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Ch 11 Language Modeling

• Formal Language Theory
• Stochastic Language Models
• Complexity Measure of Language Models
• N-gram Smoothing
• Adaptive Language Models
• Practical Issues
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11.1 Formal Language Theory

• Important aspects of syntactic grammar
– Generality - cover typical sentences for an application
– Selectivity - distinguish different kinds of intended actions
– Understandability - easy maintenance and improvement

– Grammar
• formal specification of the permissible structures for a language

– Parsing
• Analysis to see if a sentence is compliant with the grammar
• Search through various ways of combining grammar rules
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Tree representation 
• The most common way to represent the grammatical 

structure of a sentence
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11.1.1 Chomsky Hierarchy

• Chomsky’s formal language theory
• A grammar is defined as G = (V,T, P, S)

– V: Non-terminal
– T: Terminal
– P: Set of production rules
– S: Start symbol

• Analysis by sequential application of production rules
• Production rule type α→β , α, β strings of V and T
• Four major language types, hierarchically structured
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Chomsky hierarchy and corresponding 
machines

Types Constraints Automata 
Phrase structure grammar α→β . The most general 

grammar.  
α, β : strings of non-
terminals and terminals 

Turing machine 

Context-sensitive 
grammar 

Subset of phrase structure 
grammar. ⎪α⎪≤⎪β⎪ 

Linear bounded automata

Context-free grammar 
Widely applied in NLP 
Often powerful enough 

Subset of context-
sensitive grammar 
A→β, A: non-terminal, 
β: w or BC 

Push down automata 

Regular grammar Subset of CFG 
A→w and A→wB 

Finite-state automata 
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Push-down automata

• Also called Recursive Transition Network
• Transition Network: nodes and labeled arcs
• Parsing

– Start at the initial state S
– Traverse an arc if current word is in the arc category
– If arc is followed, update current word
– A phrase is parsed if there is a path from S to a pop (final) arc
– More than one parse is possible
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11.1.2 Chart Parsing for Context-Free 
Grammars

• Vast literature on parsing algorithms
– Mostly for programming languages

• Chart parsing is the most relevant for spoken language
systems
– Widely used
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Top Down or Bottom Up Parsing?
Goal- or Data-Directed?

• Top-down
– Goal-directed search
– Start from the root of the tree, successive rewrites into 

terminal symbols matching the input text
– Example “Mary loves that person”

• S
• → NP VP
• → NAME VP (rewrite S using S→NP)
• → Mary VP (rewrite NP using NAME→Mary)
• …
• → Mary loves that person (rewrite N using N→person)
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Top Down or Bottom Up Parsing?

• Bottom-up
– Data-directed search
– Start with the words in the input text
– Use the rewrite rules backwards
– Example “Mary loves that person”

• → NAME loves that person (rewrite Mary using 
NAME →Mary

• → NAME V that person (rewrite loves using V 
→loves

• …
• →NP VP
• →S (rewrite NP using S →NP VP)
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Top Down or Bottom Up Parsing?

• Top-down parsing features
– Very predictive
– Only considers grammatical combinations
– Predicts constituents that do not have a match in the text
– Infinite recursion possible

• Bottom-up parsing features
– Checks input only once
– May build trees that can’t lead to full parse
– Suitable for robust language processing (see Ch. 17)

• Similar performance
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Bottom-Up Chart Parsing

• Basic principle: Store partial parsing results in a chart to 
eliminate duplicate work

• Parsing does not need to be left-to-right
• The chart maintains derived constituents and partially 

matched rules (active arcs)
• Active constituents represent subparts of the sentence 

according to the rewrite rules
• Active constituents are stored in an agenda
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Bottom-Up Chart Parsing cont.

