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Abstract

The primary goal of this master thesis project is to implement a text indepen-
dent speaker verification module for GIVES. Secondary goals are to implement
a fast scoring method and compare performance between the implemented text
independent module and an available text dependent module. The project also
includes a literature study. The text independent module is based on adapted
Gaussian Mixture Models and the adaptation equations are derived. Evaluation
results show that the text independent module and the text dependent mod-
ule have almost equal performance on a text dependent recognition task. The
results are analyzed and summarized, and improvements are suggested. Unfor-
tunately, the fast scoring method did not work together with all the components
in GIVES.

Sammanfattning

Det primära målet med detta examensarbete är att implementera en texto-
beroende talarverifieringsmodul för GIVES. Sekundära mål är att implementera
en snabb verifieringsmetod och att jämföra prestanda mellan den implemen-
terade textoberoende modulen och en befintlig textberoende modul. Examens-
arbetet inkluderar ocks̊a en litteraturstudie. Den textoberoende modulen ba-
seras p̊a adapterade Gaussian-Mixture-modeller och adapteringsekvationerna
härleds. En utvärdering visar att den textoberoende modulen och den text-
beroende modulen har likvärdiga prestanda p̊a en textberoende igenkännings-
uppgift. Resultaten analyseras och summeras, och förbättringar föresl̊as. Tyvärr
s̊a fungerade inte den snabba verifieringsmetoden med alla komponenterna i
GIVES.
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Chapter 1

Project Specification

1.1 Background

GIVES (General Identity VErification System) is a software package built for
research in automatic speaker verification at the Centre for Speech Technology
(CTT) and Department of Speech, Music and Hearing, KTH. Speaker verifica-
tion is the task of deciding whether a speech utterance is delivered by a given
claimant speaker or not. Existing modules for GIVES are mainly targeted for
text dependent speaker verification and the main goal of this master thesis
project is to develop a text independent module. The project is supervised by
H̊akan Melin, who is also the main developer of GIVES. The examiner is pro-
fessor Björn Granström. Formally the project is done at Department of Speech,
Music and Hearing, KTH, but by commission of CTT.

1.2 Specification and Goals

The goal of this project is to implement and evaluate a text independent speaker
verification system module for GIVES. The system will be based on adapted
Gaussian Mixture Models (GMM) inspired by Reynolds, Quatieri and Dunn [1]
which is considered as state-of-the-art. The system will also incorporate a spe-
cial fast scoring procedure. Finally an evaluation and performance comparison
against a text dependent system (described in Section 4.1) will be carried out
using the GANDALF speech database (discussed in Section 4.3). Early exper-
iments will be performed in Matlab and the final implementation will be done
in C++. The project also includes a literature study and the main part is pre-
sented in Chapter 2. The project will not cover front-end processing (i.e. feature
extraction from speech signals). Project duration are 20 weeks by definition of
master thesis projects at KTH.

7
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Chapter 2

An Overview of Speaker

Verification

2.1 Introduction

Identity verification is a part of everyones life. An ever increasing number of
personal identification codes (PIN-codes) are used everywhere and written sig-
nature based verification is an integrated part of our modern society. The recent
development of technology has raised the interest in science fiction inspired bio-
metric verification. That is verification based on individual biological features
such as fingerprints, retinal scan, written signature, DNA-analysis, smell and
voice. The perhaps greatest advantage of biometric verification is that you
can forget a PIN-code, but you will never “forget” your body. Moreover, if
the biometric properties are unique then verification could be rather safe if the
technology can measure these properties accurately. Traditional verification can
also be combined with biometric verification in order to make the verification
even more safe.

The widespread use of telephone systems, fixed and mobile, and the services
provided through these, raise the need for verification based on a speaker’s
voice. Recently, the advance of technology and theory has made speaker veri-
fication possible. Some overview papers of speaker verification are: Melin [5],
Doddington [9], Campbell [14] and Furui [15].

2.2 Speaker Verification

Speaker verification is the task of deciding whether a speech utterance is deliv-
ered by a given claimant speaker or not. More formally, it is the task of deciding,
given a speech signal x and a hypothesized speaker S, whether x was spoken by
S. This is also referred to as speaker detection or single-speaker detection. The
binary decision can be reformulated as a hypothesis test between the following
statements:

H0 : x is from the hypothesized speaker.

H1 : x is not from the hypothesized speaker.

9
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Then the decision in an optimal manner is [25]:

T (x) =
f(H0|x))

f(H1|x)

{

≥ η, accept H0

< η, reject H0

(2.1)

if the probability functions f(..) are known exactly and for a threshold η. T (x)
is denoted as the test ratio1. Some common choices of f(..) are Hidden Markov
Models (HMM), Gaussian Mixture Models (GMM) and Artificial Neural Net-
works (ANN). A typical speaker verification system operates as follows (Figure
2.1): The model defined by the function f(H1|x) is trained on speech from many
different speakers and it is denoted as the Universal Background Model (UBM)
or the reference model. The speaker model defined by f(x|H0) is simply trained
on the speaker’s voice in a procedure denoted as enrollment. Finally, a speaker
claims an identity, a test utterance is recorded and a decision is made.

UBM

UBM training

Speaker Model

Enrollment

Decision

Accept/Reject

Test Utterance

Figure 2.1: A typical speaker verification system.

2.3 Text-dependence

A speaker verification system operates in either text dependent (TD) mode or
text independent (TI) mode. In TD mode the speaker uses the same utterance
during enrollment and testing while in TI mode, the test utterance is different
form the utterance used during enrollment. This boundary is not clear and
some systems, such as digit-based, lies somewhere between TD and TI.

2.3.1 Text Dependent Verification

If the system demands that the speaker uses the same utterance during enroll-
ment and testing it’s called a TD system. The utterance could be a fixed phrase
for all speakers or an individual phrase. In TD systems, the speaker model
will cover specific characteristics from both the speaker and the text. Such a
detailed model require less training data than the more general model in a TI
system and, therefore, TD systems generally achieves good performance. TD

1The test ratio is often called the “likelihood ratio”. The author consider the use of the term

likelihood ratio unnecessary since the introduction of likelihood functions may be confusing.
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systems may be quite susceptible to tape recordings which could be used by an
impostor to bypass the system.

