Pattern Recognition

Kjell Elenius

Speech, Music and Hearing KTH

Ch 4. Pattern Recognition 1(3)

- Bayes' Decision Theory
 - Minimum-Error-Rate Decision Rules
 - Discriminant Functions
- How to Construct Classifiers
 - Gaussian Classifiers
 - The Curse of Dimensionality
 - Estimating the Error Rate
 - Comparing Classifiers (McNemar's test)

Pattern Recognition 2 (3)

- Discriminative Training
 - Maximum Mutual Information Estimation
 - Minimum-Error-Rate Estimation
 - Neural networks
- Unsupervised Estimation Methods
 - Vector Quantization
 - The K-Means Algorithm
 - The EM Algorithm
 - Multivariate Gaussian Mixture Density Estimation

Pattern Recognition 3 (3)

- Classification and Regression Trees (CART)
 - Choice of question set
 - Splitting criteria
 - Growing the tree
 - Missing values and conflict resolution
 - Complex questions
 - The Right-Sized Tree

4.1.1 Minimum-Error-Rate Decision Rules

- Bayes' decision rule
- The decision is based on choosing the candidate that maximizes the posterior probability (results in minimum decision error)

$$k = \frac{\arg\max}{i} P(\omega_i \mid x) = \frac{\arg\max}{i} p(x \mid \omega_i) P(\omega_i)$$

4.1.2 Discriminant Functions

- The decision problem viewed as classification problem
 - Classify unknown data into one of *s* known categories
 - Using *s* discriminant functions
- Minimum-error-rate classifier:
 - Maximize a posteriori probability: Bayes' decision rule

For two-class problem:
$$\ell(x) = \frac{p(x \mid \omega_1)}{p(x \mid \omega_2)}$$
 $\ell(x) > T : \omega_1$
 $\ell(x) < T : \omega_2$ $T = \frac{P(\omega_2)}{P(\omega_1)}$

- Likelihood ratio:

Discriminant Functions

Fig 4.2 A classifier based on discriminant functions

Fig 4.3 Decision boundaries

4.2.1 Gaussian classifiers

• The class-conditional probability density is assumed to have a Gaussian distribution

$$p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{d/2} \mid \Sigma_i \mid^{1/2}} \exp \left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i) \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

• Decision boundary

4.2.2 The Curse of Dimensionality

- More features (e.g. higher dimensions or more parameters in density function) lead (in theory) to lower classification error rate
- In practice: may lead to worse results due to too little training data
- Paradox called *The curse of dimensionality*
- Fig 4.6 Curve fitting
- Fig 4.7 Phoneme classification

The Curse of Dimensionality Curve Fitting

First order, linear, second and 10th order polynomial fitting curves

March 29, 2007

Speech recognition 2007

The Curse of Dimensionality Two-phoneme classification

NUMBER OF MIXTURES, m

Error rate as a function of the number of Gaussian mixture densities and the number of training samples (2 – 10000) March 29, 2007 Speech recognition 2007

4.2.3 Estimating the Error Rate

- Computation from parametrical model has problems (error under-estimation, bad model assumptions, very difficult)
- Recognition error on training data is a lower bound (Warning!)
- Use independent test data
- How to partition the available speech data
 - Holdout method
 - V-fold cross validation (Leave-one-out method)

Is Algorithm/System A better than B?

- Compare results on the same test data
 - McNemar Test
 - Compares classification results (next slide)
 - Sign Test
 - May be used if the results are considered as Matched Pairs
 - Only thing measured is whether A or B is better
 - Magnitude Difference Test
 - Measures how much better A or B is

4.2.4 Comparing classifiers

- McNemar's test
 - Compares two classifiers by looking at samples where only one made an error

 $n = N_{01} + N_{10}$ N_{xx} has binomial distribution B(n,1/2)

Test the null hypothesis that the classifiers have the same error rates (z-test)

March 29, 2007

Speech recognition 2007

Confidence

- The true result is within an interval around the measured value with a certain probability
 - Confidence level and interval
- Doddington's "Rule of 30"
 - To be 90 percent confident that the true error rate is within +/- 30 percent of the observed error rate, there must be at least 30 errors.