• Operation
– Identify rules starting with the active constituent or rules that are 

partially identified and extend these
– Combine partially matched records with completed constituent to 

form a new completed constituent or a new partially matched 
consitutent

– Depth-first or breadth-first search
• Breadth-first better if probabilities are used
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Algorithm: A Bottom-Up Chart Parser

• 1. Initialization
• 2. Repeat 2 to 7 until all input words are processed
• 3. Push input word interpretation to, pop constituent from 

the agenda
• 4. Add the constituent to the chart
• 5. Find and add partial matches (key-marked) to the chart
• 6. Extend partial matches (Move the keys forward)
• 7. Put the partial matches to the agenda
• 8. Exit, successfully if the whole sentence is interpreted

– continue if all sentence interpretations are required
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Bottom-Up Chart Parsing example (1)

Look up interpretations of the next input word → push to Agenda
Pop constituent from Agenda, insert in the chart

AgendaChart
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Bottom-Up Chart Parsing example (2)

Find partially matched rules
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Bottom-Up Chart Parsing example (3)
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11.2 Stochastic Language Models (SLM)

• In formal languages, P(W) = 1 or 0 for accept/reject
– Inappropriate for spoken language since
– Incomplete grammar coverage
– Speech is often ungrammatical

• Probabilistic Context-Free Grammars (PCFG)
• N-gram Language models
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11.2.1 Probabilistic Context-Free 
Grammars (PCFGs)

• Bridge between formal and n-gram grammars
• Each rule is assigned a probability
• Recognition problem

– What is the probability that the language generates the word 
sequence W, P(S ⇒ W|G)

• Training problem
– Determine a set of rules and estimate their probabilities
– With fixed rule set, count the number of times each rule is used
– If annotated corpus use ML estimation

– Else use EM algorithm (here also known as inside-outside)
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The inside-outside algorithm

• Analogous to Forward-Backward algorithm, main difference:
– F-B is time sequential, chart parsing is hierarchical

• PCFG rule format
• Inside probability inside(j, Ai, k)       (~ forward prob.)

– The probability of Ai generating the word sequence wjwj+1…wk

– Computed bottom-up
• Outside probability outside(s, Ai, t)    (~ backward prob.)

– The sum of probabilities of all partial parses outside the word sequence ws
… wt , which is covered by Ai

– Computed top-down after the inside probabilities are computed
• Sentence prob. is the sum of all products of inside and outside probs to 

each node

linmi wAAAA →→ and
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The inside algorithm
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The outside algorithm

• Outside probability outside(s, Ai, t)
– The sum of probabilities of all partial parses outside the word 

sequence ws … wt , which is covered by Ai

...)......(),,( 111 =⇒= +− Ttisi wwAwwSPtAsoutside
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PCFG Rule probability 

• Probability of rule Ai→AmAn covering words ws…wt

• Probability on all word spans in the sentence
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PCFG Rule estimation aspects

• Only select rules with sufficient probabilities
– Reduce risk that low probability rules generate too many greedy 

symbols

• Only local maximum guaranteed (as in F-B)
• Problems

– Assumes independence between the expansion of non-terminals
– Lack of word sensitivity within word class
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11.2.2 N-gram Language Models

• A stochastic language model gives the probability P(W) 
that a word string W occurs as a sentence

• Theoretically, every word depends on all previous words
– Huge number of possible unique preceding strings
– Very low occurrence in training data

• Assume dependence only on recent words
– unigram, bigram, trigram, …, n-gram
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Unigram, bigram, etc., estimation

• Unigram: 

• Bigram:

• Trigram:

• Probability estimation is simple occurrence count 
– (why not EM algorithm?)
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11.3 Complexity Measure of Language 
Models

• Test-set perplexity
– Evaluates the generalization capability of the language model

• Training-set perplexity
– Measures how the language model fits the training data

• Typical perplexity values
– Digit strings: 10
– n-gram on English text 50 - 1000
– Wall Street Journal test set

• trigram 128
• bigram 176
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11.4 N-Gram Smoothing

• Problem
– Many very possible word sequences may have been observed in 

zero or very low numbers in the training data
– Leads to extremely low probabilities, effectively disabling this

word sequence, no matter how strong the acoustic evidence is

• Solution: smoothing
– produce more robust probabilities for unseen data at the cost of

modeling the training data slightly worse
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N-gram Smoothing - simple technique

• Add constant (often 1) to all 
word sequence counts

• Example for bigrams:
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Interpolation and Backoff Smoothing

• Interpolation models
– Linear combination with lower order n-grams
– Modifies the probabilities of both non-zero and zero count n-grams

• Backoff models
– Use lower order n-grams when the requested n-gram has zero or 

very low count in the training data
– Computes models with zero count from lower order n-grams.
– Nonzero count n-grams not updated by lower order n-grams
– Discounting

• Reduce the probability of seen n-grams and distribute among unseen ones
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11.4.1 Deleted Interpolation Smoothing