2.3.2 Text Independent Verification

If the speaker is allowed to use different utterances during enrollment and test-
ing, the system is called TI. A TI system require more training data than a TD
system because phrase specific characteristics are not available. Therefore, TI
systems often exhibit worse performance than TD systems. Of course, a true
TI system may be very susceptible to tape recordings if the system is used in,
for example, a telephone bank. The main usage of a true TI speaker verification
system lies in bugging technology. Some systems prompt for an unpredictable
text to be spoken and checks, by using speech recognition, whether the speaker
utterance was the correct one. For example, the system prompts for words dur-
ing testing which are composed by phonemes used during enrollment. Such a
system is very secure to tape recordings but it’s also quite difficult to implement.

2.3.3 Digit-based Verification

In digit-based verification, digits are used to assemble an utterance which may
be, for example, a password, an account number or a telephone number. If
the sequence of digits is prompted and the system checks whether the correct
sequence was spoken then the system will be quite secure to tape recordings.
Moreover, a digit-based system yields good performance because of the limited
set of possible words, i.e. the word specific characteristics is limited to digits.
This limitation makes it more easy to build accurate speaker models compared
to TI verification. Such a system is also quite easily implemented.

2.4 Performance Measures

There are two possible situations that may occur in single-speaker detection: if
the claimed identity is the same as the speaker’s true identity then the speaker
is known as the true speaker or the client speaker, or if the speaker tries to fool
the system by claiming an existing client speaker identity then the speaker is
known as the impostor or the non-client speaker.

If an impostor is accepted by the system, this is called false acceptance (FA),
and if a true speaker is rejected, this is called false rejection (FR). Often there
is a tradeoff between FA-rate (EFA) and FR-rate (EFR) that depends explicitly
on the decision threshold η. It is common to visualize FR-rate as a function of
FA-rate in a Detection Error Trade-off plot (DET plot) [16].

There are also several scalar performance measures. The perhaps most com-
mon is called equal error rate (EER) [20]. EER is received by adjusting η until
EFA = EFR = ERR. Operational systems usually don’t have equal EFA and
EFR since η is fixed, and may have been set to favor either EFA or EFR. In
the fixed threshold case, performance can be measured by the geometric mean
error defined as

EGM =
√

EFA · EFR.



12 CHAPTER 2. AN OVERVIEW OF SPEAKER VERIFICATION

However, the EGM is quite rough. Another performance measure is formulated
as a detection cost function. The detection cost, Cdet, is defined as [9]

Cdet = CFREFRPtrue + CFAEFA(1 − Ptrue)

where CFR and CFA are the costs of a false rejection and false acceptance
and Ptrue is the a priori probability of a true speaker. The Cdet measure has
the advantage of modeling the application, where perhaps low EFA is more
important than EFR, and, hence, produces a more meaningful measure.

2.5 Setting the Threshold

For N speakers n = 1, . . . , N each speaker can have a speaker dependent thresh-
old ηn or a common speaker independent threshold η. The conventional ap-
proach is to use a speaker independent threshold because the result can easily
be presented as a DET-plot. However, a speaker independent threshold will
produce worse performance compared to speaker dependent thresholds if the
score value distributions for each speaker differ too much. Whether a speaker
independent or speaker dependent threshold is chosen, the setting of the thresh-
old is not a trivial problem. Actually, there is currently no good way to set the
threshold a priori. However, if the system is run against a large speaker database
the threshold can be set a posteriori, i.e. by calculating FA/FR-rates for a given
threshold. Then the trade-off between FA-rate and FR-rate must be taken into
consideration. If low FA-rate is crucial then a high FR-rate must be accepted
which can be annoying for the user. On the other hand, if pleased users are
more important then a more insecure verification must be accepted.

2.6 Speaker Variability

Speaker verification makes use of the fact that speakers’ voices sound differently
from each other. The variation in voices between people is called inter-speaker
variability. If an impostor’s voice is similar to a client speaker then the FA-rate
may raise and, therefore, inter-speaker variability is closely related to FA-rate.
The variation of one person’s voice from time to time is called intra-speaker
variability. This variation could depend on several things, for example if the
person has a cold. The FR-rate depends mainly on intra-speaker variability.

Empirical tests have shown that most systems behave well for a majority of a
target population but not for a minority [23]. This minority may be divided into
subpopulations with animal names [9]. Speakers that contribute to a minority of
all FR-errors and dominate the population are termed sheep. Speakers that have
trouble with the system are termed goats. They tend to contribute to most of
the FR-errors while in minority. Target speakers that are unusually susceptible
to many different impostors are called lambs. If the impostor population have
some speakers that have unusually good success to mimic many different target
speakers, then these are called wolves. The reason for dividing a population into
these categories2 is to study and understand these speaker inhomogeneities. For
example, if goats and lambs are detected during enrollment [24], then the system
can take an appropriate action such as demanding more training.

2The categories are not necessarily disjunct sets.
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2.7 Channel Distortion

A major challenge in speaker verification is the fact that different microphones,
noise and channel transmission color the speech. The problem arises when one
speaker uses one handset in enrollment and another in verification. Then the
test utterance will be scored against a model that is trained with a different
color and FA/FR-rate will increase. From the system point of view this is the
same as increased inter- and intra-speaker variability. If speaker verification is
used over a telephone network then this is a difficult problem. There exists
various methods for channel normalization and most of these operate in the
spectral domain. A different approach used by Reynolds et al. [1] is handset
score normalization (hnorm). Since hnorm works in a different domain than
spectral methods, these techniques can be combined. Of all possible distortions
the handset often contributes the most and therefore the total channel distortion
is denoted as just handset.

2.8 System Components

A speaker verification system generally consists of four modules:

1 An analysis module which extracts speaker dependent features from a speech
signal. A standard method is to compute spectral parameters such as
mel-frequency cepstral coefficients (MFCC) or linear prediction cepstral
coefficients (LPCC) in a window for every 10 ms of speech which result in
a stream of feature vectors.

2 A modeling module which builds a model from the feature output of the
analysis module. Common models are based on HMM, GMM or ANN.

3 A scoring module which computes how well a feature output from a utterance
fits the model in the modeling module.

4 A decision module which, from the output of the scoring module, accepts or
rejects the speaker.
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Chapter 3

The UBM-GMM system

3.1 System Environment

GIVES is a software package for research in automatic speaker verification and
it is mainly developed by Melin at the Centre for Speech Technology (CTT) and
the Department of Speech, Music and Hearing, KTH. The UBM-GMM system
is implemented with Blitz++ library [22] as a module in GIVES. Blitz++ is a
C++ library which supports dense vectors and multidimensional arrays.

3.2 An Overview of System Components

GIVES provides a framework for various components. Figure 3.1 shows an
overview of the main system components. Gender detection and signal analysis
components are available in GIVES. In the following Sections, each component
is described in detail.