Confidence Intervals

Figure 4.8 95 % confidence intervals for classification error rate estimation with normal testn = 10, 15, 20, 30, 50, 100, 250March 29, 2007Speech recognition 200717

4.3 Discriminative Training

- Maximum Likelihood Estimation models each class separately, independent of other classes
- Discriminative Training aims at models that maximize the discrimination between the classes
 - Maximum Mutual Information Estimation (MMIE)
 - Minimum-Error-Rate Estimation
 - Neural networks

4.3.1 Maximum Mutual Information Estimation (MMIE)

- Discriminative criterion:
 - For each model to estimate, find a setting that maximizes the probability ratio between the model and the sum of all other models. Maximizes the posterior probability.
- Maximize

$$\frac{p(\mathbf{x}|\omega_i)p(\omega_i)}{\sum_{k\neq i}p(\mathbf{x}|\omega_k)p(\omega_k)}$$

- Gives different result compared to MLE. MLE maximizes the numerator only
- Theoretically appealing but computationally expensive
 - Every sample used for all classes
 - Use gradient descent algorithm

4.3.2 Minimum-Error-Rate Estimation

- Also called Minimum-Classification-Error (MCE) training, discriminative training,
- Iterative procedure (gradient descent)
 - Re-estimate models, classification, improve correctly recognized models and suppress mis-recognized models
- Computationally intensive, used for few classes
- Corrective training
 - Simple and faster error-correcting procedure
 - Move the parameters of the correct class towards the training data
 - Move the parameters of the near-miss class away from the training data
 - Good results

4.3.3 Neural Networks

- Inspired by nerve cells in biological nervous systems
- Many simple processing elements connected to a complex network.
- Single-Layer Perceptron Fig. 4.10
- Multi-Layer Perceptron (MLP) Fig 4.11
 - Back propagation training

Artificial Neural Network - ANN

Figure 1: Computation performed in a single node. Three representative nonlinearities are shown.

4.3.3 Multi-Layer Perceptron

The Back Propagation Algorithm

ALGORITHM 4.1: THE BACK PROPAGATION ALGORITHM

Step 1: Initialization: Set t = 0 and choose initial weight matrices W for each layer. Let's denote $w_{ij}^{k}(t)$ as the weighting coefficients connecting i^{th} input node in layer k-1 and j^{th} output node in layer k at time t.

Step 2: Forward Propagation: Compute the values in each node from input layer to output layer in a propagating fashion, for k = 1 to K

$$v_j^k = sigmoid(w_{0j}(t) + \sum_{i=1}^N w_{ij}^k(t)v_i^{k-1}) \quad \forall j$$
(4.72)

where sigmoid(x) = $\frac{1}{1 + e^{-x}}$ and v_j^k is denoted as the j^{th} node in the k^{th} layer

Step 3: Back Propagation: Update the weights matrix for each layer from output layer to input layer according to:

$$\overline{w}_{ij}^{k}(t+1) = w_{ij}^{k}(t) - \alpha \frac{\partial E}{\partial w_{ij}^{k}(t)}$$
(4.73)

where $E = \sum_{i=1}^{s} ||y_i - o_i||^2$ and (y_1, y_2, \dots, y_s) is the computed output vector in Step 2.

 α is referred to as the learning rate and has to be small enough to guarantee convergence. One popular choice is 1/(t+1).

Step 4: Iteration: Let t = t + 1. Repeat Steps 2 and 3 until some convergence condition is met.

4.4 Unsupervised Estimation Methods

- Vector Quantization
- The EM Algorithm
- Multivariate Gaussian Mixture Density Estimation

4.4.1 Vector Quantization (VQ)

- Described by a codebook, a set of prototype vectors (codewords)
- An input vector is replaced by the index of the codeword with the smallest distortion
- Distortion Measures
 - Euclidean
 - sum of squared error
 - Mahalanobis distance
 - exponential term in Gaussian density function
- Codebook generation algorithms
 - The K-Means Algorithm
 - The LBG Algorithm

Vector Quantization

Partitioning of a two-dimensional space into 16 cells

The K-Means Algorithm

- 1. Choose an initial division between the codewords
- 2. Classify each training vector into one of the cells by choosing the closest codeword
- 3. Update all codewords by computing the centroids of the training vectors
- 4. Repeat steps 2 and 3 until the distortion ratio between current and previous codebook is above a preset threshold
- Comment
 - Converges to *local* optimum
 - Initial choice is critical

The LBG Algorithm

- 1. Initialization.
 - Set number of cells M = 1. Find the centroid of all training data.
- 2. Splitting.
 - Split M into 2M by finding two distant points in each cell. Set these as centroids for 2M cells.
- 3. K-Means Stage.
 - Use K-Means algorithm to modify the centroids for minimum distortion.
- 4. Termination
 - If M equals the required codebook size, STOP. Otherwise go to 2.

