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Abstract

Subword language modeling is a practical
must for automatic speech recognition of in-
flective and agglutinative languages. Algo-
rithms developed for unsupervised induction
of subword units from large text corpora ei-
ther can not be applied to the target lan-
guages or do not address desirable character-
istics of such units. In this paper we describe
recently developed algorithm that meets all
needs of subword language modeling. Pre-
liminary experiments show that at least in
terms of perplexity this algorithm outper-
forms a baseline model and gives a substan-
tial reduction of unknown words.

1 Introduction

Word–based modeling of several languages is inap-
propriate for such tasks like automatic speech recog-
nition (ASR). These languages usually belong to the
group of inflective and agglutinative languages. For
any given word as a rule the number of possible
word forms is large. Additional words can be con-
structed by gluing basic word forms together. It
makes the number of distinct words in such lan-
guages potentially infinite.

Estonian is a particular example of inflective and
agglutinative language. The basic statistics from Es-
tonian text corpora shows that approximately each
two words out of hundred are new ones. If you con-
sider an average corpus consisting of 100 millions
of words then the number of distinct words can ap-
proach as much as 2 millions.

For languages belonging to different groups like
English, German etc. this number usually does not
exceed 60,000 of words. Moreover, it fits well into
the upper limit imposed by the popular and compact
way of indexing such words using 2–byte integers
(216 = 65, 536). If someone tries to pursue the same
strategy for languages like Estonian then the number
of unknown words can contribute up to 10% to the
overall number of wrongly recognized words.

One possible approach to get around this prob-
lem consists of splitting words into a number of
smaller parts. The splitting procedure can be moti-
vated either linguistically or mathematically. In the
former case these subword units correspond to pre-
fixes, stems etc. In the latter case they usually al-
low to achieve the best compression effect of train-
ing corpus. In both cases it is common to refer to
them asmorphs.

Linguistically motivated approaches are usually
tailored to a particular group of languages. For
example, (Goldsmith, 2000) considers European
languages conforming only tostem+suffixstruc-
ture. Mathematically motivated approaches are
usually defined in a probabilistic framework and
aim at finding segmentations which maximize or
minimize some objective quantity. For exam-
ple, (Creutz and Lagus, 2002) introduce an algo-
rithm which makes segmentations by minimizing
the cost required to represent them in a corpus.

The main problem with approaches introduced
so far originates from the fact that they were de-
veloped keeping in mind extraction of trully mor-
phological information from words. These mor-
phemes, which in linguistics are usually defined as



a smallest–meaning bearing units of language, are
not constrained and can be as small as a single let-
ter. From the acoustical point of view, discrimi-
nation of such morphemes is hard and confusable.
In ASR, one is usually aimed at discovering much
longer units to aid to the accurate recognition.

The rest of the paper is organized as follows.
A brief description of algorithm is given in Sec-
tion 2. Section3 describes some language model-
ing experiments we performed trying to make them
maximally close to subsequent application in speech
recognition. Section4 discusses some shortcomings
we have encountered trying to apply such language
models in a speech recognition task and suggests
some possible remedies to them.

2 Algorithm

The algorithm for unsupervised induction of mor-
phology from large text corpora makes use of finite–
state automata framework used widely in natural
language processing (NLP). Morphological analyz-
ers, language models and word lattices are common
examples of such application.

2.1 Description

The algorithm encodes the entire training corpus in a
single finite–state automaton. Just in the same way
as it is used in NLP for representing large dictio-
naries (Mohri, 1996). However, the same automa-
ton can be also used to discover morphology if we
consider the number of outgoing transitions from
any given state as amorpheme boundary indicator.
When the number of different transitions is large
enough then there is a certain confidence that this
state separates distinct morphemes from each other.
One morpheme encoded prior to this state and oth-
ers beginning on the outgoing transitions. Moreover,
this confidence is dictated by the language itself –
the more representative is training corpus the higher
confidence will be.

If each transition in addition to a label also bears a
numeric quantity describing how often it is traversed
during the composition of automaton, then this num-
ber can be used to force introduction of unreliable
morphemes. Otherwise such morphemes will be in-
troduced in case of few “noisy” words. Misspelt,
damaged, artefact and other “words” contribute to

the source of possible errors.

2.2 Example

Consider a list of English words in the first column
of Table1 which is extracted from an imaginary text
corpus. Assume further we have information how

Word Segmentation
affect 1 affect
affecting 1 affect + ing
affectingly 1 affect + ing + ly
affection 1 affect + ion
affectionate 1 affect + ion + ate
affections 1 affect + ion + s
affects 1 affect + s

Table 1: List of English words with segmentations
produced by recursive minimum description length
method

frequently each word occurs in the corpus. If we
encode the list into finite–state automaton then its
graphical representation can be as the one given by
Fig 1 (by the moment we leave weights out of con-
sideration).

If we pursue the same strategy as described in
Section2.1and additionally impose a restriction on
the minimal length of morpheme to be at least two
letters then morphological segmentations produced
by the algorithm will be equal to those given in the
second column of Table1. Interestingly that the
same result is obtained by a mathematical algorithm
which aims at finding segmentations by minimizing
a description length of lexicon and training corpus
(Creutz and Lagus, 2002). From linguistical point
of view these segmentations are almost perfect ex-
cept for the prefixaf.

Note that despite on the minimal morpheme
length which equals in our example to two letters
the segmentations of Table1 still contain a single
letter endings. In ASR it is preferable to avoid such
short morphemes. So we need to apply a constraint
at word endings since final states of automaton will
terminate a morpheme with no regard to any criteria.

