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General course info

• Home page
– http://www.speech.kth.se/~matsb/speech_speaker_rec_course_2007/Cours

se_PM.html
• Exercises

– VQ, CART, HMM decoding, training
– Return solutions by May 7

• Term paper
– 4 - 6 pages, max 10
– Send to reviewers ( 2 course participants) by May 16
– Reviewer return comments by May 25
– Final paper to teacher and the reviewers by June 1

• Closing seminar
– Presentation of own paper
– Active discussions
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Course overview
• Day #1

– Probability, Statistics and Information Theory (pp 73-131: 59 pages)
– Pattern Recognition (pp 133-197: 65 pages)
– Speech Signal Representations (pp 275-336 62 pages)
– Hidden Markov Models (pp 377-413: 37 pages)

• Day #2
– Hidden Markov Models (cont.)
– Acoustic Modeling (pp 415-475: 61 pages)
– Environmental Robustness (pp 477-544: 68 pages)
– Computational exercise

• Day #3
– Language Modeling (pp 545-590: 46 pages)
– Basic Search Algorithms (pp 591-643: 53 pages)
– Large-Vocabulary Search Algorithms (pp 645-685: 41 pages)
– Applications and User Interfaces (pp 919-956: 38 pages)
– Other topics

• Day #4 Closing seminar
– Presentations of term papers
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8.2.4 How to Estimate HMM Parameters 
- Baum-Welch Algorithm

• The most difficult of the three HMM problems
• Unsupervised learning. Incomplete data. State sequence 

unknown.
– Use the EM algorithm

• Implemented by the iterative Baum-Welch (Forward-
Backward) algorithm 
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The EM Algorithm for HMM training 
• Problem approached

– Estimate model parameters that maximize the probability that the model have 
generated the data.

• The maximum is achieved when the model distribution is equal to that of the the training 
data

– Estimate distributions (ML) of several classes (model states) when the training data 
(time frames) are not classified

– Is it possible to train the classes anyway? (Yes - local maximum only)
• Iterative procedure, simplified description

– 1. Initialise class distributions
– 2. Using current parameters, compute the class (state) probabilities for each 

training sample (time frame)
– 3. Every class (state) distribution is re-computed as a probability weighted 

contribution of each sample (time frame)
• A moving target; the new distribution will affect the class probabilities, which will, in 

turn, result in new parameters, therefore:
– 4. Repeat 2+3 until convergence (Will converge)

• Similar principle for observation and transition probabilities
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Simplified illustration of EM estimation for 
HMM training

Say, three paths have been found. The probabilities of the state
sequences for the initial HMM are 0.13, 0.35 and 0.22.

New E(s2) = (0.13 X(t1) + 0.35 X (t2) + 0.22 X(t3)) / 0.70

P = 0.13

P = 0.35
P = 0.22

t

s

s3

s2

s1

t1 t2 t3 T

Not as simple as it may look. Many paths, partly shared
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Towards Baum-Welch algorithm

• Not feasible to compute over all individual possible state 
sequences

• And not necessary
– The probability that the model has taken a certain transition at a 

certain time is independent of the history and the future (Markov 
assumption) 

• We only need to know their summed effect to the 
probability for every individual transition in the trellis 
diagram (time-state)
– P(The model switches between states i and j at time t)
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The Baum-Welch algorithm

P(The model switched from state i to j at time t) = γt(i,j)
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The Baum-Welch Algorithm - 2

T

γt(i,j): The probability of the model having taken the transition from 
state i to state j at time t and produced the observations
= The sum of the probabilities for all paths passing through (t-
1,i)and (t,j) divided by the sum of the probabilities for all paths
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Forward and Backward probabilities
• Forward probability

– The probability of generating a partial observation X1 …Xt ending at time 
t and state i

• Backward probability
– The probability of generating a partial observation Xt+1 …XT starting from 

time t and state i. 
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The Baum-Welch Algorithm (cont.)
Def γt(i,j): The probability of the model having taken the 
transition from state i to state j at time t
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The Baum-Welch Algorithm (cont.)