4.4.2 The Expectation Maximization (EM) Algorithm

- Used for training of hidden Markov models
- Generalisation of Maximum-Likelihood Estimation
- Problem approached
 - Estimate distributions (ML) of several classes when the training data is not classified (e.g. into states of the models)
 - Is it possible to train the classes anyway? (Yes *local* maximum)
- Simplified iterative procedure (similar to K-Means procedure for VQ)
 - 1. Initialise class distributions
 - 2. Using current parameters, compute the class probability for each training sample.
 - 3. Each sample updates *each* class distribution by the probability weights
 - Maximum-likelihood estimate of distributions, replace current distr.
 - 4. Repeat 2+3 until convergence (Will converge)

Simplified illustration of EM estimation

Say, three paths have been found in a training utterance. The probabilities of the state sequences for the initial HMM are 0.13, 0.35 and 0.22.

4.4.3 Multivariate Gaussian Mixture Density Estimation

• Probability density is weighted sum of Gaussians:

$$p(\mathbf{y} \mid \mathbf{\Phi}) = \sum_{k=1}^{K} c_k p_k(\mathbf{y} \mid \mathbf{\Phi}_k) = \sum_{k=1}^{K} c_k N_k(\mathbf{y} \mid \mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

- c_k is the probability of component k, $c_k = P(X = k)$

- Analogy
 - GM vs VQ,
 - EM algorithm vs K-means algorithm
 - VQ minimizes codebook distortion
 GM maximizes the likelihood of the observed data
 - VQ performs hard assignment
 EM performs soft assignment

Partitioning Space into Gaussian Density Functions

March 29, 2007

4.5 Classification And Regression Trees CART

- Binary decision tree
- An automatic and data-driven framework to construct a decision process based on objective criteria
- Handles data samples with mixed types, nonstandard structures
- Handles missing data, robust to outliers and mislabeled data samples
- Used in speech recognition for model tying

Binary Decision Tree for Height Classification

Steps in Constructing a CART

- 1. Find set of questions
- 2. Put all training samples in root
- 3. Recursive algorithm
 - Find the best combination of question and node.
 Split the node into two new nodes
 - Move the corresponding data into the new nodes
 - Repeat until right-sized tree is obtained
- Greedy algorithm, only locally optimal, splitting without regard to subsequent splits
 - Dynamic programming would help but computationally heavy
 - Works well in practice

4.5.1 Choice of Question Set

- Can be manually selected
- Automatic procedure:
- Simple (singleton) or complex questions
 - Simple questions about a single variable
- Discrete variable questions
 - Does x_i belong to set S?
 - S is any possible subset of the training samples
- Continuous variable questions
 - Is $x_i \le c_n$?
 - c_n is midpoint between two training samples

4.5.2 Splitting Criteria

- Find the pair of node and question for which split gives
 - Discrete variable
 - Maximum reduction in entropy

 $\Delta \overline{H}_{t}(q) = \overline{H}_{t}(Y) - (\overline{H}_{l}(Y) + \overline{H}_{r}(Y))$

- Continuous variables
 - The maximum gain in likelihood

$$\Delta \overline{L}_{t}(q) = L_{1}(\mathbf{X}_{1}|N) + L_{2}(\mathbf{X}_{2}|N) - L_{X}(\mathbf{X}|N)$$

- For regression purposes
 - The largest reduction in squared error from a regression of the data in the node

4.5.3 Growing the Tree

- Stop growing a node when either
 - All samples in the node belong to the same class
 - The greatest entropy reduction falls below threshold
 - The number of data samples in the node is too small

4.5.4 Missing Values and Conflict Resolution

- Missing values in input
 - Handle by surrogate question(s)
- Conflict resolution
 - Two questions may achieve the same entropy reduction and the same partitioning
 - One question may be sub-question to the other
 - Select the sub-question (since more specific)

4.5.5 Complex Questions

- Problem
 - Simple (one-variable) questions may result in similar leaves in different locations
 - Over-fragmenting
- Solution
 - Form composite questions by all possible combinations of the simple-question leaf nodes in the tree using all AND and OR combinations. Select best composite question.

N

Y

Ν

4.5.6 The Right-Sized Tree

- Too many splits improves classification on training data but reduction on test data (Curse of dimensionality)
- Use a pruning strategy to gradually cut back the overgrown tree until the minimum misclassification on the test data is achieved
 - Minimum Cost-Complexity Pruning
 - Produces a sequence of trees with increased pruning
 - Select the best tree using either of
 - Independent Test Sample Estimation (fixed test data)
 - V-fold Cross Validation (train on (v-1) parts, test on 1, circulate)