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Ch 9 Acoustic Modeling

• Variability in the Speech Signal
• How to Measure Speech Recognition Errors
• Signal Processing – Extracting Features
• Phonetic Modeling – Selecting Appropriate Units
• Acoustic Modeling – Scoring Acoustic Features
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Ch 9 Acoustic Modeling 1(4)

• Variability in the Speech Signal
– Context Variability
– Style Variability
– Speaker Variability
– Environment Variability

• (How to Measure Speech Recognition Errors)
• Signal Processing – Extracting Features

– Signal acquisition
– End-Point Detection
– MFCC and Its Dynamic Features
– Feature Transformation
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Ch 9 Acoustic Modeling 2(4)

• Phonetic Modeling – Selecting Appropriate Units
– Comparison of Different Units
– Context Dependency
– Clustered Acoustic-Phonetic Units
– Lexical Baseforms

• Acoustic Modeling – Scoring Acoustic Features
– Choice of HMM Output Distributions
– Isolated vs. Continuous Speech Training
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Ch 9 Acoustic Modeling 3(4)

• Adaptive Techniques – Minimizing Mismatches
– Maximum a Posteriori (MAP)

– Maximum Likelihood Linear Regression (MLLR)

– MLLR and MAP Comparison

– Clustered Models

• Confidence Measures: Measuring the Reliability
– Filler Models

– Transformation Models

– Combination Models
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Ch 9 Acoustic Modeling 4(4)

• Other Techniques
– Neural Networks
– Segment Models

• Parametric Trajectory Models
• Unified Frame- and Segment-Based Models

– Articulatory Inspired Modeling 
• HMM2, feature asynchrony, multi-stream (separate papers) 

– Use of prosody and duration
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Acoustic model requirements
• Goal of speech recognition

– Find word sequence with maximum posterior probability

– One linguistic P(W) and one acoustic model P(X|W)
– In large vocabulary recognition, phonetic modeling is better than 

word modeling
• Training data size
• Tying between similar parts of words
• Recognition speed

– The acoustic model should include
• variation due to speaker, pronunciation, environment, coarticulation
• dynamic adaptation
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9.1 Variability in the Speech Signal
• Context

– Linguistic
• homonyms: same pronunciation but meaning dependent on word context

– Acoustic
• coarticulation, reduction effects

• Speaking style
– isolated words, read-aloud speech, conversational speech

• Speaker
– dependent, independent, adaptive

• Environment
– background noise, reverberation, transmission channel
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9.2 How to Measure 
Speech Recognition Errors

• Dynamic programming to align recognised and correct 
strings

• Gives optimistic performance
• Discards phonetic similarity

sentencecorrecttheinwordsofNo.
InsertionsDeletionsonsSubstituti*%100rateerrorWord ++
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9.3 Signal Processing –
Extracting Features

• Purpose
– Reduce the data rate, remove noise, extract useful features

• Signal Acquisition
• End-Point Detection
• MFCC and its Dynamic Features
• Feature Transformation
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9.3.1 Signal acquisition

• Practical consideration on slow machines: buffering
• Children’s speech benefit from higher sampling rate

Sampling rate Relative Error-rate
Reduction

8 kHz Baseline
11 kHz +10%
16 kHz +10%
22 kHz +0%

Effect of sampling rate on the performance
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9.3.2 End-Point Detection

• Two-class pattern classifier selects intervals to be 
recognised

• Based on energy, spectral balance, duration
• Exact end-point positioning not critical

– Low rejection rate more important than low false acceptance
– Lost speech segments cause errors, accepted external noise can be 

rescued by the recogniser

• Adaptive algorithm (EM) better than fixed threshold
• Buffering necessary
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9.3.3 MFCC and Its Dynamic Features
• Temporal changes important for human perception
• Delta coefficients: 1st and 2nd order time derivative

– Capture short-time dependencies
• Typical state-of-the-art system

– 13th order MFCC ck

– 13th-order 40 ms 1st order deltas Δck = ck+2 - ck-2

– 13th-order 2nd order deltas ΔΔck = Δck+1 - Δck-1

• Often computed as regression lines
Feature set Rel. Error

Reduction
13th-order LPCC Baseline
13th-order MFCC +10%
16th-order MFCC +0%

+1st and 2nd order deltas +20%
+3rd order deltas +0%



March 29, 2007 Speech recognition 2007 14

9.3.4 Feature Transformation: PCA

• Principal-Component Analysis (PCA) 
– Also known as Karhunen-Loewe transform
– Maps a large feature vector into smaller dimensional vector
– New basis vectors: eigenvectors, ordered by the amount of 

variability they represent (eigenvalues)
– Discard those with the smallest eigenvalues
– The transformed vector elements are uncorrelated
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9.3.4 Feature Transformation: LDA