2.3 Segmentation Accuracy

Accuracy of this algorithm was evaluated in the task
of segmenting gold standard data. The gold standard
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Figure 1: Example of representing lexicon using finite–state automaton. Encoded words are given in Table1.
Initial state is denoted by0, end states by double circles. Transition weights are present but not shown.

data contains 40,000 manually corrected segmenta-
tions first preprocessed by a morphological analyzer.
Evaluation results showed that in a basic configura-
tion the algorithm attains a precision and recall of 64
and 30%. Despite on a such small accuracy of seg-
mentation this result is still better than 83 and 4%
showed by the baseline model since high precision
is completely washed off by a negligible number of
correctly discovered boundaries. A more compre-
hensive description of these experiments will shortly
appear in (Ragni, 2007a).

3 Experiments

In this section we compare the algorithm just de-
scribed with a baseline model in a language mod-
eling task. The training corpus is given to both
algorithm to produce morphological segmentations.
These segmentations is used to rewrite the training
corpus. The modified training corpus is used to cre-
ate n–gram language models. The development set
rewritten using the same segmentations is used as
evaluation data. Here we assume that model giv-
ing the lowest perplexity on the evaluation data will
be used in a subsequent speech recognition exper-
iment. Therefore we use perplexity as the evalua-
tion measure. However, one should be always aware
of the fact that correlation between perplexity and
accuracy of recognition is weak. This means that
the lowest perplexity does not necessarily mean the
highest accuracy. Nevertheless, the lowest perplex-
ity is a good prerequisite of such.

3.1 Experimental Setup

The mixed corpus of Estonian (MCE) collected and
maintained by the Computer Linguistics Group at

University of Tartu1 is used as the training corpus in
this study. MCE primarily consists of articles from
local newspapers and magazines. The total number
of words is approximately 77 millions among which
1.7 million of words are distinct.

As a baseline model in this study we
use publicly available Morfessor software
(Creutz and Lagus, 2005). Morfessor derives
morphological segmentations by minimizing the
description length of training corpus. The descrip-
tion length is given as a cost in bits required to
code training data. Once initial segmentations have
been produced Morfessor iteratively resegments
the corpus until no further improvement (in bits) is
gained between two successive iterations.

Both algorithms use MCE to produce morpho-
logical segmentations. There are approximately
400,000 distinct morphs in each set of segmenta-
tions. A large number of morphs in these sets can be
rewritten using the remaining morphs. Each morph
having a length of at least five letters is checked
whether it can be split into smaller parts. The size
of morph lexicon is further reduced by cutting off
morphs with small frequency of occurrence. Final
lexicons for both algorithms contain at most 65,000
items. A special tag<w> is used in the training cor-
pus to denote word boundaries and to allow recon-
struction of words in the future output of speech rec-
ognizer.

For language model building we use the SRILM
toolkit of (Stolcke, 2002) which allows to create n–
gram models of arbitrary order with different prob-
ability smoothing techniques. In this study we con-
strain ourselves to fourgram language models with
Linear, Good–Turing, Witten–Bell and Kneser–Ney

1Available on–line fromhttp://www.cl.ut.ee

http://www.cl.ut.ee


(original and modified) smoothing.

3.2 Results

Transcriptions from the development set of Babel
speech database are used to assess the performance
of n–gram models. Table2 shows perplexities for
both algorithms using different approaches to prob-
ability smoothing. In both cases the smallest per-

Smoothing Perplexity
MF LA

Linear 59.9 40.9
Good–Turing 57.1 39.4
Witten–Bell 56.9 39.0
∆Kneser–Ney 55.1 38.0
Kneser–Ney 53.7 37.2

OOV rate 4.7% 0.86%

Table 2: Development set perplexities (PP) and out–
of–vocabulary (OOV) rates for fourgram language
models based on Morfessor (MF) and Lexicon Au-
tomaton (LA) algorithms

plexity is obtained using original Kneser–Ney dis-
counting. Evaluation results show that fourgram lan-
guage model built on top of segmentations produced
by finite–state automaton has smaller perplexity than
the baseline model. The number of unknown words
is kept behind the level of 1% which addresses the
shortcoming of word–based language models hav-
ing OOV rate more than 10% (Ragni, 2007b). Ta-
ble 3 gives n–gram access statistics. Except for bi-

Order Hit–ratio
MF LA

n=2 97.1 95.7
n=3 50.6 58.6
n=4 56.6 64.5

Table 3: N–gram hits for language models based on
Morfessor and Lexicon Automaton algorithms

gram case the overall hit–ratio is higher for n–gram
models based on the new approach.

4 Discussion

At least one important aspect needs to be discussed
here if one tries to use subword language models
described here. In order to make reconstruction of

words possible at the output of speech recognizer we
append each word segmentation with the boundary
tag<w>. The assumption here is that a single–state
non–emitting HMM model can be set into a corre-
spondence with it. Some decoders like a large vo-
cabulary recognizer in the HTK2 toolkit are tailored
to use a short–pause model to address possible peri-
ods of silence between words. Label of short–pause
model does not appear at the output of recognizer
and two consecutive skip models are not allowed in
a search tree. To overcome this problem a different
decoder may be used or the reconstruction process
can be modified to use hyphenation marks instead
of a single boundary tag. The latter approach how-
ever increases the lexicon size since the same mor-
phological unit can appear separately or in the con-
text of complex word. For example, Estonian morph
aja may appear in the lexicon asaja andaja-.
In the latter case the hyphen mark is used to indicate
that the following morph should be tied withaja.
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