Statistical pattern matching: Outline

- Introduction
- Markov processes
- Hidden Markov Models
 - Basics
 - Applied to speech recognition
 - Training issues
- Pronunciation lexicon
- Large vocabulary speech recognition

ASR step-by-step: Acoustic match (2)

Statistical pattern recognition

- DTW is fine for small vocabulary or isolated word recognition
- Lacks the capability to model naturally occurring variations in continuous speech
- Variations in spoken language (acoustic and maybe also lexical) can be regarded as statistical fluctuations
- If we can find a suitable statistical model for speech production, it can also be applied to speech recognition
- Hidden Markov models (HMM) are the basis for current state-of-theart in speech recognition

(First order) Markov process

SAAAAAABBBBBBBBBCCCCBBBBBBCE

- Time discrete random process where state is directly associated with the output
- Next state is only dependent on current state and the transition probabilities
- Transition matrix defines the probability of state at next time instance given the current state
- Ergodic process means that any state is reachable in a single step from any other state
- Left-to-right topology suitable for the temporal structure of speech

Example: Weather

- Assume that the weather can be modeled as a 1st order Markov process, i.e.:
 - The weather today has a dependency on the weather yesterday, but is not dependent on the weather on any other previous day
 - P(weather today | weather history)=P(weather today | weather yesterday)
- Three types: Sunny (S), Rain (R), Cloudy (C)
- P(S|S)=2/6; P(R|S)=2/6; P(C|S)=2/6;
 P(S|R)=1/6; P(R|R)=3/6; P(C|R)=2/6;
 P(S|C)=3/6; P(R|C)=1/6; P(C|C)=2/6
- P(S)=2/6; P(C)=3/6; P(R)=1/6
- Probability of week with S;S;S;C;C;R given that the last day of previous week had rain:

```
P(R)P(S|R)P(S|S) P(S|S)
P(S|S)P(C|S)P(C|C)P(R|C)=
1/6*1/6*2/6*2/6*2/6*2/6*2/6*1/6=0.000152
```


Hidden Markov models

- In a Markov process, the observation is directly linked to the emitting state
- In a *hidden* Markov model, the observation is a probabilistic function of the state.
 - The HMM is a doubly stochastic process
 - Each state has an associated probability density of the emission symbols
 - If the process is in a given state, output symbols are emitted according to this probability density
- If we observe a sequence of symbols, the underlying state sequence is not known
- But we can estimate the most *likely* state sequence for an observed sequence of symbols, if the model parameters are known

Hidden Markov process

- Each urn contains colored balls
- Color distribution is different for each urn
- Movement of person drawing balls is not seen
- Estimate the movement based on the observed sequence of ball colors

HMM specification

- Number of states, N
- Initial probabilities, i.e. the probability of being in a state at time t=0
- Transition probabilities, {a_{ij}}, i,j=1,...,N
 - $a_{ij} = P(\text{state } j \text{ at } t=n+1 | \text{state } i \text{ at } t=n)$
 - Can be written as a NxN matrix
 - Observing the left-right temporal structure of speech, the matrix will be upper triangular (i.e. probability of going backwards is zero)
- Observation probabilities/densities, $\{b_i(\mathbf{x})\}$
 - $b_j(\mathbf{x}) = p(\mathbf{x} \mid \text{state } j)$

HMM assumptions

- Conditional independence assumption
 - The observation at time *t* is only dependent on the current state and is independent of previous observations
 - Known to be incorrect from theory of speech production
- The durations of each state is implicitly modeled from the self-transition probabilities
 - I.e. a geometric duration distribution
 - Does not fit known duration distribution
- The Markov assumption:
 - The state at time t is only dependent on the state at time t-1
 - $P(s_t | s_1^{t-1}) = P(s_t | s_{t-1})$
 - Second order models would alleviate some of the duration modeling deficiencies but are computationally very expensive
- In spite of this, they work!