• LDA: Linear Discriminant Analysis
• Transform the feature vector into a space with 

maximum class discrimination
• Method

– “Quotient” between Between Class Scatter and 
Within Class Scatter

– The eigenvectors of this matrix constitute the new dimensions
– The first LDA eigenvectors represent the directions in which the

class discrimination is maximum
• PCA eigenvectors represent directions with class independent 

variability
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PCA vs LDA

PCA finds directions with maximum class-independent variability
LDA finds directions with maximum class discrimination

PCA(1)

LDA(1)
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9.3.4 Feature Transformation: 
Frequency warping for vocal tract length normalisation

• Linear or piece-wise linear scaling of the frequency axis to 
account for varying vocal tract size
– Shift of center frequencies of the mel-scale filter bank
– Scaling of center frequencies of linear frequency filter bank
– In theory, phoneme dependent scaling is necessary
– Phoneme-independent scaling used in practice, works reasonably 

well. 
• 10% relative error reduction among adult speakers
• Larger reduction when children use adult phone models
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9.4 Phonetic Modeling –
Selecting Appropriate Units

• What is the best base unit for a continuous speech 
recogniser?

• Possible units
– Phrase, word, syllable, phoneme, allophone, subphone

• Requirements
– Accurate

• Can be recognised with high accuracy
– Trainable

• Can be well trained with the given size of the training data
– Generalizable

• Words not in the training data should be modelled with high precision
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9.4.1 Comparison of Different Units
• Phrase

+ Captures coarticulation for a whole phrase
– Very large number. Common phrases might be trainable

• Word
+ Intra-word, but not inter-word coarticulation is captured

• Requires word-pair training
– Very large number, large vocabulary training unrealistic

• Syllable
+ Close tying with prosody (stress, rhythm)
– Coarticulation at endpoints not captured, Large number

• Phone
+ Low number (around 50)
– Very sensitive to coarticulation

• Context-dependent phone (triphone, diphone, monophone)
+ Captures coarticulation from adjacent phones
– High number of triphones (125 000)



March 29, 2007 Speech recognition 2007 20

9.4.2 Context Dependency

• Triphones cover the dependence from immediately 
neighboring phonemes

• Dependence not captured:
– Certain coarticulation

• Phones at longer distance (e.g., lip rounded, retroflex, nasal)
• Across word boundaries (often)

– Stress information (normally)
• Lexical stress ( import vs. import)
• Sentence-level stress
• Contrastive stress
• Emphatic stress
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9.4.3 Clustered Acoustic-Phonetic Units
• Parts of certain context-dependent phones are similar 

– The subphone state can be a basic speech unit
– The very large number of states is reduced by clustering (tying)
– Senones
– State-based clustering can keep dissimilar states of two phone 

models apart but merge the similar ones
– Better parameter sharing than in phone-based tying

– The first two states can be tied:



March 29, 2007 Speech recognition 2007 22

Predict Unseen Triphones
• Which senones to represent a triphone that does not exist 

in the training data?
• Decision tree

Decision tree for selecting senone for 2nd state of /k/ triphone
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Unit Performance Comparison

Units Rel. Error
Reduction

Context-independent phone Baseline
Context-dependent phone +25%

Clustered triphone +15%
Senone +24%

Relative error reduction for different modelling units. The reduction is 
relative to the preceding row
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9.4.4 Lexical Baseforms

• Dictionary contains standard pronunciation
– Need alternative pronunciations

• Phonological rules to modify word boundaries and to 
model reduced speech

• Proper names often not included in dictionaries
– Need to be derived automatically
– Rule-based letter-to-sound conversion not good for English
– Need trainable LTS converter
– Neural networks, HMM, CART
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CART-based LTS Conversion

• Questions in a context window, size around 10 letters
• Give more weight to nearby context

– Example: “Is the second letter to the right ‘p’?”
– Use a transcribed dictionary for generating the tree
– Splitting criterion: Entropy reduction
– Conversion error 8% on English newspaper text
– Error types