New model estimates:
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The ratio between the expected number of 
transitions from state i to j and the expected number 
of all transitions from state i

The ratio between the expected number of times the 
observation data emitted from state j is ok and the 
expected number of times any observation data is 
emitted from state j

Quite intuitive equations!
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8.3 Continuous and Semi-Continuous HMMs

• The observation does not come from a finite set, but from a 
continuous space
– No quantization error
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The Baum-Welch algorithm
Continuous Mixture Density HMMs

P(The model switched to state j at time t using mixture component k) = ζt(j,k)

T
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Utterance

xt xt+1 xt+2

General idea: One arrow for each
mixture component

Continuous observations

P(symbol) =>
N(μ,σ)+
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8.3.1 Continuous Mixture Density HMMs

• A weighted sum of multivariate Gaussians

– M: number of mixture-components
– cjk : the weight for the kth component in state j
– Similar re-estimation equations as the discrete case but an extra dimension

is the probability of each mixture component having produced the
observation
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Discrete HMM
• Observations are discrete symbols, e.g. VQ 

codeword indeces

VQ space Codeword 
probabilities HMM states
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Continuous HMM
• Continuous observations
• The mixture components and the mixture weights are state-dependent

Gauss components Mixture weights HMM states
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Semicontinuous (Tied-Mixture) HMM
• Continuous observations
• The mixture component distributions are state-independent
• The mixture weights are state-dependent

Gauss components 
common to all 
states

State-dependent 
mixture weights

HMM states

1-dim.
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8.3.2 Semicontinuous HMMs (SCHMM)
(Tied-mixture HMM)

• Bridging the gap between discrete and continuous mixture density
HMMs. 

• As in discrete HMM, a common codebook for all states
– But continuous pdfs of Gaussians - not discrete symbols
– State-dependent mixture weights corresponds to discrete output 

probabilities bj

• The observation probability is a sum of the individual probabilities for 
all mixture components. 

• Reduced number of parameters (vs continuous) but still allowing 
detailed acoustic modeling (vs discrete)

• Similar re-estimation as for continuous HMM, except state-
independent mixtures
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8.4 Practical Issues in Using HMMs

• Initial Estimates
• Model Topology
• Training Criteria
• Deleted Interpolation
• Parameter Smoothing
• Probability Representations
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8.4.1 Initial Estimates

• Important in order to reach a high local maximum
• Discrete HMM

– Initial zero probability remains zero
– Uniform distribution works reasonably well

• Continuous HMM methods
– k-means clustering
– Proceed from discrete HMM to semi-continuous to continuous
– Start training single mixture models. 

• Use previously segmented data or “flat start” (equal model 
parameters of all states in the training data)
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8.4.2 Model Topology

• Left-to-right - the most popular topology
– Number of states per model

• Phone: Three to five states
• Short words: 2-3 states per phoneme
• Long words: 1-2 states per phoneme

• Null transitions
– Change state without using observations (e.g. initial and final 

states)
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8.4.3 Training Criteria

• Maximum Likelihood Estimation (MLE)
– Sensitive to inaccurate Markov assumptions

• MCE and MMIE might work better
• MAP suitable for adaptation and small training data
• MLE the most used

– simplicity
– superior performance

• MCE and MMIE for small and medium vocabularies
• Combinations possible
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8.4.4 Deleted Interpolation
– Combine well-trained general models with less well-trained 

detailed models
• The combined probability is a weighted average (interpolation) of the 

probabilities of the separate models
– speaker-dependent and -independent models, context-free and context-

dependent phone models, unigrams, bigrams and trigrams

• V-fold cross-validation to estimate λ
– Train on (v-1) parts, estimate λ on the remainding part, circulate
– EM algorithm: new λ = λ P(model A) / (P(interpolated model DI)
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Alg. 8.5 Deleted Interpolation Procedure

• Step 1: Initialize λ with a guessed estimate
• Step 2: Update λ by the formula:

– M: number of training data divisions
– PA-j and PB-j are estimated on the all training data except part j
– nj the number of data points in part j aligned to the model
– xt

j: the t-th data point in the j-th set

• Step 3: Repeat step 2 until convergence
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8.4.5 Parameter Smoothing
Compensate for insufficient training data

• Increase the data (There is no data like more data)
• Reduce the number of free parameters
• Deleted interpolation
• Parameter flooring to avoid small probability values
• Tying parameters (SCHMM)
• Covariance matrix

– interpolate via MAP
– Tie matrices
– Use diagonal covariance matrices
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8.4.6 Probability Representations

• The probabilities become very small
– underflow problem

• Viterbi decoding (only multiplication): use logarithm
• Forward-backward (multiplication and addition): difficult

– Solution 1
• Scaling to make 

– Solution 2
• Logarithmic probabilities
• Use look-up table to speed up log(P1+P2) 