3.3 Signal Processing

In order to extract relevant feature vectors from a signal, several standard meth-
ods available in GIVES are used. The choice of signal processing is based on
previously good results [1, 19]. First, the signal is segmented into speech and
silence. Then, silence segments are thrown away and the speech segments are
pre-emphasized with a coefficient 0.97. A 12-element mel-frequency cepstral
coefficient (MFCC) vector is computed from the frequency interval 300-3400 Hz
every 10 ms over a Hamming-window of length 25.6 ms. The zeroth element,
which is a measure of energy, is excluded and the MFCCs are liftered with a
constant 22. Delta and acceleration coefficients of the MFCC vectors are com-
puted and appended to the feature vectors so that the resulting vector length
is 36.

Since the speech signal is often transmitted through different telephone chan-
nels or microphones, the MFCC will include other characteristics than those of
the speaker. Therefore, the MFCC must be channel normalized. One simple
way to do so is cepstral mean subtraction [29] (CMS), where the mean, com-
puted over each utterance, of the MFCCs is subtracted from each MFCC vector.

15
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male
UBM

female
UBM

Score

Adaptation

Speaker model

Signal
analysis

Decision

EMVQ−init

accept/
reject

enroll

male
UBM
score

female
UBM
score

enroll/test
Speech

Figure 3.1: The UBM-GMM system components.

CMS is a quite rough method and doesn’t remove channel characteristics com-
pletely. Therefore a score normalization method is also used, which is described
in Section 3.9.

3.4 Gender Detection

To evaluate the test ratio in Section 2.2, at least two models are needed. One
model that represents the speaker and one Universal Background Model (UBM)
that represents all possible speakers. It is important that training data for a
UBM has the same set of subpopulations as the population that is meant to use
the system. However, a single UBM is not always the best choice. Male and
female speech differ significantly in pitch and also in vocal tract length, linguistic
and stylistic use. Therefore, gender dependent UBMs yield better performance
than a gender-independent UBM [17].

When using gender dependent UBMs, there are at least two ways to choose
a UBM during testing if there is no prior knowledge of the speaker gender:

1 The system detects which gender the enrolled speaker has by scoring the
enrollment utterances against the male and female UBM. During testing,
the test ratio is computed between the claimed speaker and its associated
UBM, as determined at enrollment time.

2 The speaker model doesn’t have an associated UBM and gender detection is
performed both during enrollment and testing.

The advantage of the first alternative is simplicity. However, if a female
impostor claims to be a male client, the impostor test utterance is scored against
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the male UBM. It is not unlikely that the female impostor’s voice is more equal
the male client’s voice compared to the voice of an average male (represented
by the male UBM). This makes it easier for an impostor to fool the system
if an impostor claims to have the opposite gender than the impostor’s actual
one. The second alternative doesn’t have this disadvantage but if the gender
detection fails, performance is again poor. Fortunately, gender detection works
quite well (1% error per utterance for a typical evaluation) and in this system,
alternative two is chosen. This method is known as dynamic cohort and the
female and male subpopulations are called cohort speakers [15]. This method
can also be expanded to include more subpopulations, for example, age or dialect
subpopulations.

3.5 Gaussian Mixture Models

To implement the hypothesis test in Section 2.2 the probability function f(λ|x)
must be chosen. For text dependent applications a HMM (Hidden Markov
Model) is preferable and gives good performance but for text independent client
verification GMMs (Gaussian Mixture Models) have been the most successful
so far [26].

The GMM density is given by

f(xt|λ) =

K
∑

k=1

wkN (xt|mk, rk) (3.1)

where

N (x|mk, rk) ∝ |rk|
1/2 exp

[

−
1

2
(x − mk)trk(x − mk)

]

(3.2)

λ = (w1, . . . , wK , θ1, . . . , θK) θ = (m1, . . . ,mK , r1, . . . , rK).

The GMM density is simply a weighted summation of K unimodal Gaussian
densities where

∑K
k=1 wk = 1. mk is a D x 1 vector and rk is the inverse of

a D x D covariance matrix. Figure 3.2 shows a simple GMM density. In this
thesis report only diagonal covariances are used. The reasons for this are: A
low order full-covariance GMM can also be well approximated by a high order
diagonal GMM [1]. Also, a diagonal GMM requires less computational effort
since repeated inversions of r are not required.

The test ratio may be expanded by using Bayes rule

T (x) =
f(λclient|x))

f(λUBM |x)
=

g(λUBM )f(x|λclient)

g(λclient)f(x|λUBM )
(3.3)

where g(λ) is the prior density. In fact, the prior density is assumed to be
equal for the UBM and the client model (discussed in appendix B). With
this simplification in mind the following is assumed: For a set of t = 1, . . . , T
independent and identically distributed (i.i.d) feature vectors xt with dimension
D and distribution f , the test ratio is

T (x) =
f(x|λclient)

f(x|λUBM )
=

∏T
t=1 f(xt|λclient)

∏T
t=1 f(xt|λUBM )

(3.4)
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The set of feature vectors is often very large and, hence, the value of f(..) is
often very small. Therefore, it is common to compute the logarithm of the test
ratio instead. The log-test ratio is given by

Λ(x) = log f(x|λclient) − log f(x|λUBM ). (3.5)

where log f(x|λ) is computed as

log f(x|λ) =

T
∑

t=1

log

(

K
∑

k=1

wkN (xt|mk, rk)

)

. (3.6)

In the UBM-system a normalized log-test ratio is used. Normalization is
given by dividing the log-test ratio by T [25].

Figure 3.2: A 2-dimensional GMM density with 4 terms.

3.6 The UBM

3.6.1 EM-training

For a set of i.i.d. feature vectors x = {x1, . . . , xT }, the maximum-likelihood
(ML) estimate of the parameters of a GMM, λ∗, is [2]

λ∗

ML = argmax
λ

f(λ|x) = argmax
λ

f(x|λ).

The expectation-maximization (EM) algorithm [3] finds λ∗

ML by iteratively es-
timating λ so that f(x|λi+1) > f(x|λi) for each iteration i.