• Proper nouns and foreign words
• Generalisation

– Exception dictionary necessary
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Pronunciation Variability
• Multiple entries in dictionary or finite state machine
• Modest error reduction (5-10%) by current approaches

– Allows too much variability

• Studies indicate high potential
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Pronunciation Variability: 
Possible Research Directions

• Simulations indicate possible error reduction
– Factor 5-10 (McAllaster et al, 1998)

• Experiments not as successful
– Possibly 35% relative (Yang et al, 2002)
– In practice, 5-10%

• Why no improvement?
– Gaussian mixtures can model phone insertion and substitution

• Rules for phone deletion still of value (Jurafski et al, 2001)
– Rules tend to over-generate, allow too much variability

• Need to be specific for each speaker (style, accent, etc.)
• Inter-rule dependence
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9.5 Acoustic Modeling – Scoring 
Acoustic Features
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Choice of HMM Output Distributions

• Discrete, continuous, or semicontinuous HMM?
– If training data is small, use DHMM or SCHMM

– Multiple codebooks 
• E.g. separate codebooks for static, delta and acceleration features

– Number of mixture components
• With sufficient training data, 20 components reduce SCHMM error 

by 15-20%
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Isolated vs. Continuous Speech Training

• In isolated word speech recognition, each word is trained 
in isolation
– Straight-forward Baum-Welch training

• In continuous and phoneme-based speech recognition, 
each unit is trained in varying context

• Phones and words are connected by null transitions
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Concatenation of Phone Models into a 
Word Model

/sil/ /t/ /uw/ /sil/
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Composite Sentence HMM
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9.7 Confidence Measures

• The system’s belief in its own decision
• Important for

– out-of-vocabulary detection
– repair probable recognition errors
– word spotting
– training
– unsupervised adaptation

• Theory

• Good confidence estimator if the denominator is not 
ignored
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9.7.1 Filler Models

• Represent the denominator P(X) by a general-purpose 
recognizer
– E.g. phoneme recognizer

• Run the two recognizers in parallel
• Individual word confidence is derived by accumulating the 

ratio over the duration of a recognised word
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9.7.2 Transformation Models

• Idea
– Some phonemes may be more important for the confidence score
– Give more weight to these

– The confidence of phoneme i is transformed
– Word confidence
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Phoneme Specific Confidence Weights
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Confidence Accuracy Improvement by 
Transformation Model
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9.7.3 Combination Models

• Combine different features to a confidence measure
– Word stability using different language models
– Average number active words at end of utterance
– Normalized acoustic score per frame in word 

• Combination metric is insignificant
– linear classifier works well
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9.8 Other Techniques

• In addition to HMM
– Neural Networks
– Segment Models
– 2D HMM
– Bayesian networks
– Multi-stream
– Articulatory oriented representation
– Prosody and duration
– Long range dependencies
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9.8.1 Artificial Neural Networks (ANN)

• Good performance for phoneme classification and isolated, 
small-vocabulary recognition

• Problem
– Basic neural nets have trouble handling patterns with timing 

variability (such as speech)
• Alignment, training, decoding

• Approaches
– Recurrent neural networks

• Memory of previous outputs or internal states
– Time Delay Neural Networks

• A time sequence of acoustic features are input to the net
– Integration with HMM (Hybrid system)

• The ANN replaces the Gaussian mixture densities
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Time Delay Neural Network (TDNN)
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Recurrent Network
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9.8.2 Segment Models

• Problem
– The HMM output-independence assumption results in a stationary 

process (constant mean and variance) in each state
• Bad model, speech is non-stationary
• Delta and acceleration features help, but the problem remains

– Phantom trajectories can occur
• Trajectories that did not exist in the training data

• Approach
– An interval trajectory rather than a single frame value is matched
– Parametric Trajectory Models
– Unified Frame- and Segment-Based Models
– Heavily increased computational complexity
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Phantom Trajectories

Mixture component sequences that never occurred in 
the same utterance during training, are allowed during 
recognition
Standard HMM allows every frame in an utterance to 
come from a different speaker

Norrländsk accent

Skånsk accent

Example:
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Parametric Trajectory Models

• Model a speech segment with curve-fitting parameters
– Time-varying mean
– Linear division of the segment in constant number of samples
– Multiple mixtures possible
– Low number of trajectories needed for speaker-independent 

recognition
• Seems to help the phantom trajectory problem

– Estimation by EM algorithm
– Modest improvement over HMM
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Unified Frame- and 
Segment-Based Models