• Interpolation between n-grams of different length
• Example on combination of unigrams and bigrams

• The optimal λ is specific for each word history
– A high-frequent context generally gets higher weight
– Requires enormous amount of training data

• Cluster into moderate number of weights

)()1()()( 11 iiiiiI wPwwPwwP λλ −+= −−
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11.4.2 Backoff Smoothing 
• Good-Turing Estimate (1953)

– Better estimate of correct n-gram frequency
– Partition n-grams into groups depending on their frequency in the training 

data
– Change the number of occurrences of an n-gram according to

• where r is the occurrence number
• nr is the number of n-grams that occur r times

• The Katz smoothing extends the Good-Turing estimate by combining 
higher and lower order models

• Bigram example:

α(wi-1) is computed to satisfy the probability constraints

• Discount non-zero bigrams and distribute among zero-count bigrams
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Motivation for Good-Turing Estimate
Example (not from book)

• Estimate how common various species of birds are in your garden. You log the 
first 1000 birds you see; perhaps you see 212 sparrows, 109 robins, 58 
blackbirds, and lesser numbers of other species, down to one each of a list of 
uncommon birds. 

• What is the probability that the next bird seen will be, say, a blackbird? 

• Most people would surely say that the best guess is 58 ÷ 1000, i.e. 0.058. 

• Well, that’s wrong. 

• Consider an uncommon species which didn’t occur in the thousand-bird
sample, but which does occasionally visit your garden: say, nightingales. If the 
probability of blackbirds is estimated as 58 ÷ 1000, then the probability of 
nightingales would be estimated as 0 ÷ 1000, i.e. nonexistent. Obviously this is 
an underestimate for nightingales; and correspondingly 58 ÷ 1000 is an 
overestimate for blackbirds. 

• Gale and Sampson “Good–Turing frequency estimation without tears”, Journal of 
Quantitative Linguistics, vol. 2 pp. 217–37 

• G. Sampson http://www.grsampson.net/RGoodTur.html

http://www.grsampson.net/AGtf.html
http://www.grsampson.net/RGoodTur.html
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Alternative Backoff Models
• Absolute discounting

– Subtract constant from each non-zero count
• Kneser-Ney smoothing

– Background
• Lower order n-grams are often used as backoff model if the count of a higher-order n-gram is 

too low (e.g. unigram instead of bigram)
– Problem example

• Some words with relatively high unigram probability only occur in a few bigrams. E.g. 
Francisco, which is mainly found in San Francisco. However, infrequent word pairs, such as 
New Francisco, will be given too high probability if the unigram probabilities of New and 
Francisco are used. Maybe instead, the Francisco unigram should have a lower value to 
prevent it from occurring in other contexts.

– Method
• Instead of counting the occurrences of a unigram, count the number of word identities that it 

follows. 
• PKN(wi) = (The number of word identities that it follows) / (The vocabulary size)
• Discount and interpolate to estimate smoothed bigrams from KN unigrams and low-

frequency bigrams
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11.4.3 Class N-grams

• Group words into semantic or grammatical classes and 
build n-grams for class sequences

• Benefits
– rapid adaptation, small training sets, reduced memory requirement

• Very helpful for limited domain recognition
• Classes can be rule-based or data-driven

– Rule- and knowledge-based classes useful in domain-specific 
systems

– Data-driven in general-purpose systems
• EM algorithm for clustering

)...|()|()...|( 1111 −+−−+− = iniiiiinii cccPcwPccwP
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11.4.4 Performance of N-gram 
Smoothing

• Best: Kneser-Ney (small difference)
• Next: Katz and Deleted Interpolation
• All three significantly better than No Smoothing

– Regardless of the amount of training data
• If all parameters can be accurately trained, then switch to a higher 

order n-gram and sparsity becomes an issue again
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Relation  n-gram length and perplexity 
vs. word error rate
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11.5 Adaptive Language Models

• Dynamic adjustment of the language model
– Conversation topic is unstationary
– Topic remains for some period of time

• Techniques
– Cache Language Models
– Topic-Adaptive Models
– Maximum Entropy Models
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11.5.1 Cache Language Models

• Basic idea
– Accumulate n-grams spoken so far
– Use these to create local (low-order) dynamic n-gram models
– Interpolate with static n-gram