1)( =∑
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8.5 HMM Limitations

• Duration modeling
• First Order Assumption
• Conditional Independence Assumption
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8.5.1 Duration Modeling

• HMM duration distribution: exponential decrease
– The probability of state duration t is the probability of taking the 

self-loop t times multiplied by the probability of leaving the state

– Different to real distribution (House & Crystal, 1986)

– Maximum Likelihood search can model non-exponential 
distributions by sequence of states

• Standard Viterbi cannot but can be modified to at the expense of large 
increase in computation
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Modified Viterbi for state duration 
modelling

• Algorithm

• Conventional Viterbi algorithm

• Maximize over previous state i and starting time t-τ for 
end time t

• Large increase in complexity O(D2), (D = Max duration)
– Can be reduced (Seward, 2003)

• Modest accuracy improvement
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Recursion pattern for explicit duration 
Viterbi decoding
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8.5.2 First Order Assumption

• In a first order Markov chain, the transition from a state 
depends only on the current state

• A second order Markov chain models the transition 
probability between two states as dependent on the current 
and the previous state

• Transition probability:

• Has not offered sufficient accuracy improvement to justify 
the increase in computational complexity
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8.5.3 Conditional Independence 
Assumption

• It is assumed that all observation frames are dependent 
only on the state that generated them, not on any other 
frames in the observation sequence (neighboring or 
distant)

• Difficult to handle non-stationary frames with strong 
correlation

• To include the dependence on the previous observation 
frame:
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Distant repetitions of identical phonemes in an 
utterance are acoustically similar

|  så | det |             blir |            väl |          ehh...    |           fredag |      kväll |

|ja |det | är |    väl |           fredag |            idag |      ......        |

☯ FLßD

☯ FLßD

If the first [e:] has certain characteristics (due to accent, age, gender, etc.) then it is likely 
that the second one has it as well. Dependence! Problem in speaker-independent ASR
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9.6 Adaptive Techniques – Minimizing 
Mismatches

• There is always mismatch between training and 
recognition conditions

• Adaptation
– Minimize the mismatch dynamically with little calibration data
– Supervised

• knowledge of the correct identity
– Unsupervised

• the recognition result is assumed to be correct
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9.6.1 Maximum a Posteriori (MAP)

• A new model is estimated using the training data interpolated with old 
information about the model

• τik is a balancing factor between the prior mean and the ML estimate. 
Can be a constant for all Gaussian components

• Similar for the covariance estimation
• Limitations

– The prior model needs to be accurate
– Needs observations for all models
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9.6.2 Maximum Likelihood Linear 
Regression (MLLR)

• Linear regression functions transform mean and covariance  for 
maximizing the likelihood of the adaptation data

• Ac is a regression matrix, bc is an additive vector for regression class c
• A and b can be estimated in a similar way as when training the 

continuous observation parameters
• Iteration for optimization
• Models not in the adaptation data are updated 
• If little training data, use few regression classes
• Can adapt both means and variances
• Does not adapt transition probabilities

cikcik bμAμ +=
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MLLR adaptation illustration

• The transform for a class is optimized to maximize the 
likelihood of the adapted models to generate the 
adaptation data

M
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Original models
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Adapted regression class
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Adaptation data

Transform
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Speaker-Adaptive Training (SAT)

• Problem
– Large variation in the speaker-independent models

• MLLR adaptation of variances not very effective

• Solution: Speaker Adaptive Training
– Adapt (MLLR) each training speaker to the speaker-independent 

model.
– Use the adapted training data for each speaker to train a new 

speaker-independent model
– Reduces the variation by moving all speakers towards their 

common average.
– Requires adaptation during recognition
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MLLR performance

Models Relative Error Reduction

CHMM Baseline

MLLR on mean only +12%

MLLR on mean and
variance

+2%

MLLR SAT +8%

One context-independent regression class for all context-
dependent phones with same mid unit 
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9.6.3 MLLR and MAP Comparison

• MLLR better for small adaptation data, MAP is better 
when the adaptation data is large. Combined MLLR+MAP 
best in both cases
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9.6.4 Clustered Models

• A single speaker- and environment- independent model 
often has too much variability for high performance 
recognition and adaptation

• Cluster the training data into smaller partitions
• Gender-dependent models can reduce WER by 10%
• Speaker clustering can reduce it further, but not as much
• Environment clustering and adaptation in Chapter 10
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