HMMs for speech recognition

• The error rate will be minimized if the MAP criterion is employed:

$$M^* = \underset{M_j}{\operatorname{argmax}} p(M_j | X, \Theta)$$

 I.e. Select the model that has the highest probability of having generated the observations

• We can rewrite the above expression using Bayes' rule

$$M^{*} = \operatorname{argmax}_{M_{j}} p(M_{j}|X, \Theta)$$

= $\operatorname{argmax}_{M_{j}} p(X|M_{j}, \Theta_{A}) p(M_{j}|\Theta_{L})$
 M_{j}
Acoustic model Language model

HMMs for speech recognition (2)

- Observations are time discrete sequence of feature vectors
- A sentence model is composed of a sequence of states (normally constructed by concatenating subword/phone models)

The HMM problems

- Evaluation
 - Given a model and a sequence of observations, what is the probability that the model has generated the observations?
 - Sum of probabilities of all allowed paths through model
 - Efficient solution using "Forward" and "backward" algorithms
 - Similar to dynamic programming
- Decoding
 - Given a model and a sequence of observations, what is the most likely state sequence in the model that produces the observations?
 - Can be evaluated efficiently using dynamic programming the Viterbi algorithm

The HMM problems (2)

- Learning
 - Given a model an a set of observations, how can we adjust the model parameters to maximize likelihood (the probability of the observations for the given model)?
 - Two main solutions:
 - Baum-Welch algorithm
 - Guarantees that change in likelihood will be non-negative
 - Theoretically best solution
 - Efficient implementation using forward and backward algorithm
 - Viterbi training
 - Maximizes likelihood of best path, i.e. sub-optimal with respect to criterion
 - Efficient
 - Corresponds well to the recognition procedure

Recognition with acoustic models

- Evaluation of the likelihood is too costly
- Pragmatic choice:
 - Likelihood of best path dominates the likelihood score
 - Approximate likelihood with likelihood of best path
 - Can use Viterbi algorithm for recognition
 - Efficient implementation

$$M^* = \underset{M_j}{\operatorname{argmax}} p(X \mid M_j, \Theta_A) = \underset{M_j}{\operatorname{argmax}} \sum_{\substack{M_j \in Q = q_1, \dots, q_N \}}} p(X, Q \mid M_j, \Theta_A)$$

$$\approx \underset{M_j}{\operatorname{argmax}} \left\{ \underset{Q}{\operatorname{argmax}} p(X, Q \mid M_j, \Theta_A) \right\}$$

15

Observation probabilities

- In early HMM systems, observations were discrete (e.g. VQ indices)
- In order to avoid information loss, this was abandoned
 - **x** is a continuous multi-dimensional variable
- Efficient description of a multivariate probability density function
 - Parametric representation
 - Gaussian mulitvariate mixture density

$$b_j(\mathbf{x}) = \sum_{i=1}^{M} c_i \mathcal{N}(\mathbf{x}, \mathbf{m}_{ji}, \mathbf{C}_{ji})$$

ASR step-by-step: Acoustic match (2)

Basic unit for speech recognition

- Longer unit -> better modelling of coarticulatory effects
- Large units require extremely large amounts of training data
 - Coarticulation effects at unit boundaries
- Small units (e.g. phones) are attractive as they
 - Can describe the language with a small number of units
 - Are generalizable
 - Have a linguistic interpretation
 - but they do not capture context dependent effects
- Solution: Context dependent phone models
 - Train models for all phones in all possible context
 - Immediat left-right context -> "trigram" models

Training issues

- Context dependent phone models lead to an explosion in the number of models that need to be estimated
 - 50 phones -> 125.000 context dependent models
- Use of Gaussian mixture models contribute further to complexity
 - Typecal parameter vector: 13 MFCC + Δ and $\Delta\Delta$ -parameters; i.e. 39 dimensional vector
 - Each mixture component requires mean vector, (diagonal) covariance matrix and mixture weight, i.e. 79 parameters
- Example: independent models for all phone models, 3-state phone models using 16 mixture components per state, 39-d feature vector:
 - 125.000*3*79*16=474 million parameters
- Large number of parameters mean
 - Problematic to obtain sufficient amount of training data for reliable estimates (note that some sound combinations are very rare)
 - High cost in recognition

State tying

- Many contexts result in acoustically similar realizations
- Similar states should be able to share parameters and training material
- How to identify states with similar acoustic distributions?
 - Current wisdom: phonetic desicion trees
- Procedure:
 - Train a reasonably good set of context independent models
 - From these, generate an initial set of context dependent models
 - Use a phonetic decision tree to cluster states of contextual variants of the same "center" phone
 - Tie these states, i.e. make them share training data and parameters
- Result: Big reduction in number of parameters (several orders of magnitude), better trained parameters

Phonetic decision trees for state tying

- Assemble a list of phonetic questions (e.g. is left context a fricative, is right context a sonorant)
- Collect all models with the same center phone at the top node
- For all (unused) quesitons, evaluate the likelihood increase by splitting the models according to that question
- Select the split that provides the highest likelihood
- For each open node, repeat the splitting procedure until a threshold in improvement is reached, or there are no further nodes to split.