The prior probability for a mixture component k in a GMM, given a feature
vector xt is

ckt = f(k|xt, λ) =
f(k, xt|θk)

f(xt|λ)
=

wkN (xt|θk)
∑K

l=1 wlN (xt|θl)
k = 1, . . . ,K (3.7)



3.6. THE UBM 19

and the probabilistic count for new data is

ck =

T
∑

t=1

ckt. (3.8)

Then the EM reestimation equations which maximize the log-test for GMM
parameters are [2]:

ŵk =
ck

T
(3.9)

m̂k =

∑T
t=1 cktxt

ck
(3.10)

r̂−1
k =

∑T
t=1 ckt(xt − m̂k)(xt − m̂k)t

ck
(3.11)

The EM algorithm is guaranteed to monotonically converge to a local maxi-
mum [3]. In practice, convergence is assumed if log(f(x|λi))− log(f(x|λi−1)) >
εEM . Reynolds et al. [1] claims: “Generally, five iterations are sufficient for
parameter convergence”, but without motivation. This is probably an empiri-
cal result for training large UBMs. However, Xu and Jordan [11] claims that
if mixture elements are poorly separated then convergence is slower and this
could be the case if too many mixture terms are used. During the development
of this system, there was some numerical problems (discussed in Appendix A).
To avoid this problem, a variance floor of 0.001 was applied. This means that
the elements of r−1

k are not allowed to be smaller than 0.001.

3.6.2 Initialization

Before the UBM can be trained, it is crucial to initialize the UBM: Since the EM-
algorithm is quite slow and a UBM must be trained on a huge amount of data, a
fast initialization makes the EM-algorithm converge faster. Furthermore, a good
initialization makes the EM-algorithm converge close to the global maximum
[12, 25]. A good candidate for initialization is vector quantization (VQ) [21]
because it encodes feature vectors in regions that correspond to the unimodal
Gaussian densities in the GMM (as illustrated in Figure 3.3). Of course, any
clustering technique will accomplish the task but with different results.

In this system, the simplest VQ is implemented. That is a linear VQ, trained
iteratively via the generalized Lloyd algorithm with the same dimension as the
number of mixtures, K, in the GMM. This is done as follows:

Step 1 Deterministically select K feature vectors as initial cluster centers y1, . . . , yK

by setting yk = xn where n = 1 + (k − 1)bT/Kc and k = 1, . . . ,K. Set
i = 1.

Step 2 Divide all feature vectors into K disjoint regions, R1, . . . , RK , such that
a feature vector, xt, is an element of Rk if

d(xt, yk) ≤ d(xt, yl) for all l = 1, . . . ,K l 6= k

where d(., .) is a distance function.
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Step 3 Set each yk to the mean of the feature vectors in the corresponding
region Rk.

Step 4 If a region Rk contains less then U feature vectors, move yk to yl + ε
where l is the region containing the largest number of feature vectors.

Step 5 For each xt in a region Rk, calculate dk = d(xt, yk) and di+1
avg =

∑

K

k=1
dk

T ·K .

Step 6 set i = i + 1.

Step 7 Repeat step 2-6 until di
avg − di−1

avg < εavg.

The distance function d(., .) can be arbitrarily chosen. Squared error, average
squared error, Mahanalobis and SNR distance measures have been implemented.
In practice, only the Mahanalobis distance was used. The reason for this is
that Mahanalobis takes the variance into consideration when the distance is
computed which may result in a more accurate GMM-initialization. In order to
save time without reducing available data too much, every second feature vector
is used in the training set for the VQ and the rest is encoded into regions used
for GMM initialization, once the VQ has been trained.

To initialize the GMM, each Gaussian density, k, is set to the mean and
variance in the corresponding VQ-region k. The weights, w, are set to Tk/T
where Tk is the number of feature vectors in region k. Again, regions containing
less then U feature vectors are removed and replaced by the largest region with
recalculated weights. U must be larger than one because the variance of a single
component is zero.

3.7 The Speaker Model

The speaker model can be estimated in the same way as the UBM. However,
there exists a better approach. Assume that the speaker model doesn’t differ too
much from the UBM, then the speaker model could be adapted from the UBM.
Moreover, since speech data in enrollment is sparse, ML estimation tends to
overtrain model parameters. A model is overtrained if it fits irrelevant details in
training data. If an adaptation approach such as maximum a posteriori (MAP)
is used instead, then the overtraining problem is reduced by the fact that only
Gaussian terms that are close to new data are adapted (discussed later in this
Section).

In MAP estimation the parameters, λ, are treated as random variables. For
a set of i.i.d. feature vectors x = {x1, . . . , xT }, the MAP estimate of the the
parameters is [6]

λ∗

MAP = argmax
λ

f(λ|x) = argmax
λ

f(x|λ)g(λ).

Since λ are random, they belong to a hyper-density with its own parame-
ters. These hyper-parameters can be estimated (which is a difficult problem)
or guessed (which is not realistic). To avoid this overparameterization problem,
some constraints are assumed and a relevance factor is introduced. This is the
approach adopted by Reynolds et al. [1] which they call Bayesian adaptation.
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Figure 3.3: Principle of VQ-initialization for 2 dimensions and 2 clusters. The
top Figure shows training data. The middle Figure shows VQ-clustering where
� are cluster centers. The bottom Figure shows a GMM estimated from VQ
clusters. This initial GMM is then used as the starting point of the EM-
algorithm.

With the same definitions used for ML-EM (3.7), (3.8) and

Ek(x) =
1

ck

T
∑

t=1

cktxt (3.13)

Ek(x2) =
1

ck

T
∑

t=1

cktx
2
t (3.14)
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the Bayesian adaptation equations (derived in Appendix B) are

ŵk =[κw
k ck/T + (1 − κw

k )wk]γ (3.15)

m̂k =κm
k Ek(x) + (1 − κm

k )mk (3.16)

σ̂2
k =κv

kEk(x2) + (1 − κv
k)(σ2

k + m2
k) − m̂2

k (3.17)

where
κρ

k =
ck

ck + rρ
(3.18)

for some parameter ρ and

γ =
1

∑K
k=1 ŵk

. (3.19)

The speaker model is adapted from the UBM selected by the gender detection
component. The relevance factor, rρ, can be viewed as an adaptation coefficient.
If rρ is large, adaptation is slow and if rρ is small, adaptation is fast. In this
UBM-GMM system, a single relevance factor1 is used, rw = rm = rv = 16. It
has been found experimentally that a single relevance factor r = 16 perform well
for both diagonal covariances [1] and full covariances [25]. Note that equation
(3.15) is not the true MAP estimate. It has been found experimentally [1]
that the estimate (3.15) gives better performance than the true MAP estimate
ŵk = rw+ck

Krw+T (B.17). Also note that adaptation is not evaluated iteratively.
It is the data dependent adaptation coefficient κρ that makes the adaptation

efficient compared to ML-estimation. For terms with low probabilistic count, ck,
of new data, κρ → 1 and the emphasis in adaptation lies in speaker data. If new
data doesn’t match a specific Gaussian term then, κρ → 0 and the emphasis in
the adapted term lies in the UBM data. Since terms with low probabilistic count
are more likely to be overtrained, the adaptation approach should be robust to
limited training data.

