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1. Introduction
The majority of automatic speech recognition systems use Mel Frequency Cepstrum Coefficients (MFCC) or Perceptual Linear Prediction (PLP) for acoustic modeling. There have also been successful attempts at using phonetic information in the acoustic modeling. These experiments yielded improvements in word error rate when combining state-of-the-art features with phonetic ones. In this work, two phonetic features expressing sonority and voicedness measures of sounds, are described and developed. Voicedness measure is based on autocorrelation method. The representation of sonority extent of sounds is made with the help of spectrum derivation [3].

Phonetic features are being widely used in speech recognition systems. The first related studies go back to rule based speech recognition. In [1], formant frequencies have been successfully used in combination with the MFCC feature. In [4], a significant reduction in WER has been presented when combining MFCCs with a voicedness feature. In [2], multi-layer perceptrons based articulatory features detectors are introduced to extract the information about different phonological classes from a speech signal.

In this paper, two phonetic features are investigated. The voicedness feature is represented by autocorrelation-based measure. The sonority feature was first developed to distinguish phoneme classes of different sonority, i.e. obstruents, sonants and vowels. Sonants differ from obstruents by the presence of formant-like structure. In their turn, vowels differ from sonants by more peaky formants and lesser noise. The hypothesis is that a measure summarizing the changes in the magnitude spectrum over the frequency axis can contribute to differentiating these phoneme classes. The sonority measure is highly effected by filtering, as it directly depends on the speech signal spectrum quality. Low-pass filtering with various cut-off frequencies has been tested.

The proposed phonetic features were tested in combination with MFCCs by a Hidden Markov Model (HMM) based recognition system. Experiments showed significant improvements in word error rate when using additional phonetic feature - relative improvements of up to 4.5.

2. Acoustic Modeling
In this section, the feature extraction methods used in the given speech recognition system are presented. First, the outline of the Mel Frequency Cepstrum Coefficients (MFCC) extraction is observed. Then, the voicedness and sonority features are described.

2.1. Baseline Feature Extraction
The MFCC signal analysis is performed every 10 ms, a Hamming window is applied to pre-emphasized 25 ms speech segments. Then the short-term spectrum by Fast Fourier Transform along with an appropriate zero padding is computed.

The number of overlapping Mel scale triangular filters is 20. The number of cepstrum coefficients is 16.

In this way, a vector consisting of normalized mel-scaled cepstrum coefficients is computed every 10 ms.

2.2. Voicedness Feature
Voiced and unvoiced sounds form two complementary phonological classes. Thus, a feature expressing the voicedness of a time frame can lead to better discrimination of phonemes and consequently to better recognition results.

The measure describes how periodic the speech signal is in a given time frame t. The autocorrelation function is used to measure periodicity. Autocorrelation 
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where 
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 is the length of a time frame. Autocorrelation of periodic signals with frequency f attains its maximum 
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 integer multiples of the period. Therefore, a peak in the range of natural pitches with a value close to 
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 is a strong indication of periodicity.

In order to produce a bounded measure of voicedness, autocorrelation is divided by 
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. The resulting function has values mainly in the interval [-1..1] although because of the unbiased estimate, any value is theoretically possible. The voicedness measure 
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 is thus the maximum value of the normalized autocorrelation in the interval of natural pitch periods [2.5 ms..12.5 ms]:


[image: image14.wmf]2.512.5

22

max()

(0)

ss

t

msfmsf

t

t

R

vab

R

t

t

×££×

=+

%

%


where 
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 denotes the sample rate. Values of 
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 close to 1 indicate voicedness. Values close to 0 indicate voiceless time frames. The autocorrelation function is determined every 10 ms on speech segments of 40 ms in length. Thus, a one dimensional voicedness feature is generated every 10 ms.

2.3. Sonority Feature
The sonority feature was first introduced to distinguish three large phoneme classes: obstruents, sonants and vowels. From a phonetic point of view, these three classes differ by sonority, i.e. the presence and extent of formant structure. Obstruents have a flat and noisy magnitude spectrum. In the magnitude spectrum of sonants, one can observe peaky formant-like structures. Finally, vowels show real formants, which in general stand out background noise in a much stronger way than formant-like harmonics of the sonants. A feature summarizing the intensity of changes of the magnitude spectrum over the frequency axis could help to differentiate these three phoneme classes.

2.3.1. Extraction Algorithm
The measure of the sonority feature is calculated as the absolute sum of derivatives of the magnitude spectrum.

