
Practical exercise in speech recognition 2007

Objective
The objective is to get in contact with methods for training, recognition and
evaluation by using a common software package (HTK) for designing a simple speech
recognition application.
The HTK package is available for free download at http://htk.eng.cam.ac.uk/ . Its
manual, the HTK Book, can be downloaded separately.

Task
Specify a simple application on recognition of questions regarding GSLT students
travelling. Topics are countries, cities, flights, hotels, etc. Design a grammar and a
vocabulary. Record training and test data. Train monophone, single-mixture models.
Evaluate the recognition performance on the test data. The exercise follows closely
the Tutorial Example, steps 1-8 and 11 in the HTK Book.

Besides the grammar design and the speech recording, a major part of the exercise
consists of executing a number of scripts and HTK programs. To make it possible to
complete the exercise in the limited time available, the required commands have been
prepared in this document and also in a corresponding text file
(htk_lab/Practical_commands.txt) for easy cut-and-paste operation. Although
the commands can be performed in an automatic fashion without understanding, it is
highly recommended to consider the function of the individual steps in the process.

Optional exercise extension
The exercise can be extended into a term paper for the closing seminar. The following
topics are possible. It should be noted that the available training corpus is too small
for detailed acoustic and linguistic modeling.
Phoneme recognition on a larger corpus, e.g. TIMIT
Adaptation
Other spectral features
Speaker recognition
Other grammars
Speaker dependence

Prerequisites
Basic familiarity with Linux and emacs editor.

Project directory
The students will work in groups of 2 or 3 in individual user directories within a
common project root directory. The root directory contains scripts, dictionaries and
other tools.

Directory structure:
 htk_lab/
 Dictionary/
 beep/

http://htk.eng.cam.ac.uk/

 Group1/
 Sp1/
 train_data/
 MFCC/
 test_data/
 MFCC/
 hmm0/
 hmm1/
 .
 hmm7/
 Sp2/
 Sp3/
 Group2/
 .
 Group6/

The root directory htk_lab/ contains a dictionary directory, directories for each
exercise group (Group1,...Group6) and common scripts and text files.
The dictionary directory contains the British-English BEEP pronunciation dictionary.
Within each group directory, there are directories for each group member (Sp1, Sp2,
Sp3). These contain directories for storing training and test utterances and trained
models in various stages (hmm0 ... hmm7).

The exercise follows the tutorial example in the HTK Book 3.3, chapter 3
That manual is stored as htkbook.pdf in the htk_lab directory.

Procedure
In the following, HTK and other commands are preceded by the prompt '>'
These can be pasted into the command window by selecting them and clicking the
mouse wheel (button 2).

0. PREPARATORY
Change the working directory to Group$m ($m = your group number 1 … 6)
>cd /afs/nada.kth.se/dept/tmh/hacks/sandbox/htk_lab/Group$m

Open a Terminal window (Tool Bar: Applications -> System Tools -> Terminal)
In that window, open an X terminal window and continue working from there
>xterm &

Make the programs in the htk package executable by using the Linux module
command
../.modules

Open the txt version of this document in a text editor, e.g. emacs, in order to copy the
commands
>emacs ../Practical_commands.txt &

Change to a short command line prompt
>set prompt = "%m:%c3>"

Set the microphone amplification by Applications ->Sound and Video->Volume
Control.
The controls Master, Mic and Mic Boost should be set to: Mute = False, Rec = True

The Capture slide setting is machine dependent:
ctt09 Capture 50%
ctt19: Capture 75%
ctt15: No Capture control, Left mic: Max, Right mic: Mute
ctt03: Capture 50%
ctt41: Capture 50%
melquiades: Capture 0%
ctt48 (piglet) Capture 40%
ctt45

Copy the configuration file from the mother directory
>cp ../config.cfg .