• HMM and segment model (SM) approaches are 
complementary
– HMM: detailed modeling but quasi-stationary
– SM: models transitions and longer-range dynamics but coarse 

detail

• Combine HMM and SM

• 8% WER reduction compared to HMM Whisper
• (Method developed by course book co-author)

appp )SM|()HMM|()modelUnified|( XXX =
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Research Progress Evolution
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2-dimensional HMM

• The speech spectrum is viewed as a Markov process 
(Weber et al,2000)
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Articulatory Inspired Modeling 

• Variation in articulator synchrony 
cause large acoustic variability

– Ex. Transition region in boundary 
vowel - unvoiced fricative
Which is first? Devoicing: Aspiration 
Closure: voiced fricative

• Linear trajectories in the articulatory 
domain are transformed to non-
linearity in the spectral/cepstral domain

– Should be easier to model 
coarticulation in the articulatory 
domain

– Transformation to different physical 
size

Blomberg (1991)
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Multi-stream Systems

• Dupont, Bourlard (1997)
• Separate decoding for feature subsets
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Bayesian Networks

• Hidden Feature Modeling (Livescu et al, 2003)
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Use of Prosody and Duration

• Carries semantic, stress, and non-linguistic information
– Several information sources are superimposed

• Not fully synchronized to the articulation
– Multi-stream technique would help

• Small improvement reported 
– 1% (Chen et al, 2003)
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9.9 Case Study: Whisper

• Microsoft’s general-purpose speaker-independent 
continuous speech recognition engine
– MFCC + Delta + Acceleration
– Cepstral Normalisation to eliminate channel distortion
– Three-state phone models
– Lexicon: mainly one pronunciation per word
– Speaker adaptation using MAP and MLLR (phone-dependent 

classes)
– Language model: Trigram (60 000 words) or context-free grammar
– Performance: 7% WER on DARPA dictation test
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Ch 10 Environmental Robustness

• The Acoustical Environment
• Acoustical Transducers
• Adaptive Echo Cancellation
• Multimicrophone speech enhancement
• Environment Compensation Preprocessing
• Environmental Model Adaptation
• Modeling Nonstationary Noise
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10.1 The Acoustical Environment

• Additive Noise
• Reverberation
• A Model of the Environment
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10.1.1 Additive Noise

• Stationary - non-stationary
• White - colored

– Pink noise

• Environment - speaker
• Real - simulated

– The speaker may change his voice when speaking in noise (The 
Lombard effect)

– Reported recognition experiments are mainly performed in 
simulated noise - do not capture this effect



March 29, 2007 Speech recognition 2007 57

10.1.2 Reverberation

• Sound reflections from walls and objects in a room are 
added to the direct sound.

• Recognition systems are very sensitive to this effect
• Strong sounds mask succeeding weak sounds
• Reverberation radius - the distance from the sound source 

where the direct and the far sound fields are equal in 
amplitude

• Typical office
– reverberation time up to 100 ms
– reverberation radius 0.5 m
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Environments

• Office - 200 speakers
• at least 4 different rooms (close and far wall)
• close talk, hands-free, medium distance (0.75 m), far distance (2 m)

• Public Place - 200 speakers
• at least 2 locations:  hall > 100m2 and outdoors

• Entertainment - 75 speakers
• at least 3 different living rooms with radio on/off, 

• Car - 75 speakers
• middle or upper class car

– VW Golf, Opel Astra, Mercedes A Class
– Ford Mondeo, Mercedes C Class, Audi A6

• motor on/off, city 30-70, road 60-100, highway 90-130 km/h

• Children
– 50 speakers

• children’s room
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Near and far distance microphones

Headset

3 m distance

Stereo recording 2 microphones in quiet office
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10.1.3 A Model of the Environment

• A model of combined noise and reverberation effects
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Simulated Effect of Additive Noise
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10.2 Acoustical Transducers
• Close-talk and far field microphones

– Close-talk
• background noise is attenuated
• sensitive to speaker non-speech sounds
• positioning is critical

– mouth corner recommended
– plosive bursts may saturate the mic signal if right in front

– Far field
• picks up more background noise
• positioning less critical

• Most popular type: condenser microphone
• Multimicrophones - Microphone Arrays

– Adjustable directivity
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10.3 Adaptive Echo Cancellation