A Hamming window is applied to speech segments. The frame shift is equal to 10 ms. The normalization of the magnitude spectrum 
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 is performed to account for different frame energies, resulting in normalized spectrum 
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The spectrum derivatives 
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 is calculated over the normalized magnitude spectrum 
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Finally, the sonority measure 
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 is calculated as the logarithm of the absolute sum of the derivatives:
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2.3.2. Low-pass Filtering

The sonority measure of speech sounds mainly depends on a low-frequency domain and it was supposed that there could be no need to account for high frequencies while deriving the magnitude spectrum for the sonority feature extraction, as it will only disarrange the class distinction. The main formants tend to be in a low-frequency domain. Even those vowels which have high-frequency formants, have one of them at low frequencies.
The low-pass filtering was tested to eliminate the dependency on the higher frequencies. Different cut-off frequencies have been examined. The low-pass filtering is one of the empirical ideas which has yielded improvements in the WER.
The implementation applies an ideal low-pass filter, which is defined as follows:
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Where 
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 denotes the cut-off frequency, 
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 - sample rate, and N - number of FFT points.
Several tests have been carried out with increasing the cut-off frequency of the ideal low-pas filter from 500 Hz to 6000 Hz. See the obtained results in Section 3.
2.4. Feature Combination
Linear Discriminant Analysis (LDA) was used to combine different acoustic features. LDA has been used to find an optimal linear combination of successive vectors of a single feature stream. For all time frames t, the MFCC feature vectors are concatenated with the sonority and voicedness measures. In the second step, 11 successive concatenated vectors of the sliding window t-5, t-4, ..., t, ..., t+4, t+5 are concatenated again for all time frames t which makes up the large input vector of LDA. Finally, the combined feature vector is created by projecting the large input vector onto a smaller subspace. The projection matrix is determined by LDA so that it conveys the most relevant classification information. The resulting acoustic vectors are used both in training and in recognition.
The baseline experiments apply LDA in the same way. The only difference is in the size of the LDA input vector and therefore in the number of columns of the projection matrix. The resulting feature vector has the same size to ensure comparable recognition results.
3. Experimental Results
Experiments have been performed on VerbMobil II corpus consisting of German human-to-human dialogs recorded in clean conditions.
The baseline system has a word error rate of 21.0 %, which is the best reported so far using MFCC features and across-word acoustic modeling.
Table 1 provides a summary of the experimental results of the use of sonority feature extracted from a speech signal preprocessed with a low-pass filter with different cut-off frequencies. The relative improvement in word error rate of up to 3.5 % has been achieved when using 1 kHz as a cut-off frequency.
From Table 1, it becomes more clear what the frequencies that bring the most to the sonority feature are. The use of low-pass filter with the cut-off frequency equal to 1000 Hz yielded the best results.
In Table 2 summarizes the experimental results of the use of additional phonetic features and their combinations. The sonority feature is extracted from a signal filtered with a low-pass filter with a cut-off frequency equal to 1 kHz. A relative improvement of up to 4.5 % has been obtained.
As it is seen from Table 2, the proposed phonetic features result in improvements in comparison with MFCCs. The use of both of them increase effectiveness of the speech recognition greater then the use of any of them alone.
Table 1. Word error rates on VerbMobil II test corpus which were obtained by combining MFCCs with sonority measure (S) calculated from a magnitude spectrum filtered by an ideal low-pass filter with different cut-off frequencies (
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	acoustic
features
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(Hz)
	error rates [%]

	
	
	del
	ins
	WER

	MFCC
	 
	4.5
	2.9
	21.0

	MFCC + S
	 
	4.6
	2.8
	20.8

	MFCC + S
	6000 
	5.5
	2.4
	20.8

	MFCC + S
	4000 
	4.4
	3.3
	20.9

	MFCC + S
	2000 
	5.2
	2.8
	20.7

	MFCC + S
	1000 
	4.5
	2.9
	20.3

	MFCC + S
	500 
	4.7
	3.1
	20.9


Table 2. Word error rates on VerbMobil II test corpus which were obtained by combining MFCCs with voicedness (V) and sonority (S) features.
	acoustic
features
	error rates [%]

	
	del
	ins
	WER

	MFCC
	4.5
	2.9
	21.0

	MFCC + V
	4.6
	2.7
	20.3

	MFCC + S
	4.5
	2.9
	20.3

	MFCC + V + S
	4.4
	2.9
	20.1


4. Summary
In this work, the application of phonetically-based features for the task of acoustic modeling within automatic speech recognition system was presented. 

The voicedness feature is aimed at discriminating voiced and unvoiced speech sounds. The sonority feature aimed at summarizing the changes in the formant structure over the frequency axis and thus expressing sonority measure of speech sounds.
Experimental results showed that the sonority feature is highly influenced and can be improved by applying the filtering of the speech signal spectrum. The best recognition results have been obtained by combining the MFCC and both phonetic features with sonority feature extracted from a filtered speech signal applying a low-pass filter with cut-off frequency equal to 1 kHz.
It seems that the use of various phonetically-based features along with state-of-art ones for acoustic modeling of speech signal could improve the effectiveness of automatic speech recognition.
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