# Doctoral Course in Speech Recognition

Friday March 30

Mats Blomberg

March-June 2007

March 29-30, 2007

Speech recognition course 2007 Mats Blomberg 1

# General course info

- Home page
  - http://www.speech.kth.se/~matsb/speech\_speaker\_rec\_course\_2007/Cours se\_PM.html
- Exercises
  - VQ, CART, HMM decoding, training
  - Return solutions by May 7
- Term paper
  - 4 6 pages, max 10
  - Send to reviewers ( 2 course participants) by May 16
  - Reviewer return comments by May 25
  - Final paper to teacher and the reviewers by June 1
- Closing seminar
  - Presentation of own paper
  - Active discussions

#### Course overview

- Day #1
  - Probability, Statistics and Information Theory (pp 73-131: 59 pages)
  - Pattern Recognition (pp 133-197: 65 pages)
  - Speech Signal Representations (pp 275-336 62 pages)
  - Hidden Markov Models (pp 377-413: 37 pages)
- Day #2
  - Hidden Markov Models (cont.)
  - Acoustic Modeling (pp 415-475: 61 pages)
  - Environmental Robustness (pp 477-544: 68 pages)
  - Computational exercise
- Day #3
  - Language Modeling (pp 545-590: 46 pages)
  - Basic Search Algorithms (pp 591-643: 53 pages)
  - Large-Vocabulary Search Algorithms (pp 645-685: 41 pages)
  - Applications and User Interfaces (pp 919-956: 38 pages)
  - Other topics
- Day #4 Closing seminar
  - Presentations of term papers

# 8.2.4 How to Estimate HMM Parameters - Baum-Welch Algorithm

- The most difficult of the three HMM problems
- Unsupervised learning. Incomplete data. State sequence unknown.
  - Use the EM algorithm
- Implemented by the iterative Baum-Welch (Forward-Backward) algorithm

#### The EM Algorithm for HMM training

- Problem approached
  - Estimate model parameters that maximize the probability that the model have generated the data.
    - The maximum is achieved when the model distribution is equal to that of the the training data
  - Estimate distributions (ML) of several classes (model states) when the training data (time frames) are not classified
  - Is it possible to train the classes anyway? (Yes *local* maximum only)
- Iterative procedure, simplified description
  - 1. Initialise class distributions
  - 2. Using current parameters, compute the class (state) probabilities for each training sample (time frame)
  - 3. Every class (state) distribution is re-computed as a probability weighted contribution of each sample (time frame)
    - A moving target; the new distribution will affect the class probabilities, which will, in turn, result in new parameters, therefore:
  - 4. Repeat 2+3 until convergence (Will converge)
- Similar principle for observation and transition probabilities

#### Simplified illustration of EM estimation for HMM training

Say, three paths have been found. The probabilities of the state sequences for the initial HMM are 0.13, 0.35 and 0.22.



# Towards Baum-Welch algorithm

- Not feasible to compute over all individual possible state sequences
- And not necessary
  - The probability that the model has taken a certain transition at a certain time is independent of the history and the future (Markov assumption)
- We only need to know their summed effect to the probability for every individual transition in the trellis diagram (time-state)
  - P(The model switches between states *i* and *j* at time *t*)

#### The Baum-Welch algorithm

P(The model switched from state *i* to *j* at time *t*) =  $\gamma_t(i,j)$ 



#### The Baum-Welch Algorithm - 2

 $\gamma_t(i,j)$ : The probability of the model having taken the transition from state i to state j at time t and produced the observations = The sum of the probabilities for all paths passing through (t-1,i)and (t,j) divided by the sum of the probabilities for all paths



Speech recognition course 2007 Mats Blomberg Т

#### Forward and Backward probabilities

- Forward probability  $\alpha_t(i)$   $\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right]b_j(X_t)$ 
  - The probability of generating a partial observation  $X_1 \dots X_t$  ending at time *t* and state *i*
- Backward probability  $\beta_t(i)$ 
  - The probability of generating a partial observation  $X_{t+1} \dots X_T$  starting from time *t* and state *i*.

$$\beta_t(i) = \left| \sum_{j=1}^N a_{ij} b_j(X_{t+1}) \beta_{t+1}(j) \right| \qquad t = T - 1, \dots, 1 \quad 1 \le i \le N \qquad \beta_T(i) = 1/N$$



March 29-30, 2007

Speech recognition course 2007 Mats Blomberg Т

#### The Baum-Welch Algorithm (cont.)

Def  $\gamma_t(i,j)$ : The probability of the model having taken the transition from state *i* to state *j* at time *t* 