• The LMS Algorithm
• Convergence Properties of the LMS Algorithm
• Normalized LMS Algorithm
• Transform-Domain LMS Algorithm
• The LRS Algorithm
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10.4 Multimicrophone Speech 
Enhancement

• Microphone Arrays
• Blind Source Separation
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10.5 Environment Compensation 
Preprocessing

• Spectral Subtraction
• Frequency Domain from Stereo Data
• Wiener filtering
• Cepstral Mean Normalization (CMN)
• Real-Time Cepstral Normalization
• The Use of Gaussian Mixture Models
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10.5.1 Spectral Subtraction

• The output power spectrum is a sum of the signal and the noise power 
spectra

• The noise spectrum can be estimated when there is no signal present 
and be subtracted from the output spectrum

• Musical noise in the generated speech signal at low SNR due to 
fluctuations
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Noise Removal

• Frequency Domain MMSE from Stereo Data
– Minimum mean square correction spectrum is estimated from 

simultaneously recorded noise-free and noisy speech

• Wiener Filtering
– Find filter to remove the noisy signal
– Needs knowledge of both noise and signal spectra
– Chicken and egg problem
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10.5.4 Cepstral Mean Normalization 
(CMN)

• Subtract the average cepstrum over the utterance from each 
frame

• Compensates for different frequency characteristics
• Problem

– The average cepstrum contains both channel and phonetic 
information

– The compensation will be different for different utterances
– Especially for short utterances (< 2-4 sec)

• Still provides robustness against filtering operations
– For telephone recordings, 30% relative error reduction
– Some compensation also for differences in voice source spectra
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10.5.5 Real-Time Cepstral
Normalization

• CMN is not available before utterance is finished
– Disables recognition output before end is reached

• Use a sliding cepstral mean over the previous frames for 
subtraction (time constant around 5 sec)

• Or use another filter, such as RASTA, which performs a 
bandpass filter ( 2- 10 Hz) on each filter amplitude 
envelope
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10.5.6 The Use of 
Gaussian Mixture Models

• Account for the fact that different frequencies are 
correlated
– Avoids non-speech-like spectra

• Model the joint pdf of clean and noisy speech as a 
Gaussian mixture

• For each mixture component k, train the correction 
between clean and noisy speech using stereo recordings

• Pick the mixture that maximizes the joint probability of the 
clean and noisy speech cepstra

• Clean cepstrum estimate:
• No performance given

kkML ryCx +=ˆ
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10.6 Environmental Model Adaptation

• Retraining on corrupted Speech
• Model Adaptation
• Parallel Model Combination
• Vector Taylor Series
• Retraining on Compensated Features
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10.6.1 Retraining on Corrupted Speech
• If the distortion is known, then new models can be 

retrained on transformed non-distorted training data (noise 
added, filtering)

• Several distortions can be used in parallel (multistyle
training)
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10.6.2 Model Adaptation

• Same methods possible as for speaker adaptation (MAP 
and MLLR)
– MAP requires large adaptation data - impractical
– MLLR needs ca 1 min

• MLLR with one regression class and only bias works 
similarly to CMN but 
– Combined speech recognition and MLLR estimation of the 

distortion
– Slightly better than CMN, especially for short utterances
– Slower than CMN since two-stage procedure and model adaptation 

as part of recognition
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10.6.3 Parallel Model Combination

• Noisy speech models = 
speech + noise models
– Gaussian distribution 

converts into Non-Gaussian 
distribution (Cf Ch 10.1.3)

– No problem, a Gaussian 
mixture can model this

– Non-stationary noise can be 
modelled by having more 
than one state at the cost of 
multiplying the total number 
of states
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10.6.4 Vector Taylor Series

• Use Taylor series expansion to approximate the nonlinear 
relation between clean and noisy speech

• New model means and covariances can be computed
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10.6.5 Retraining on 
Compensated Features

• The algorithms for removing noise from noisy speech are 
not perfect

• Retraining can compensate for this
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10.7 Modeling Nonstationary Noise
• Approach 1- Explicit noise modeling

– Include non-speech labels in the training data
– Perform training
– Update the transcription using forced alignment where optional 

noise is allowed between words
– Retrain

• Approach 2 - Speech/noise decomposition during 
recognition
– 3-dimensional Viterbi
– Computationally complex
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