3.8 Fast Scoring

The fact that the client model is adapted from a UBM allows a fast scoring
method [1]. This method is based on two observations. First, when a large
GMM is evaluated only a few terms contribute significantly to the log-test ratio.
This is because only a few terms of the GMM will be near the feature vector.
Secondly, since the speaker model is adapted there is a correlation between
terms in the UBM and in the speaker model. This means that a feature vector
that is close to a term in the UBM is probably also close to the corresponding
term in the speaker model.

With the discussion above in mind the “best” term, l1, can be defined as

l1 = argmax
k

wkN (xt|mk, rk)

and the best C terms, l1, . . . , lC , in a similar manner. Then a fast scoring
method operates as follows: For each xt compute the best C terms in the UBM
and score these terms against the corresponding terms in the speaker model.
This method requires only K + C Gaussian computations compared to 2K
Gaussian computations when the ordinary log-test ratio is used.

1In fact, the Bayesian adaptation equations are not true MAP estimates if r
m 6= r

v .
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3.9 Score Normalization

The threshold η in equation (2.1) can be either speaker dependent or speaker
independent. The purpose of speaker dependent thresholds is to reduce negative
effects of speaker dependent variability on performance. Another solution is to
adopt a reversible transform on score values so that the result is equivalent
to using speaker dependent thresholds. For practical reasons the transform is
based on impostor scores rather than the true speaker scores. One such method,
currently known as znorm [17], is to transform the impostor score distribution
to zero mean and unit variance, whereas a Gaussian distribution is assumed.
For an observation x and a claimed identity λ, the normalized log-test is given
by

Λznorm
λ (x) =

Λλ(x) − µλ

σλ
(3.20)

where µλ and σλ are moment estimates of the impostor score distribution for a
speaker λ. In GIVES, a znorm module is available.

If knowledge of different handsets is incorporated, znorm can be extended by
using one transformation per handset. This is called handset score normalization
or hnorm [1].
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Chapter 4

Experiment Setup

4.1 Evaluation Strategy

A speaker verification system has a lot of parameters to adjust. Also, evaluation
is a slow process since experiments require large speech databases to achieve
reliable results. Since time is limited in this thesis project, only a few parameters
that affect performance were examined, namely:

• GMM order, i.e. the number of terms in the GMM

• The effect of adapting different sets of GMM-parameters (weights, means
and variances)

• The effect of znorm

• The presence of goats, wolves and lambs

It is quite clear the number of terms in the GMM will affect performance. The
choice of investigating different sets of GMM-parameters is motivated by the
following:

The constraints in the derivation (in appendix B) of the Bayesian adapta-
tion equations indicate that adaptation of some parameters is not optimal. For
example, it may be possible that the best performance is achieved by only up-
dating the means. Therefore, adaptation of all possible combinations of weights,
means and variances are tested. The use of a global relevance factor is also a
strong constraint that could affect some adaptation combinations in some un-
known way.

In the signal processing component a simple handset normalization method,
cepstral mean subtraction (CMS), was applied. As mentioned in Section 3.3,
CMS doesn’t compensate for mismatched handset situations completely. There-
fore, the effect of znorm is investigated.

In a speaker verification system it is desirable that there are no goats, wolves
and lambs i.e. the errors are homogeneously distributed in the speaker popu-
lation. In practice, the presence of these “animals” are real which motivate an
“animal” analysis.

One of the goals of this thesis project was to compare performance to another
system. An available system is a digit-based TD system implemented by Melin

25
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[18] but the system used for comparison in this thesis report uses dynamic
cohort rather than the cohort based system used in the referred paper. In
short, the TD system has one left-to-right HMM for each digit and almost the
same preprocessing was used as in the UBM-GMM system. This means that
experiments with digits must also be carried out.

In this evaluation, the fast scoring method was not used (see Section 6.2 for
motivation).

4.2 Training the UBMs

A UBM must cover all possible speaker variabilities. This means that the
database has to be well balanced, i.e. the training data has the same set of sub-
populations as the population that is intended to use the system. A database
that has these properties is the full Swedish SpeechDat database, FDB5000 [13],
which comprises 5000 speakers recorded over the fixed telephone network. Un-
fortunately, training UBMs on this database would take too much time in this
thesis project. Therefore, the smaller FDB10001, which is an initial version of
FDB5000, was used. The FDB1000 contains 1000 speakers but it is not carefully
balanced which may affect performance negatively.

The FDB1000 is composed of many kinds of speech data (Table 4.1). The
sentences and words for corpus identifier S and W are different for all speakers.
These sub-corpora are used for training UBMs with two different types of speech.
First, a subset containing S1-S3 and W1-W2 is labeled “various speech” and
a subset containing B1 and C1-C4 is labeled “digit speech”. Secondly, both
subsets were split into female and male speakers. Finally, each subset was used
to train GMMs with 128, 256, 512 and 1024 terms. Various handsets were used
during speech recording of the corpora. The amount of speech (with removed
silence) used to train each UBM is listed in Table 4.2. The segmentation for
the digit UBMs is produced by a speech recognizer working in forced alignment
mode given the text actually spoken by the subject [19]. The segmentation for
the various speech UBMs is produced by a silence/speech detector.

For initialization (see Section 3.6.2), the minimum cluster size U is set to 5,
a Mahanalobis distance function is used, εavg is set to 0.0005 and a maximum of
8 VQ iterations are allowed. With the convergence properties of EM, discussed
in Section 3.6.1 in mind, εEM is set to a very small number, 0.01, and a total
of 8 iterations are allowed. Generally, all 8 EM iterations were proceeded.

4.3 Enrollment and Testing

For enrollment and testing the GANDALF database [8] was used. GANDALF is
a speaker verification database that covers both long-term variations in speaker
variability and telephone handset variations. Two subsets are used for enroll-
ment and testing. The first subset is labeled D1H/D4 and contains digits. The
second is labeled V1H/V and contain various sentences. These subsets were
extracted from the evaluation set [18] in GANDALF. There is also a smaller de-
velopment set which was used for early experiments and for tuning parameters.

