods
– Vector Quantization
– The K-Means Algorithm
– The EM Algorithm
– Multivariate Gaussian Mixture Density Estimation



March 29, 2007 Speech recognition 2007 4

Pattern Recognition 3 (3)

• Classification and Regression Trees (CART)
– Choice of question set
– Splitting criteria
– Growing the tree
– Missing values and conflict resolution
– Complex questions
– The Right-Sized Tree
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4.1.1 Minimum-Error-Rate Decision 
Rules

– Bayes’ decision rule
– The decision is based on choosing the candidate that maximizes 

the posterior probability (results in minimum decision error)
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4.1.2 Discriminant Functions

• The decision problem viewed as 
classification problem

– Classify unknown data into 
one of s known categories

– Using s discriminant functions
• Minimum-error-rate classifier:

– Maximize a posteriori 
probability: Bayes’ decision 
rule

• For two-class problem:

– Likelihood ratio:
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Discriminant Functions

Fig 4.2 A classifier based on discriminant functions
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Fig 4.3 Decision boundaries
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4.2.1 Gaussian classifiers

• The class-conditional probability density is assumed to 
have a Gaussian distribution

• Decision boundary 
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4.2.2 The Curse of Dimensionality

• More features (e.g. higher dimensions or more parameters 
in density function) lead (in theory) to lower classification 
error rate

• In practice: may lead to worse results due to too little 
training data

• Paradox called The curse of dimensionality
• Fig 4.6 Curve fitting
• Fig 4.7 Phoneme classification
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The Curse of Dimensionality
Curve Fitting

First order, linear, second and
10th order polynomial fitting curves



March 29, 2007 Speech recognition 2007 12

The Curse of Dimensionality
Two-phoneme classification

Error rate as a function of the number of Gaussian mixture 
densities and the number of training samples (2 – 10000)
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4.2.3 Estimating the Error Rate

• Computation from parametrical model has problems (error 
under-estimation, bad model assumptions, very difficult)

• Recognition error on training data is a lower bound 
(Warning!) 

• Use independent test data
• How to partition the available speech data

– Holdout method
– V-fold cross validation (Leave-one-out method)
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Is Algorithm/System A better than B?

• Compare results on the same test data
– McNemar Test

• Compares classification results (next slide)
– Sign Test 

• May be used if the results are considered as Matched Pairs
• Only thing measured is whether A or B is better

– Magnitude Difference Test
• Measures how much better A or B is
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4.2.4 Comparing classifiers
• McNemar’s test

– Compares two classifiers by looking at samples where only one 
made an error

n = N01 + N10 Nxx has binomial distribution B(n,1/2)

Test the null hypothesis that the classifiers have the same
error rates (z-test)
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Confidence

• The true result is within an interval around the measured
value with a certain probability
– Confidence level and interval

• Doddington’s “Rule of 30”
– To be 90 percent confident that the true error rate is within +/- 30

percent of the observed error rate, there must be at least 30 errors.
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Confidence Intervals

Figure 4.8 95 % confidence intervals for classification error rate estimation with normal test 
n = 10, 15, 20, 30, 50, 100, 250
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4.3 Discriminative Training

• Maximum Likelihood Estimation models each class 
separately, independent of other classes

• Discriminative Training aims at models that maximize the 
discrimination between the classes
– Maximum Mutual Information Estimation (MMIE)
– Minimum-Error-Rate Estimation
– Neural networks
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4.3.1 Maximum Mutual Information 
Estimation (MMIE)

• Discriminative criterion:
– For each model to estimate, find a setting that maximizes the 

probability ratio between the model and the sum of all other 
models. Maximizes the posterior probability.

• Maximize

• Gives different result compared to MLE. 
MLE maximizes the numerator only

• Theoretically appealing but computationally expensive
– Every sample used for all classes
– Use gradient descent algorithm 

∑
≠ik

kk

ii

pp
pp

)()(
)()(
ωω

ωω
x
x



March 29, 2007 Speech recognition 2007 20

4.3.2 Minimum-Error-Rate Estimation

• Also called Minimum-Classification-Error (MCE) 
training, discriminative training, 

• Iterative procedure (gradient descent)
– Re-estimate models, classification, improve correctly recognized 

models and suppress mis-recognized models

• Computationally intensive, used for few classes
• Corrective training

– Simple and faster error-correcting procedure
– Move the parameters of the correct class towards the training data
– Move the parameters of the near-miss class away from 

the training data
– Good results
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4.3.3 Neural Networks

• Inspired by nerve cells in biological nervous systems 
• Many simple processing elements connected to a complex 

network.
• Single-Layer Perceptron Fig. 4.10
• Multi-Layer Perceptron (MLP) Fig 4.11

– Back propagation training
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Artificial Neural Network - ANN

Θ
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4.3.3 Multi-Layer Perceptron
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The Back Propagation Algorithm
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4.4 Unsupervised Estimation Methods

• Vector Quantization
• The EM Algorithm
• Multivariate Gaussian Mixture Density Estimation
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4.4.1 Vector Quantization (VQ)

• Described by a codebook, a set of prototype vectors 
(codewords)

• An input vector is replaced by the index of the codeword 
with the smallest distortion

• Distortion Measures
– Euclidean 

• sum of squared error
– Mahalanobis distance 

• exponential term in Gaussian density function

• Codebook generation algorithms
– The K-Means Algorithm
– The LBG Algorithm
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Vector Quantization

Partitioning of a two-dimensional space into 16 cells
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The K-Means Algorithm

• 1. Choose an initial division between the codewords
• 2. Classify each training vector into one of the cells by 

choosing the closest codeword
• 3. Update all codewords by computing the centroids of the 

training vectors
• 4. Repeat steps 2 and 3 until the distortion ratio between 

current and previous codebook is above a preset threshold

• Comment
– Converges to local optimum
– Initial choice is critical
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The LBG Algorithm

• 1. Initialization. 
– Set number of cells M = 1. Find the centroid of all training data.