1. PREPARING THE TASK GRAMMAR

Copy a grammar file with words and categories defined but with no syntax
>cp ../NATIS_no_syntax.grm ./gram

Use a text editor (emacs, or possibly Open Office) to insert the syntax
>emacs gram &

Define a small finite-state grammar of a travel information service application. The
grammar should (at least) allow the following sentence types :
"Show <airline> flights from <place> to <place> on <weekday> <part-of-day>"
"When does the <vehicle> from <place> arrive?"
"When does the <vehicle> to <place> leave?"
"Are there any flights to <place> before/around/after <hour><quarter>?"
where <place> is one of the Nordic/Baltic countries and a city in each country
<part-of-day> is one of "morning, noon, afternoon, evening, night"
<vehicle> is one of "flight, plane, boat, ferry, bus, train"
<airline> is one of around 5 airlines

All words should be in upper case.
The HTK Tutorial has an example of a similar grammar.

Extract a word list file 'wlist' from the grammar file
>../gram2wlist < gram >! wlist

Generate a word network 'wdnet'
>HParse gram wdnet

2. THE DICTIONARY
Create a pronunciation dictionary for the application. The British English dictionary
BEEP has been downloaded and contains around 237 000 words. Words not covered
in BEEP, e.g. names, have to be transcribed manually in a separate file. The phoneme
inventory used in BEEP is ARPAbet, which is described in the file
../Dictionary/beep/phoncode.doc.

If words are missing in BEEP, they will have to be inserted in a separate dictionary
file, ‘names’. An initial version can be copied from the mother directory.

>cp ../names .

Create a list of phones in file monophones1
>HDMan -m -T 2 -w wlist -n monophones1 -l dlog tmp_dict
../Dictionary/beep/beep-1.0 names ../endnames | grep missing
The dictionary 'endnames' contains labels SENT-START and SENT-END for
sentence-initial and -final silence. These have no output symbol, and this is specified
by empty square brackets in the dictionary file. Evidently, the brackets are lost in the
HDMan process and have to be re-inserted in the assembled dictionary file dict.
>cat tmp_dict | sed s'/SENT-END/SENT-END \[\]/' | sed s'/SENT-
START/SENT-START \[\]/' >! dict

If words are missing, insert these manually in the dictionary 'names' in alphabetic
order and repeat the command. If remaining errors, edit the output dictionary 'dict' by
hand. The phonetic inventory is given in Dictionary/beep/phoncode.doc, 1st column
(ARPAbet)

Print the vocabulary size and the grammar perplexity (quite small)
>HSGen -q –s wdnet dict

3. RECORDING THE DATA
 Repeat for each group member Sp$n ($n = 1,2,3; Sp1, Sp2, Sp3)
>set n = 1 (and n = 2 , 3)

 Generate 30 train and 15 test prompts. Each invokation produces a new random list.
 The first item in each line of the prompt files is changed from <line#-full_stop> into
<T[S|R]_line#>
 >HSGen -l -n 30 wdnet dict | sed 's/.*\./*\/TR&/' | sed
's/\.//' | sed 's/SENT-START//' | sed s'/SENT-END//' >!
Sp$n/trainprompts
 >HSGen -l -n 15 wdnet dict | sed 's/.*\./*\/TS&/' | sed
's/\.//' | sed 's/SENT-START//' | sed s'/SENT-END//' >!
Sp$n/testprompts

 Then start the recording program HSLab and the prompting script for the training
utterances.
>../record_list Sp$n/train_data < Sp$n/trainprompts

The prompt text is displayed in the command window (which will probably have to be
moved not to be hidden by the HSLab window).
 An utterance recording is initialised by clicking the "rec" button
 and stopped by clicking the same button (relabeled into "stop").
 Microphone position: at the corner of the mouth. Distance: around 2 cm.
 The waveform is displayed. The max amplitude should be around 50% of the
window height. If any error in an utterance, repeat the "rec"-"stop" sequence as many
times as required.
 Accept the recording by clicking the "Quit" button, which closes the HSLab window.
 The next prompt is then displayed and a new HSLab window is opened.
 The recording is repeated until the end of the prompt list is reached.
 Unfortunately, only HTK format for the sampled files was possible to use.
 Move the xterm window to a position where the prompt text is not hidden by the
HSLab window.