1Described in the manual: “FIXED1SV - FDB1000, A 1000 Speaker Swedish Database for

the Fixed Telephone Network”, Design.doc, v2.1
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Table 4.1: FDB1000 corpora used for UBMs.

Corpora identifier Item identifier Corpora content
B 1 1 sequence of 10 isolated digits
C 1 1 sheet number (5+ digits)
C 2 1 telephone number (9-11 digits)
C 3 1 credit-card number (16 digits)
C 4 1 PIN code (6 digits) (set of 150 SDB codes)
S 1-9 9 phonetically rich sentences
W 1-4 4 phonetically rich words

Table 4.2: Speech duration for the UBM training material excluding silence.

Speech content digits various
Gender F M F M
Speech duration 2.6h 1.7h 2.2h 1.6h

The subsets used for evaluation are summarized in Tables 4.3 and 4.4. During
the test phase, an average of 21 true speaker tests per speaker are evaluated.
In addition to the available impostors, true speakers are also used as simulated
impostors. Every impostor is scored against each true speaker and, of course,
a true speaker is not used as an impostor to oneself. Only same-sex impostor
test are used since this is more likely in an operational system. If cross-sex
impostors are included, the EERs drops by 1-2 percent overall. This shows that
the system can handle cross-sex impostors quite good, but as mentioned above,
only same-sex impostor results are presented.

The segmentation during enrollment and test is the same that is used for the
UBM training data, except that the digit segmentation uses forced alignment
mode given the expected (not the actual) text of the utterance.

Table 4.3: Enrollment subsets. Speech duration excludes silence.

Subset labels D1H V1H
Handsets/speaker 1
Utterance content 5 digits 1 sentence
Utterances/speaker 25 10
Speech duration/speaker (s) 50 30
Clients (male/female) 24/18
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Table 4.4: Test subsets. Speech duration excludes silence.

Subset labels D4 V
Handsets/speaker 4-10
Utterance content 2x4 digits 2 sentences
Speech duration/utterance (s) 3 6
Client speaker tests 886
Impostors (male/female) 58/32
Same-Sex impostor tests 1926

4.4 Statistical Significance

It is obvious that a large test gives FA/FR-rates closer to the true values than
a small test. Assuming independent trials and a binomial distribution for an
error-rate p, a confidence interval p ± e · p, gives a lower bound of

p =
1

ntotal(e/λα/2)2 + 1
(4.1)

where ntotal is the total number of trials and λα/2 is, for example, 1.65 for a 90
percent confidence interval [27].

Assuming that e = 0.3, then 1926 impostor tests gives a FA-rate interval of
1.6 ± 0.5% and 886 true speaker tests gives a FR-rate interval of 3.3 ± 1.0%,
both with 90 percent certainty. This formula assumes that each speaker can
expect the same error rate, which is not exactly the case, but this gives a clue
to how relevant the experiment results are. This exercise is quite academic since
a confidence interval for a known p is a different thing. The assumption that
each speaker can expect the same error rate is fairly optimistic and, therefore,
no confidence intervals are computed for the experiment results.
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Experiment Results

In this chapter the experiment results are presented and basic observations are
made. Initially, znorm was meant to be used with both subsets D1H/D4 and
V1H/V, but a software bug stopped this experiment for the D1H/D4 subset.

5.1 Model Mixture Order

Client GMMs with 128, 256, 512 and 1024 terms were evaluated for D1H/D4
and V1H/V. All GMM parameters were updated and znorm was not applied.
The results are shown as DET-plots in Figures 5.1 and 5.2. EER values are
shown in Table 5.1. As expected, the text dependent experiment with digits
performed better than the text independent experiment with various sentences.
Note that the EERs are higher in the 1024 term case compared to the 512 term
case.

It may be possible that the 1024 terms UBMs have not really converged
during training since slower convergence could be expected if mixture elements
are poorly separated. In order to test this hypothesis another 4 iterations were
performed on the 1024 terms digit UBMs. Then the EER dropped to 4.4 for
D1H/D4, which supports the hypothesis. However, performance is still almost
the same as for the 512 term GMMs, and the evaluation of 1024 term UBMs
is very slow, so subsequent tests were limited to the 512 term UBMs. Unfor-
tunately, the log-test values from UBM training were never saved so a true
convergence analysis could not be carried out.

Table 5.1: EER (%) for different GMM orders. All GMM parameters are
updated and znorm is not used.

Terms 128 256 512 1024
D1H/D4 5.6 4.7 4.5 4.6
V1H/V 7.7 7.1 7.0 8.0
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Figure 5.1: DET plots for D1H/D4 with different GMM orders.
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Figure 5.2: DET plots for V1H/V with different GMM orders.
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5.2 Parameter Update

In this experiment, all possible combinations of updating weights, means and
variances were tested for D1H/D4 and V1H/V with 128 and 512 GMM terms.
The results are presented in Figures 5.3, 5.4 and in Table 5.2.

The EERs from these tests show that the best results with 128 GMM terms
were achieved by updating the means and variances, while for 512 GMM terms,
the best results were achieved by updating all GMM parameters. Note that if
only variances are updated, the 512 term GMMs yield higher EER compared
to the 128 term GMMs.

Table 5.2: EER (%) for all combinations of GMM parameters (w = weights, m
= means and v = variances). The best result for each subset is printed in bold
style.

128 Terms
Subset w m v wm wv mv wmv
D1H/D4 17.9 6.2 45.4 5.7 43.8 5.5 5.6
V1H/V 27.9 8.4 42.9 8.7 41.5 7.3 7.7

512 Terms
Subset w m v wm wv mv wmv
D1H/D4 12.5 5.0 58.4 4.8 55.9 4.8 4.5

V1H/V 21.8 8.5 48.7 8.2 45.7 7.6 7.0
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Figure 5.3: DET plots for subset D1H/D4 with all combinations of parameters
updated for 512 GMM terms, (w = weights, m = means and v = variances).
Some curves are outside the graph.
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Figure 5.4: DET plots for subset V1H/V with all combinations of parameters
updated for 512 GMM terms, (w = weights, m = means and v = variances).
Some curves are outside the graph.

5.3 Score Normalization

In this experiment znorm was applied to the V1H subset with 512 GMM terms
and all GMM parameters were updated. Znorm was trained with 391 pseudo
impostors with a 50/50 gender ratio from the S1 corpora in FDB1000 scored
against the gender UBM detected for the client speaker. Since there are no
cross-sex trials and the pseudo impostor set contains both sexes, 50 percent of
the best scores was used for score normalization. This will correspond to using
prior knowledge of a pseudo impostor gender. The result is plotted in Figure
5.5 and show that there is no advantage of using znorm in this experiment.

