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Abstract

Subword language modeling is a practical
must for automatic speech recognition of in-
flective and agglutinative languages. Algo-
rithms developed for unsupervised induction
of subword units from large text corpora ei-
ther can not be applied to the target lan-
guages or do not address desirable character-
istics of such units. In this paper we describe
recently developed algorithm that meets all
needs of subword language modeling. Pre-
liminary experiments show that at least in
terms of perplexity this algorithm outper-
forms a baseline model and gives a substan-
tial reduction of unknown words.

Introduction

For languages belonging to different groups like
English, German etc. this number usually does not
exceed 60,000 of words. Moreover, it fits well into
the upper limit imposed by the popular and compact
way of indexing such words using 2-byte integers
(216 = 65,536). If someone tries to pursue the same
strategy for languages like Estonian then the number
of unknown words can contribute up to 10% to the
overall number of wrongly recognized words.

One possible approach to get around this prob-
lem consists of splitting words into a number of
smaller parts. The splitting procedure can be moti-
vated either linguistically or mathematically. In the
former case these subword units correspond to pre-
fixes, stems etc. In the latter case they usually al-
low to achieve the best compression effect of train-
ing corpus. In both cases it is common to refer to
them asmorphs

Word-based modeling of several languages is inap- Linguistically motivated approaches are usually

propriate for such tasks like automatic speech recoggilored to a particular group of languages.

For

nition (ASR). These languages usually belong to thexample, Goldsmith, 200 considers European
group of inflective and agglutinative languages. Fdgnguages conforming only tstem+suffix struc-

any given word as a rule the number of possibléure.

Mathematically motivated approaches are

word forms is large. Additional words can be con-usually defined in a probabilistic framework and
structed by gluing basic word forms together.

makes the number of distinct words in such lanminimize some objective quantity.

guages potentially infinite.

leim at finding segmentations which maximize or

For exam-
ple, (Creutz and Lagus, 2002introduce an algo-

Estonian is a particular example of inflective andithm which makes segmentations by minimizing
agglutinative language. The basic statistics from E$he cost required to represent them in a corpus.
tonian text corpora shows that approximately each The main problem with approaches introduced
two words out of hundred are new ones. If you conso far originates from the fact that they were de-
sider an average corpus consisting of 100 millionseloped keeping in mind extraction of trully mor-
of words then the number of distinct words can apphological information from words. These mor-
proach as much as 2 millions. phemes, which in linguistics are usually defined as



a smallest—-meaning bearing units of language, atke source of possible errors.
not constrained and can be as small as a single let-
ter. From the acoustical point of view, discrimi-2.2 Example

nation of such morphemes is hard and confusablgonsider a list of English words in the first column
In ASR, one is usually aimed at discovering muchyf Taple1 which is extracted from an imaginary text

longer units to aid to the accurate recognition.  ¢orpus. Assume further we have information how
The rest of the paper is organized as follows.

A brief description of algorithm is given in Sec- Word Segmentation

tion 2. Section3 describes some language model- affect 1 affect

ing experiments we performed trying to make them affecting 1 affect + ing

maximally close to subsequent application in speech affectingly 1 | affect +ing + ly

recognition. Sectiod discusses some shortcomings affection 1 affect + ion

we have encountered trying to apply such language affectionate 1| affect + ion + ate

models in a speech recognition task and suggests affections 1 | affect +ion+s

some possible remedies to them. affects 1 affect + s

2 Algorithm Table 1: List of English words with segmentations

produced by recursive minimum description length
The algorithm for unsupervised induction of mor-method

phology from large text corpora makes use of finite—

state automata framework used widely in naturdrequently each word occurs in the corpus. If we
language processing (NLP). Morphological analyzencode the list into finite—state automaton then its
ers, language models and word lattices are commg@maphical representation can be as the one given by

examples of such application. Fig 1 (by the moment we leave weights out of con-
sideration).
2.1 Description If we pursue the same strategy as described in

The algorithm encodes the entire training corpus in @ection2.1and additionally impose a restriction on
single finite—state automaton. Just in the same wdfe minimal length of morpheme to be at least two
as it is used in NLP for representing large dictioJetters then morphological segmentations produced
naries Mohri, 1996. However, the same automa-by the algorithm will be equal to those given in the
ton can be also used to discover morphology if w&econd column of Tablé. Interestingly that the
consider the number of outgoing transitions fron$ame result is obtained by a mathematical algorithm
any given state as morpheme boundary indicator which aims at finding segmentations by minimizing
When the number of different transitions is large? description length of lexicon and training corpus
enough then there is a certain confidence that thi§reutz and Lagus, 2092 From linguistical point
state separates distinct morphemes from each oth@f.view these segmentations are almost perfect ex-
One morpheme encoded prior to this state and ot&ePt for the prefixaf.
ers beginning on the outgoing transitions. Moreover, Note that despite on the minimal morpheme
this confidence is dictated by the language itself length which equals in our example to two letters
the more representative is training corpus the highéie segmentations of Tablestill contain a single
confidence will be. letter endings. In ASR it is preferable to avoid such