 Then do the same procedure for the test utterances
 >../record_list Sp$n/test_data < Sp$n/testprompts

The script also generates a file containing a list of the files recorded.
 This file, "files.scp" is written into the Sp$n directory.

4. CREATING THE TRANSCRIPTION FILES
In each speaker directory Sp$n ($n = 1, 2, 3) do the following:

Create word level master label files (name extension .mlf) by using the script
prompts2mlf. Syntax: prompts2mlf mlf-file prompt-file
>../prompts2mlf Sp$n/trainprompts.mlf Sp$n/trainprompts
>../prompts2mlf Sp$n/testprompts.mlf Sp$n/testprompts

Create phone level master label files for the training utterances
>HLEd -l '*' -d dict -i Sp$n/phones0.mlf ../mkphones0.led
Sp$n/trainprompts.mlf

The remainder of the process can be performed for one speaker only. The other
speakers in the group will be processed by a command file.

5. CODING THE SPEECH DATA

For one speaker Sp$n, create a list of waveform and mfcc files
>../build_speech_mfcc_file_list Sp$n (Ignore warning: rm: cannot
remove 'Sp1/codetr.scp')

Code the data using HCopy
>HCopy -T 1 -C config.cfg -S Sp$n/codetr.scp

6. CREATING FLAT START MONOPHONES
Copy the prototype phone model proto.mmf from mother directory
>cp ../proto.mmf .

Compute global mean and variance of the prototype model
>HCompV -C config.cfg -f 0.01 -m -S Sp$n/train_data/files.scp
-M Sp$n/hmm0 ../proto.mmf

Copy the prototype model for each phone into Sp$n/hmm0/hmmdefs
>../proto2phones Sp$n

Split the model file into a macro and a clean model file
>echo "~o" >! Sp$n/hmm0/macros
>grep -i VECSIZE Sp$n/hmm0/hmmdefs >>! Sp$n/hmm0/macros
>cat Sp$n/hmm0/vFloors >>! Sp$n/hmm0/macros

Re-estimation to create initialised monophones
Create a list of the monophones in monophones except silence model 'sp'
>grep -v sp monophones1 >! monophones0

Three reestimation iterations. There will be warnings if some phones don't occur in
the training data.
>HERest -C config.cfg -m 1 -I Sp$n/phones0.mlf -t 250.0 150.0
1000.0 -S Sp$n/train_data/files.scp -H Sp$n/hmm0/macros -H
Sp$n/hmm0/hmmdefs -M Sp$n/hmm1 monophones0
>HERest -C config.cfg -m 1 -I Sp$n/phones0.mlf -t 250.0 150.0
1000.0 -S Sp$n/train_data/files.scp -H Sp$n/hmm1/macros -H
Sp$n/hmm1/hmmdefs -M Sp$n/hmm2 monophones0
>HERest -C config.cfg -m 1 -I Sp$n/phones0.mlf -t 250.0 150.0
1000.0 -S Sp$n/train_data/files.scp -H Sp$n/hmm2/macros -H
Sp$n/hmm2/hmmdefs -M Sp$n/hmm3 monophones0

7. FIXING THE SILENCE MODELS
Copy the model and the macro files into hmm4/
>cp Sp$n/hmm3/hmmdefs Sp$n/hmm4
>cp Sp$n/hmm3/macros Sp$n/hmm4

Run the HTK-script "makesp" to create single-state silence model "sp" from "sil" and
append it to the model file
>../makesp Sp$n/hmm3/hmmdefs >>! Sp$n/hmm4/hmmdefs

Set initial transition probabilities and tie the mid states of "sp" and "sil"
>HHEd -H Sp$n/hmm4/macros -H Sp$n/hmm4/hmmdefs -M Sp$n/hmm5
../sil.hed monophones1

Generate label files with short pauses between each word
>HLEd -l '*' -d dict -i Sp$n/phones1.mlf ../mkphones1.led
Sp$n/trainprompts.mlf