5.4 Performance Comparison

In this experiment the text independent GMM system performance is compared
to the text dependent HMM-based system. The same enrollment and test set,
D1H/D4, was used for both systems. In the GMM system 512 GMM terms were
used and all GMM parameters were updated. The HMM system generated an
EER of 4.8 compared to 4.5 for the GMM system. The result is shown as a
DET-plot in Figure 5.6.
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Figure 5.5: DET plots with and without znorm for subset V1H/V with all
combinations of parameters updated for 512 GMM terms.
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Figure 5.6: DET plots for the TI GMM system and for the TD HMM system.
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5.5 Goats, Wolves and Lambs

In Section 2.6 it was mentioned that “goats”, “wolves” and “lambs”, while in
minority, tend to contribute to a majority of all errors. In this thesis report the
goats, wolves and lambs are defined as those clients/impostors who contribute
to 50 percent of all errors of the respective types. With this definition, the
largest possible value is 50 percent for goats, wolves and lambs respectively, in
which case no true speaker will expect any disadvantage and no impostor will
expect any advantage. The presence of these “animals” were examined for both
the HMM system and the GMM system by using the threshold that correspond
to a EER. For the GMM system 512 GMM terms was used and all Gaussian
parameters were updated. The result is shown in Table 5.3. A more detailed
analysis shows that there are 3 goats in the GMM system and 1 goat in the
HMM system. The “worst” goat is the same for both systems. Roughly half of
the male lambs and wolves are the same in both systems.

Table 5.3: Animals for different systems.

System Subset Goats (%) Wolves (%) Lambs (%)
HMM D1H/D4 2 14 18
GMM D1H/D4 7 19 23
GMM V1H/V 11 17 24



Chapter 6

Discussion and Conclusions

6.1 Evaluation Results

The most obvious result was that compromising on text dependence by using
digits rather than sentences greatly improves performance. This result was also
expected (discussed in Section 2.3). It was also found that higher order GMMs
seems to perform better than lower order GMMs if convergence is ensured.
Moreover, the best results were achieved by updating only means and variances
for 128 GMM terms. For 512 GMM terms, the best result was achieved by
updating all GMM parameters. This result holds for both the D1H/D4 subset
and the V1H/V subset. It seems that means contain most of the information of
the enrolled speaker’s voice and the combination of means and variances contain
even more information. This conclusion is different from Reynolds et al. [1] who
found that the best performance was achieved by only updating the means.
The explanation for this difference is unclear. The use of znorm didn’t improve
performance for the V1H/V subset. The explanation can be that znorm doesn’t
necessarily improve results if short test segments are used [17]. It was found
that a small subpopulation termed “goats”, “wolves” and “lambs” contributed
to a majority of all errors. The error counts of these subpopulations match the
result of Doddington et al. [23]. It was also found that there is no benefit from
combining the text dependent HMM system and the text independent GMM
system since there was a correlation between the “animals” in both systems.
An interesting result was that the text independent GMM system and the text
dependent HMM system had almost equal performance. The DET-plot (Figure
5.6) shows that the GMM system is slightly better if a low FR-rate is preferred,
but on the other hand, the HMM-system is better if the priority is low FA-
rate. Overall, the results are statistically significant but with some degree of
uncertainty due to the limited size of test data.

If larger UBMs are used, that are well balanced with guaranteed convergence,
even better performance may be expected.

6.2 Goals

The main goal of this project was to implement a text independent speaker ver-
ification module for GIVES using adapted GMM. This was accomplished and
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the system generally performed well compared to a text dependent HMM-based
system. However, the fast scoring component didn’t work together with some
other components of GIVES. Furthermore, the evaluation time was underesti-
mated so the project was delayed with 4 weeks.

6.3 Improvements

Although the number of possible speaker verification techniques are numerous
and various methods are suitable for different tasks, some improvements are
suggested:

• More advanced channel normalization methods

• Detecting goats and lambs during enrollment [24] and take an appropriate
action

• Better initialization methods

• Alternatives to the EM-algorithm [28]

• Study various score normalization methods

• More advanced variance flooring [18]

• Introduce parameter, mixture and/or speaker dependent relevance factors

• Take advantage of higher order language information (a quite difficult
task)

It is unclear if all mentioned improvements actually give better performance,
but that is a question for future research.
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Appendix A

Numerical Properties

When implementing various algorithms, often numerical problems arises. In
the case of the GMM system, division by zero sometimes occur when ckt is
computed and sometimes the log-test value gives minus infinity as result. The
origin of this is the exponential term in N (xt|mk, rk). If exp(−x2) is evaluated
by a computer, then the result can be zero if x is large enough but this can’t
be allowed. The author solved this problem by a trick called “Gaussian vector
normalization” which principle is shown in Figure A.1. So, Ń (xt|mk, rk) is
computed instead:

Ń (xt|mk, rk) =
1

(2π)D/2|r−1
k |1/2

exp

(

−
1

2
(xt − mk)′rk(xt − mk) − βt

)

(A.1)

where

βt = max
k

(

−
1

2
(xt − mk)′rk(xt − mk)

)

(A.2)

Then the log-test ratio is

log(f(x|λ)) =
T
∑

t=1

(

log

(

K
∑

k=1

wkŃ (xt|mk, rk)

)

+ βt

)

(A.3)

Now the vector − 1
2 (xt − mk)′rk(xt − mk) can take any possible value allowed

by the computer hardware without any numerical problems if r−1
k is positive

definite. Using Ń for ckt, calculation is straight forward

ckt =
wkŃ (xt|θk)

∑K
l=1 wlŃ (xt|θl)

(A.4)

Figure A.1: Principle of Gaussian vector normalization for a 3 dimensional
vector.
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where βt is computed for the denominator. This is not optimal because the
numerator could be zero. It will ensure that the denominator is larger then zero
(if all wk > 0) and this is the most important issue. However, the exponential
term in the numerator could overrun the computers internal representation if
−βt is very large. This can happen if a very small training set is used on a large
number of mixtures, but it is not likely.

Note that the numerical values of ckt and the modified log-test won’t differ
if Ń (xt|mk, rk) is used instead of N (xt|mk, rk). Furthermore, variance flooring
was applied to ensure that r−1

k is always positive definite. A simple flat floor is
used which means that the elements of r−1

k are not allowed to be smaller than
a preassigned value εr. In this system εr is set to 0.001.