– Accounts for the fact that many words tend to be repeated during
e.g. a conversation or dictation

– But doesn’t account for higher probability of words in the same 
category (topic-specific words)

)|()1()...|(
)...|(

1211

11

−−−+−

−+−

−+= iiicacheciniistaticc

iniicache

wwwPwwwP
wwwP

λλ



May 11, 2007 Speech and speaker recognition 
course 2007

41

11.5.2 Topic-Adaptive Models

• Topic information can improve the static language model
– Example

• The most probable word after “the operating” in a hospital is 
different from that in an office

• Topic-clustered language models
– Manual or data-driven (better)
– Use information retrieval techniques to find the appropriate 

documents in the training database
• Step 1: Use what is recognized so far to find similar documents
• Step 2: Adapt the topic-independent model to these documents
• Retrieval measure TFIDF (Term Frequency - Inverse Document 

Frequency) can be used to locate similar documents in the training 
database
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11.5.3 Maximum Entropy Models

• Combine n-gram models with another method than linear 
interpolation

• … … ?

• Has not offered significant improvement in comparison to 
linear interpolation
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11.6 Practical Issues
• Vocabulary size

– Conflict confusion rate vs. out-
of-vocabulary (OOV) rate

– For 99.5% English coverage
200 000 word vocabulary is
required

– Larger for inflectional
languages
(e.g. Swedish, German)

– Combine fixed and personal 
vocabularies

– Increase coverage 93% => 98% 
by adding 1000-4000 personal 
words
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11.6.2 N-gram Pruning

• The n-gram model size becomes easily too large for 
practical applications
– Pruning necessary

• Remove low-count n-grams (those with lowest effect on entropy)
• The remaining probabilities are unchanged
• The backoff weights are recomputed

– Pruning is effective
• Trigrams can be compressed 25% with no performance degradation
• Pruned 4-gram model better than unpruned (much larger) trigram 

model
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11.6.3 CFG vs. N-gram Models

• Combine the portability of n-grams with the domain-
specificity of CFG
– Similar to class n-grams but the categories can be CFGs
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How large training data to reach human 
listening performance?

Extrapolated word error rates of a state-of-
the-art system for increasing quantities of 
training data 
(Moore, Eurospeech 2003)

2%, Human
performance

Heard during a life-time
Saturation effect


	Doctoral Course �in� Speech and Speaker Recognition
	Ch 11 Language Modeling
	11.1 Formal Language Theory
	Tree representation 
	11.1.1 Chomsky Hierarchy
	Chomsky hierarchy and corresponding machines
	Push-down automata
	11.1.2 Chart Parsing for Context-Free Grammars
	Top Down or Bottom Up Parsing?�Goal- or Data-Directed?
	Top Down or Bottom Up Parsing?
	Top Down or Bottom Up Parsing?
	Bottom-Up Chart Parsing
	Bottom-Up Chart Parsing cont.
	Algorithm: A Bottom-Up Chart Parser
	Bottom-Up Chart Parsing example (1)
	Bottom-Up Chart Parsing example (2)
	Bottom-Up Chart Parsing example (3)
	11.2 Stochastic Language Models (SLM)
	11.2.1 Probabilistic Context-Free Grammars (PCFGs)
	The inside-outside algorithm
	The inside algorithm
	The outside algorithm
	PCFG Rule probability 
	PCFG Rule estimation aspects
	11.2.2 N-gram Language Models
	Unigram, bigram, etc., estimation
	11.3 Complexity Measure of Language Models
	11.4 N-Gram Smoothing
	N-gram Smoothing - simple technique
	Interpolation and Backoff Smoothing
	11.4.1 Deleted Interpolation Smoothing
	11.4.2 Backoff Smoothing 
	Motivation for Good-Turing Estimate�Example (not from book)
	Alternative Backoff Models
	11.4.3 Class N-grams
	11.4.4 Performance of N-gram Smoothing
	Relation  n-gram length and perplexity �vs. word error rate
	11.5 Adaptive Language Models
	11.5.1 Cache Language Models
	11.5.2 Topic-Adaptive Models
	11.5.3 Maximum Entropy Models
	11.6 Practical Issues
	11.6.2 N-gram Pruning
	11.6.3 CFG vs. N-gram Models
	How large training data to reach human listening performance?