FURTHER RE-ESTIMATION
>HERest -C config.cfg -m 1 -I Sp$n/phones1.mlf -t 250.0 150.0
1000.0 -S Sp$n/train_data/files.scp -H Sp$n/hmm5/macros -H
Sp$n/hmm5/hmmdefs -M Sp$n/hmm6 monophones1
>HERest -C config.cfg -m 1 -I Sp$n/phones1.mlf -t 250.0 150.0
1000.0 -S Sp$n/train_data/files.scp -H Sp$n/hmm6/macros -H
Sp$n/hmm6/hmmdefs -M Sp$n/hmm7 monophones1

11. RECOGNITION AND EVALUATION
>HVite -C config.cfg -H Sp$n/hmm7/macros -H Sp$n/hmm7/hmmdefs
-S Sp$n/test_data/files.scp -l '*' -i Sp$n/hmm7/recout.mlf -w
wdnet -p 0.0 -s 5.0 dict monophones1

 EVALUATION
>HResults -I Sp$n/testprompts.mlf monophones1
Sp$n/hmm7/recout.mlf

The above training and evaluation commands have been collected into a command
script. This is provided by the teacher when the first speaker is processed.
It performs training and speaker-dependent evaluation for a speaker after
each of the three reestimation iterations by
>cp ../train_rec.cmd .
>./train_rec.cmd Sp1
>./train_rec.cmd Sp2

Perform cross-speaker evaluation by recognising the test data from Sp1
using the training data from Sp2 and vice versa.

If you have time: Write a word loop grammar, repeat Sec 1., compute the perplexity
and run the train_rec.cmd
Compare the recognition rates

If you have time: Running the recogniser live
HVite -C ../config2.cfg -H Sp$n/hmm7/macros -H
Sp$n/hmm7/hmmdefs -w wdnet -p 0.0 -s 5.0 dict monophones1
 (Terribly slow)

POSSIBLE EXTENDED EXPERIMENTS
 Change the number of cepstrum coefficients
 The value of delta and acceleration parameters
 Context-dependent phone models (triphones)
 Multi-mixture models
 Tying
 Speaker independent recognition
 Speaker Adaptation

Help
The above procedure is stored in the file Practical_commands.txt. Commands can be
copied via cut-and-paste from this file into the command window.
Documents: HTK Book printout of the HTK Tutorial and the manual pages of the
used commands.
Phoncode.doc: ARPAbet phoneme inventory.

Practical exercise report

Group number:

Group members
Sp1:
Sp2:
Sp3:

Grammar:

Perplexity:

Vocabulary
Vocabulary size:
Give phonetic transcription of words not in the BEEP dictionary:

Feature extraction conditions (defined in the configuration file)
Sampling frequency (kHz):
Analysis window (ms):
Frame interval (ms):
Pre-emphasis coeff.
Filterbank nbr channels
Ceplifter
Energy normalization
Nbr cepstrum coefficients
Hamming

Acoustic model specification
Context-dependent phone models (yes/no)
Tying (yes/no)
Acoustic Feature type
Acoustic vector size
Nbr States per phone model
Nbr mixture components per state
Variance flooring factor (switch –f in HCompV)

Recognition evaluation

Speaker dependent results: Matching the test speaker against his own trained models.
Cross-speaker results: Matching the test speaker against another speaker’s models.

Possible extended tests:
Group dependent results: Average accuracy of each speaker matched against a model
trained on all speakers in the group
All speakers group: Average accuracy of each speaker matched against a model
trained on all speakers in all groups
Speaker independent results: Average of the accuracy for all test speakers. For each
test speaker use his own grammar and an acoustic model trained on the training data
of all the other speakers (round-robin, leave-one-out).

 Training

speaker(s)
Test
speaker(s)

Training
size
(#words)

Grammar
perplexity

Test size
(#words)

Accuracy
(%)

#Ins. #Del

Speaker
dependent

Speaker
dependent

Speaker
dependent

Cross-
speaker

Cross-
speaker

Cross-
speaker

Sp. Dep.
Word loop

(Group
dependent)

(All
speakers
group)

(Ave.
Speaker
independent)

	Practical exercise in speech recognition 2007
	Objective
	Task
	Optional exercise extension
	Prerequisites
	Project directory
	Procedure
	Help

	Practical exercise report