Appendix B

Maximum A Posteriori

Estimates for Gaussian

Mixture Models

B.1 An overview of MAP Estimates for Gaus-

sian Mixture Models

The most important ideas of MAP Estimates for GMM, presented by Gauvain
and Lee [4, 6, 7], summarized and extended by Hou, Chan and Lee [10], are
described here.

Remember the GMM joint p.d.f.

f(x|λ) =

T
∏

t=1

K
∑

k=1

wkN (xt|mk, rk) (B.1)

λ = (w1, . . . , wK , θ1, . . . , θK) θ = (m1, . . . ,mK , r1, . . . , rK)

where

N (x|mk, rk) ∝ |rk|
1/2 exp

[

−
1

2
(x − mk)trk(x − mk)

]

(B.2)

The MAP estimate is defined as

λ∗

MAP = argmax
λ

f(λ|x) = argmax
λ

f(x|λ)g(λ)

where g(λ) is the prior p.d.f.
Finding g(.) is not a trivial problem, mostly due to that the dimension of x

is fixed and therefore sufficient data for estimation of g(λ) is not available for
GMMs. However, if g(λ) is chosen carefully, then it can be shown [6] that the
EM algorithm can be applied and incomplete data is no longer a problem.

The GMM weights could be modeled as a Dirichlet density

g(w1, . . . , wK , ν1, . . . , νK) ∝
K
∏

k=1

wνk−1
k (B.3)
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where νk > 0 are the density parameters.
If full covariance matrices are assumed, then the Gaussian parameters (mk, rk)

are modeled as a normal-Wishart density

g(mk, rk|τk, µk, αk, uk) ∝

|rk|
(αk−p)/2 exp

[

−
τk

2
(mk − µk)trk(mk − µk)

]

exp

[

−
1

2
tr(ukrk)

]

(B.4)

where (τk, µk, αk, uk) are the prior density parameters such that αk > p−1, τk >
0, µk is a vector of dimension p, and uk is a p × p positive definite matrix.

In the diagonal covariance case, a normal-gamma density is assumed:

g(mk, rk|τkd, µkd, αkd, βkd) ∝

D
∏

d=1

r
αkd−1/2
kd exp

[

−
1

2
τkdrkd(mkd − µkd)

2

]

exp [−βkdrkd] (B.5)

where τkd, αkd, βkd > 0, d = 1, . . . D. Note that a normal-gamma density is just
a one-dimensional case of a normal-Wishart density.

Assuming independence between the parameters of the individual mixture
components and the set of mixture weights, the joint prior density is

g(λ) = g(w1, . . . , wk)

K
∏

k=1

g(mk, rk) (B.6)

Now the EM algorithm can be applied to MAP estimation. Define:

ckt =
wkN (xt|θk)

∑K
l=1 wlN (xt|θl)

(B.7)

ck =

T
∑

t=1

ckt (B.8)

Ek(x) =
1

ck

T
∑

t=1

cktxt (B.9)

Now the EM reestimation formulæs (for full covariances) are:

ŵk =
(νk − 1) + ck

∑K
k=1(νk − 1) + T

(B.10)

m̂k =
τkµk + ckEk(x)

τk + ck
(B.11)

r̂−1
k =

uk +
∑T

t=1 ckt(xt − m̂k)(xt − m̂k)t + τk(µk − m̂k)(µk − m̂k)t

(αk − p) + ck
(B.12)

B.2 Bayesian Adaptation

In this Section the Bayesian adaptation equations presented by Reynolds et al.
[1] are derived.
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The initial estimate may be chosen as the mode of the prior density [10]

mk = µk (B.13)

rk = (αk − p)u−1
k (B.14)

However, there is still a huge number of parameters that cannot be estimated
but just guessed. Therefore, some assumptions must be made to avoid over-
parametrization. If no prior information is available, it is possible to show [6]
that the following constraints on the prior parameters hold

νk = τk + 1 (B.15)

αk = τk + p (B.16)

These constraints leaves τk left. Now let τk = rρ for some parameter ρ. Equation
(B.10) and (B.15) gives the MAP estimate:

ŵk =
rw + ck

Krw + T
(B.17)

Define:
κρ

k =
ck

ck + rρ
(B.18)

Then equation (B.11) and (B.13) gives a MAP estimate:

m̂k =
τkmk + ckEk(x)

τk + ck
=

(

1 −
ck

τk + ck

)

mk +
ck

τk + ck
Ek(x)

=κm
k Ek(x) + (1 − κm

k )mk (B.19)

Observe that
κm

k Ek(x) = m̂k − (1 − κm
k )mk (B.20)

and define

Ek(x2) =
1

ck

T
∑

t=1

cktx
2
t (B.21)

If diagonal covariances are assumed, then equation (B.12), (B.14), (B.16) and
(B.18) gives

r̂−1
k =

τkr−1
k +

∑T
t=1 ckt(xt − m̂k)(xt − m̂k)t + τk(mk − m̂k)(mk − m̂k)t

τk + ck

=
ck

τk + ck

∑T
t=1 ckt(xt − m̂k)2

ck
+

(

1 −
ck

τk + ck

)

(

σ2
k + (mk − m̂k)2

)

=κv
k(Ek(x2) + m̂2

k − 2Ek(x)m̂k)+

(1 − κv
k)(σ2

k + m2
k + m̂2

k − 2mkm̂k)

=κv
kEk(x2) + (1 − κv

k)(σ2
k + m2

k) + m̂2
k−

− 2(κv
kEk(x)m̂k + (1 − κv

k)mkm̂k) (B.20) and κm
k = κv

k ⇒

=κv
kEk(x2) + (1 − κv

k)(σ2
k + m2

k) + m̂2
k

− 2(m̂k(m̂k − (1 − κm
k )mk) + (1 − κv

k)mkm̂k)

=κv
kEk(x2) + (1 − κv

k)(σ2
k + m2

k) − m̂2
k (B.22)

Note that the constraints (B.15) and (B.16) doesn’t affect equation (B.11).
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Appendix C

A List of Abbreviations

ANN Artificial Neural Networks
CMS Cepstral Mean Subtraction
DET plot Detection Error Trade-off plot
EER Equal Error Rate
EM Expectation Maximization
FA False Acceptance
FR False Rejection
GIVES General Identity VErification System
GMM Gaussian Mixture Models
HMM Hidden Markov Models
MAP Maximum A Posteriori
MFCC Mel-Frequency Cepstral Coefficients
ML Maximum Likelihood
TD Text Dependent
TI Text Independent
UBM Universal Background Model
VQ Vector Quantization
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