 $\gamma_t(i, j) = P$ (The model has switched from state *i* to *j* at time *t*)

 $= \frac{P(\text{The model generates the observed sequence and switches from state i to j at time t)}{P(\text{The model generates the observed sequence})}$ 



#### The Baum-Welch Algorithm (cont.)

#### New model estimates:



(8.40) The ratio between the expected number of transitions from state *i* to *j* and the expected number of all transitions from state *i* 

$$\hat{b}_{j}(k) = \frac{\sum_{t \in X_{t}=o_{k}} \sum_{i} \gamma_{t}(i, j)}{\sum_{t=1}^{T} \sum_{i} \gamma_{t}(i, j)}$$

(8.41) The ratio between the expected number of times the observation data emitted from state j is o<sub>k</sub> and the expected number of times any observation data is emitted from state j

#### Quite intuitive equations!

#### 8.3 Continuous and Semi-Continuous HMMs

- The observation does not come from a finite set, but from a continuous space
  - No quantization error

#### The Baum-Welch algorithm Continuous Mixture Density HMMs

P(The model switched to state *j* at time *t* using mixture component *k*) =  $\zeta_t(j,k)$ 



#### 8.3.1 Continuous Mixture Density HMMs

• A weighted sum of multivariate Gaussians

$$b_j(\mathbf{x}) = \sum_{k=1}^M c_{jk} N(x, \mu_{jk}, \Sigma_{jk})$$

 $\sum_{k=1}^{M} c_{jk} = 1$ 

- M: number of mixture-components
- $c_{jk}$ : the weight for the k<sup>th</sup> component in state j
- Similar re-estimation equations as the discrete case but an extra dimension is the probability of each mixture component having produced the observation

$$\hat{\boldsymbol{\mu}}_{jk} = \frac{\sum_{t=1}^{T} \zeta_t(j,k) \mathbf{x}_t}{\sum_{t=1}^{T} \zeta_t(j,k)} \qquad \qquad \hat{\boldsymbol{\Sigma}}_{jk} = \frac{\sum_{t=1}^{T} \zeta_t(j,k) (x - \hat{\boldsymbol{\mu}}_{jk}) (x - \hat{\boldsymbol{\mu}}_{jk})}{\sum_{t=1}^{T} \zeta_t(j,k)} \qquad \qquad \hat{\boldsymbol{c}}_{jk} = \frac{\sum_{t=1}^{T} \zeta_t(j,k)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \zeta_t(j,k)}$$

$$\zeta_{t}(j,k) = \frac{\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} c_{jk} b_{jk}(x_{t}) \beta_{t}(j)}{\sum_{i=1}^{N} \alpha_{T}(i)}$$

Zeta: The probability that there is a transition to state j and mixture comp k, at time t given that the model generates the observed sequence

#### Discrete HMM

• Observations are discrete symbols, e.g. VQ codeword indeces



#### Continuous HMM

- Continuous observations
- The mixture components and the mixture weights are state-dependent



Gauss components Mixture weights HMM states

March 29-30, 2007

# Semicontinuous (Tied-Mixture) HMM

- Continuous observations
- The mixture component distributions are state-independent
- The mixture weights are state-dependent



Mats Blomberg

#### 8.3.2 Semicontinuous HMMs (SCHMM) (Tied-mixture HMM)

- Bridging the gap between discrete and continuous mixture density HMMs.
- As in discrete HMM, a common codebook for all states
  - But continuous pdfs of Gaussians not discrete symbols
  - State-dependent mixture weights corresponds to discrete output probabilities  $b_i$
- The observation probability is a sum of the individual probabilities for all mixture components. M

$$b_j(\mathbf{x}) = \sum_{k=1}^{M} b_j(k) N(\mathbf{x}, \mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

- Reduced number of parameters (vs continuous) but still allowing detailed acoustic modeling (vs discrete)
- Similar re-estimation as for continuous HMM, except stateindependent mixtures

# 8.4 Practical Issues in Using HMMs

- Initial Estimates
- Model Topology
- Training Criteria
- Deleted Interpolation
- Parameter Smoothing
- Probability Representations

# 8.4.1 Initial Estimates

- Important in order to reach a high local maximum
- Discrete HMM
  - Initial zero probability remains zero
  - Uniform distribution works reasonably well
- Continuous HMM methods
  - *k*-means clustering
  - Proceed from discrete HMM to semi-continuous to continuous
  - Start training single mixture models.
- Use previously segmented data or "flat start" (equal model parameters of all states in the training data)