If each transition in addition to a label also bears &h0rt morphemes. So we need to apply a constraint
numeric quantity describing how often it is traversedt word endings since final states of automaton will
during the composition of automaton, then this numt€rminate a morpheme with no regard to any criteria.
ber can be used to force introduction of unreliable _
morphemes. Otherwise such morphemes will be it-3 Segmentation Accuracy
troduced in case of few “noisy” words. Misspelt,Accuracy of this algorithm was evaluated in the task
damaged, artefact and other “words” contribute tof segmenting gold standard data. The gold standard



Figure 1: Example of representing lexicon using finite-estattomaton. Encoded words are given in Tdble
Initial state is denoted b§, end states by double circles. Transition weights are ptdsé not shown.

data contains 40,000 manually corrected segmentaniversity of Tartd is used as the training corpus in
tions first preprocessed by a morphological analyzethis study. MCE primarily consists of articles from
Evaluation results showed that in a basic configurdecal newspapers and magazines. The total number
tion the algorithm attains a precision and recall of 64f words is approximately 77 millions among which
and 30%. Despite on a such small accuracy of sed-7 million of words are distinct.

mentation this result is still better than 83 and 4% As a baseline model in this study we
showed by the baseline model since high precisiomse publicly available Morfessor software
is completely washed off by a negligible number o{Creutz and Lagus, 2005 Morfessor derives
correctly discovered boundaries. A more compremorphological segmentations by minimizing the
hensive description of these experiments will shortlglescription length of training corpus. The descrip-

appear in Ragni, 20073 tion length is given as a cost in bits required to
code training data. Once initial segmentations have
3 Experiments been produced Morfessor iteratively resegments

the corpus until no further improvement (in bits) is
In this section we compare the algorithm just degained between two successive iterations.
scribed with a baseline model in a language mod- Both algorithms use MCE to produce morpho-
eling task. The training corpus is given to bothiogical segmentations. There are approximately
algorithm to produce morphological segmentations400,000 distinct morphs in each set of segmenta-
These segmentations is used to rewrite the trainingpns. A large number of morphs in these sets can be
corpus. The modified training corpus is used to creewritten using the remaining morphs. Each morph
ate n—gram language models. The development dedving a length of at least five letters is checked
rewritten using the same segmentations is used agether it can be split into smaller parts. The size
evaluation data. Here we assume that model giwf morph lexicon is further reduced by cutting off
ing the lowest perplexity on the evaluation data willmorphs with small frequency of occurrence. Final
be used in a subsequent speech recognition expésxicons for both algorithms contain at most 65,000
iment. Therefore we use perplexity as the evaludatems. A special tagiw> is used in the training cor-
tion measure. However, one should be always awaygis to denote word boundaries and to allow recon-
of the fact that correlation between perplexity angtruction of words in the future output of speech rec-
accuracy of recognition is weak. This means thasgnizer.
the lowest perplexity does not necessarily mean the For language model building we use the SRILM
highest accuracy. Nevertheless, the lowest perplewolkit of (Stolcke, 2002 which allows to create n—

ity is a good prerequisite of such. gram models of arbitrary order with different prob-
ability smoothing techniques. In this study we con-
3.1 Experimental Setup strain ourselves to fourgram language models with

The mixed corpus of Estonian (MCE) collected angrnear Good-Turing, Witten—Bell and Kneser—Ney

maintained by the Computer Linguistics Group at !Available on—line fromhttp://www.cl.ut.ee


http://www.cl.ut.ee

(original and modified) smoothing. words possible at the output of speech recognizer we
append each word segmentation with the boundary
3.2 Results tag<w>. The assumption here is that a single—state
Transcriptions from the development set of Babahon—emitting HMM model can be set into a corre-
speech database are used to assess the performaspsndence with it. Some decoders like a large vo-
of n—gram models. Tabl2 shows perplexities for cabulary recognizer in the HTKoolkit are tailored
both algorithms using different approaches to prolto use a short—pause model to address possible peri-
ability smoothing. In both cases the smallest pefads of silence between words. Label of short—pause
model does not appear at the output of recognizer

Smoothing | Perplexity and two consecutive skip models are not allowed in
ME_[LA a search tree. To overcome this problem a different
Linear 59.9 | 40.9 decoder may be used or the reconstruction process
Good-Turing | 57.1 | 39.4 can be modified to use hyphenation marks instead
Witten—Bell | 56.9 | 39.0 of a single boundary tag. The latter approach how-
AKneser—Ney| 55.1 | 38.0 ever increases the lexicon size since the same mor-
Kneser-Ney | 53.7 | 37.2 phological unit can appear separately or in the con-

| OOV rate | 4.7% 0.86% | text of complex word. For example, Estonian morph

aj a may appear in the lexicon &g a andaj a- .

Table 2: Development set perplexities (PP) and ol the |atter case the hyphen mark is used to indicate
of-vocabulary (OOV) rates for fourgram languagg the following morph should be tied wigj a.
models based on Morfessor (MF) and Lexicon Au-

tomaton (LA) algorithms
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