• 2. Splitting. 
– Split M into 2M by finding two distant points in each cell. Set 

these as centroids for 2M cells.

• 3. K-Means Stage. 
– Use K-Means algorithm to modify the centroids for minimum 

distortion.

• 4. Termination
– If  M equals the required codebook size, STOP. Otherwise go to 2.
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4.4.2 The Expectation Maximization 
(EM) Algorithm

• Used for training of  hidden Markov models
• Generalisation of Maximum-Likelihood Estimation
• Problem approached

– Estimate distributions (ML) of several classes when the training data is 
not classified (e.g. into states of the models)

– Is it possible to train the classes anyway? (Yes - local maximum)
• Simplified iterative procedure (similar to K-Means procedure for VQ)

– 1. Initialise class distributions
– 2. Using current parameters, compute the class probability for each 

training sample.
– 3. Each sample updates each class distribution by the probability weights

• Maximum-likelihood estimate of distributions, replace current distr.
– 4. Repeat 2+3 until convergence (Will converge)
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Simplified illustration of EM estimation
Say, three paths have been found in a training utterance. 
The probabilities of the state sequences for the initial HMM are
0.13, 0.35 and 0.22.

New E(s2) = (0.13 X(t1) + 0.35 X (t2) + 0.22 X(t3)) / 0.70
Not as simple as it may look, though!

P = 0.13

P = 0.35
P = 0.22

t

s

s3

s2

s1

t1 t2 t3 T
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4.4.3 Multivariate Gaussian 
Mixture Density Estimation

• Probability density is weighted sum of Gaussians:

– ck is the probability of component k, ck = P(X = k)

• Analogy
– GM vs VQ, 
– EM algorithm vs K-means algorithm
– VQ minimizes codebook distortion 

GM maximizes the likelihood of the observed data
– VQ performs hard assignment

EM performs soft assignment
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Partitioning Space into 
Gaussian Density Functions
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4.5 Classification And Regression Trees 
CART

• Binary decision tree
• An automatic and data-driven framework to construct a 

decision process based on objective criteria
• Handles data samples with mixed types, nonstandard 

structures
• Handles missing data, robust to outliers and mislabeled 

data samples
• Used in speech recognition for model tying
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Binary Decision Tree for 
Height Classification
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Steps in Constructing a CART

• 1. Find set of questions
• 2. Put all training samples in root
• 3. Recursive algorithm

– Find the best combination of question and node. 
Split the node into two new nodes

– Move the corresponding data into the new nodes
– Repeat until right-sized tree is obtained

• Greedy algorithm, only locally optimal, splitting without 
regard to subsequent splits
– Dynamic programming would help but computationally heavy
– Works well in practice
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4.5.1 Choice of Question Set

• Can be manually selected
• Automatic procedure:
• Simple (singleton) or complex questions

– Simple questions about a single variable

• Discrete variable questions
– Does xi belong to set S?
– S is any possible subset of the training samples

• Continuous variable questions
– Is xi <= cn?
– cn is midpoint between two training samples
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4.5.2 Splitting Criteria

• Find the pair of node and question for which split gives
– Discrete variable

• Maximum reduction in entropy

– Continuous variables
• The maximum gain in likelihood

– For regression purposes
• The largest reduction in squared error from a regression of the data in 

the node

))()(()()( YHYHYHqH rltt +−=Δ

)()()()( 2211 NLNLNLqL Xt XXX −+=Δ



March 29, 2007 Speech recognition 2007 39

4.5.3 Growing the Tree

• Stop growing a node when either
– All samples in the node belong to the same class
– The greatest entropy reduction falls below threshold
– The number of data samples in the node is too small
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4.5.4 Missing Values and 
Conflict Resolution

• Missing values in input
– Handle by surrogate question(s)

• Conflict resolution
– Two questions may achieve the same entropy reduction and the 

same partitioning
– One question may be sub-question to the other
– Select the sub-question (since more specific)



March 29, 2007 Speech recognition 2007 41

4.5.5 Complex Questions

• Problem
– Simple (one-variable) questions 

may result in similar leaves in 
different locations

– Over-fragmenting

• Solution
– Form composite questions by all 

possible combinations of the 
simple-question leaf nodes in 
the tree using all AND and OR 
combinations. Select best 
composite question.
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4.5.6 The Right-Sized Tree

• Too many splits improves classification on training data 
but reduction on test data (Curse of dimensionality)

• Use a pruning strategy to gradually cut back the over-
grown tree until the minimum misclassification on the test 
data is achieved
– Minimum Cost-Complexity Pruning

• Produces a sequence of trees with increased pruning
– Select the best tree using either of

• Independent Test Sample Estimation (fixed test data)
• V-fold Cross Validation (train on (v-1) parts, test on 1, circulate)
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