# 8.4.2 Model Topology

- Left-to-right the most popular topology
  - Number of states per model
    - Phone: Three to five states
    - Short words: 2-3 states per phoneme
    - Long words: 1-2 states per phoneme
- Null transitions



Change state without using observations (e.g. initial and final states)

# 8.4.3 Training Criteria

- Maximum Likelihood Estimation (MLE)
  - Sensitive to inaccurate Markov assumptions
- MCE and MMIE might work better
- MAP suitable for adaptation and small training data
- MLE the most used
  - simplicity
  - superior performance
- MCE and MMIE for small and medium vocabularies
- Combinations possible

#### 8.4.4 Deleted Interpolation

- Combine well-trained general models with less well-trained detailed models
  - The combined probability is a weighted average (interpolation) of the probabilities of the separate models
    - speaker-dependent and -independent models, context-free and contextdependent phone models, unigrams, bigrams and trigrams

 $P_{DI}(\mathbf{x}) = \lambda P_A(\mathbf{x}) + (1 - \lambda) P_B(\mathbf{x})$ 

- V-fold cross-validation to estimate  $\lambda$ 
  - Train on (v-1) parts, estimate  $\lambda$  on the remainding part, circulate
  - EM algorithm: new  $\lambda = \lambda P(\text{model } A) / (P(\text{interpolated model } DI))$

Example: Combine trigrams, bigrams and unigrams

$$P(w_{k} \mid w_{k-2}, w_{k-1}) = \lambda_{3} \frac{C(w_{k-2}, w_{k-1}, w_{k})}{C(w_{k-2}, w_{k-1})} + \lambda_{2} \frac{C(w_{k-1}, w_{k})}{C(w_{k-1})} + \lambda_{1} \frac{C(w_{k})}{C(K)}$$

March 29-30, 2007

#### Alg. 8.5 Deleted Interpolation Procedure

- Step 1: Initialize  $\lambda$  with a guessed estimate
- Step 2: Update  $\lambda$  by the formula:

$$\hat{\lambda} = \frac{1}{M} \sum_{j=1}^{M} \sum_{t=1}^{n_j} \frac{\lambda P_{A-j}(\mathbf{x}_t^j)}{\lambda P_{A-j}(\mathbf{x}_t^j) + (1-\lambda)P_{B-j}(\mathbf{x}_t^j)}$$

- M: number of training data divisions
- $P_{A-j}$  and  $P_{B-j}$  are estimated on the all training data except part j
- $n_j$  the number of data points in part *j* aligned to the model
- $\mathbf{x}_t^{j}$ : the t-th data point in the j-th set
- Step 3: Repeat step 2 until convergence

#### 8.4.5 Parameter Smoothing Compensate for insufficient training data

- Increase the data (There is no data like more data)
- Reduce the number of free parameters
- Deleted interpolation
- Parameter flooring to avoid small probability values
- Tying parameters (SCHMM)
- Covariance matrix
  - interpolate via MAP
  - Tie matrices
  - Use diagonal covariance matrices

# 8.4.6 Probability Representations

- The probabilities become very small
  - underflow problem
- Viterbi decoding (only multiplication): use logarithm
- Forward-backward (multiplication and addition): difficult
  - Solution 1

• Scaling to make 
$$\sum_{i} S_t \alpha_t(i) = 1$$

- Solution 2
  - Logarithmic probabilities
  - Use look-up table to speed up  $log(P_1+P_2)$

# 8.5 HMM Limitations

- Duration modeling
- First Order Assumption
- Conditional Independence Assumption

# 8.5.1 Duration Modeling

- HMM duration distribution: exponential decrease
  - The probability of state duration *t* is the probability of taking the self-loop t times multiplied by the probability of leaving the state

$$d_i(t) = a_{ii}^t (1 - a_{ii})$$

- Different to real distribution (House & Crystal, 1986)
- Maximum Likelihood search can model non-exponential distributions by sequence of states
  - Standard Viterbi cannot but can be modified to at the expense of large increase in computation

# Modified Viterbi for state duration modelling

• Algorithm

$$V_{t}(j) = \underset{i}{Max} \underset{\tau}{Max} \left[ V_{t-\tau}(i)a_{ij}d_{j}(\tau) \prod_{l=1}^{\tau} b_{j}(X_{t-\tau+l}) \right]$$

• Conventional Viterbi algorithm

$$V_t(j) = M_{ax} \left[ V_{t-1}(i) a_{ij} b_j(X_t) \right]$$

- Maximize over previous state *i* and starting time *t*-τ for end time *t*
- Large increase in complexity  $O(D^2)$ , (D = Max duration)

- Can be reduced (Seward, 2003)

• Modest accuracy improvement March 29-30, 2007 Speech recognition course 2007 Mats Blomberg

30

# Recursion pattern for explicit duration Viterbi decoding



#### 8.5.2 First Order Assumption

- In a first order Markov chain, the transition from a state depends only on the current state
- A second order Markov chain models the transition probability between two states as dependent on the current and the previous state
- Transition probability:  $a_{s_{t-2}s_{t-1}s_t} = P(s_t | s_{t-2}s_{t-1})$
- Has not offered sufficient accuracy improvement to justify the increase in computational complexity

# 8.5.3 Conditional Independence Assumption

- It is assumed that all observation frames are dependent only on the state that generated them, not on any other frames in the observation sequence (neighboring or distant)
- Difficult to handle non-stationary frames with strong correlation
- To include the dependence on the previous observation frame:

• 
$$P(\mathbf{X}|\mathbf{S}, \mathbf{\Phi}) = \prod_{t=1}^{T} P(X_t | X_{t-1}, s_t, \mathbf{\Phi})$$
 Or  $P(\mathbf{X}|\mathbf{S}, \mathbf{\Phi}) = \prod_{t=1}^{T} P(X_t | \Re(X_{t-1}), s_t, \mathbf{\Phi})$ 



If the first [e:] has certain characteristics (due to accent, age, gender, etc.) then it is likely that the second one has it as well. Dependence! Problem in speaker-independent ASR

# 9.6 Adaptive Techniques – Minimizing Mismatches

- There is always mismatch between training and recognition conditions
- Adaptation
  - Minimize the mismatch dynamically with little calibration data
  - Supervised
    - knowledge of the correct identity
  - Unsupervised
    - the recognition result is assumed to be correct

# 9.6.1 Maximum a Posteriori (MAP)

• A new model is estimated using the training data interpolated with old information about the model

$$\hat{\mu}_{ik} = \frac{\tau_{ik}\mu_{nw_{ik}} + \sum_{t=1}^{T}\zeta_t(i,k)\mathbf{x}_t}{\tau_{ik} + \sum_{t=1}^{T}\zeta_t(i,k)}$$

- $au_{ik}$  is a balancing factor between the prior mean and the ML estimate. Can be a constant for all Gaussian components
- Similar for the covariance estimation
- Limitations
  - The prior model needs to be accurate
  - Needs observations for all models

# 9.6.2 Maximum Likelihood Linear Regression (MLLR)

• Linear regression functions transform mean and covariance for maximizing the likelihood of the adaptation data

#### $\overline{\boldsymbol{\mu}}_{ik} = \mathbf{A}_c \boldsymbol{\mu}_{ik} + \mathbf{b}_c$

- $\mathbf{A}_c$  is a regression matrix,  $\mathbf{b}_c$  is an additive vector for regression class c
- A and b can be estimated in a similar way as when training the continuous observation parameters
- Iteration for optimization
- Models not in the adaptation data are updated
- If little training data, use few regression classes
- Can adapt both means and variances
- Does not adapt transition probabilities

#### MLLR adaptation illustration

• The transform for a class is optimized to maximize the likelihood of the adapted models to generate the adaptation data



# Speaker-Adaptive Training (SAT)

- Problem
  - Large variation in the speaker-independent models
    - MLLR adaptation of variances not very effective
- Solution: Speaker Adaptive Training
  - Adapt (MLLR) each training speaker to the speaker-independent model.
  - Use the adapted training data for each speaker to train a new speaker-independent model
  - Reduces the variation by moving all speakers towards their common average.
  - Requires adaptation during recognition

# MLLR performance

| Models                    | Relative Error Reduction |
|---------------------------|--------------------------|
| CHMM                      | Baseline                 |
| MLLR on mean only         | +12%                     |
| MLLR on mean and variance | +2%                      |
| MLLR SAT                  | +8%                      |

One context-independent regression class for all contextdependent phones with same mid unit

March 29-30, 2007

## 9.6.3 MLLR and MAP Comparison



• MLLR better for small adaptation data, MAP is better when the adaptation data is large. Combined MLLR+MAP best in both cases

March 29-30, 2007

#### 9.6.4 Clustered Models

- A single speaker- and environment- independent model often has too much variability for high performance recognition and adaptation
- Cluster the training data into smaller partitions
- Gender-dependent models can reduce WER by 10%
- Speaker clustering can reduce it further, but not as much
- Environment clustering and adaptation in Chapter 10