Pronunciation lexicon

- Sub-word units requires need for lexicon to describe the constituents of a word
- A lexicon will contain the vocabulary words and their assoicated phone strings, e.g.

READ	r iy d
READABLE	r iy d ah b ah l
READER	r iy d er
etc.	

- Canonic baseforms only or allow pronunciation variants
- During recognition, word models can be assembled by concatenating sub-word HMMS according to the lexical description

Pronunciation lexicon issues

- Standard pronunciation lexica correspond reasonably well to how speech is pronounced when reading with a normalized pronunciation
- Important issues are
 - What to do if a pronunciation lexicon does not exist for a language
 - Representation of dialects and accents
 - Anomalities in spontaneous speech
- If TTS engine exists in a language, a first approximation lexicon can be generated from the TTS front end
- Pronunciation modeling techniques are being pursued in order to
 - Improve general performance of ASR
 - Explain and model spontaneous and accented speech
 - I.e. model the systematic differences that exist on a lexical level (as opposed to acoustic variations due to voice characteristics or environmental noise)

Large vocabulary ASR

- When the vocabulary is large, the resulting state network grows to become unmanageable
- By restricting the search, big savings in computation and memory can be achieved
- Beam search is commonly used
 - Instead of keeping score of all competing paths, discard the paths that seem unlikely to become the ultimate winner
 - Keep only the best N paths
 - Keep only the paths with likelihoods within a given percentage of the current best path
 - Can risk that the "correct" path is discarded if beam width set too narrow
 - Other alternatives exist

Large vocabulary ASR (2)

- Two-pass recognition
 - Perform N-best recognition using fairly crude models
 - N-best: Output the N most likely word sequences instead of only the best
 - Can be structured as a word lattice
 - Do a second pass using your best models, restricted to search among the candidates produced in the first pass
 - Significant reduction in computational demands without significant loss in recgnition performance
 - Produces additional recognition delay
- Depth-first search
 - Explore most promising path(s) first
 - Asyncronous with input
 - Stack decoding, A^{*} search

Large vocabulary ASR (3)

- Increased accuracy in acoustic models
 - Cross-word "triphones"
 - Context dependent models normally limited to intra-word contexts
 - Build acoustic models also for contexts that only occur at word boundaries
 - Use context dependency also at word boundaries
 - Improves accuracy, but increases search complexity
 - Quinphones and beyond
 - Increase context dependency beyond the immediate neighbors
 - *N*-phones: context includes N/2 neighbors on each side
 - Triphone: *N*=3; Quinphone: *N*=5

Language modelling

- The importance of the language model increase with the size of the vocabulary
 - Large vocabulary generally implies more complex language structure
 - Perplexity, average branching factor
 - A good language model can
 - Improve recognition rate
 - Reduce search complexity

Grammar

- The grammar specifies
 - The vocabulary
 - Any restrictions on the syntax
- Defined as a finite state network
- Null grammar
 - No restrictions
- Word pair grammar
 - Define all allowable word combinations
- Adding weights to arcs lead to language model
 - Uniform weights: No LM
 - Simple weighted arcs: Unigram
 - Context dependent weights: N-gram

Statistical language model - N-gram

- N-gram LM describes the probability of word *N*-tuples
- Simplification of "real-world" language complexity $P(W_l | W_1^{l-1}) = P(W_l | W_1 W_2 ... W_{l-1}) \approx P(W_l | W_{l-N+1} W_{l-N+2} ... W_{l-1})$
- N=3 trigram language model; N=2 bigram language model
- Bigram example
 - Probability of a sequence of *S* words

Bigram, N = 2:
$$P(W_l | W_1^{l-1}) = P(W_l | W_{l-1})$$

$$P(W_1^{S}) = P(W_S | W_{S-1}) \cdot P(W_{S-1} | W_{S-2}) \cdot \dots \cdot P(W_2 | W_1) P(W_1)$$

= $P(W_1) \cdot \prod_{j=2}^{S} P(W_j | W_{j-1})$

N-gram language model (2)

- Power of model increses with N
- Complexity of decoding increase exponentially with N
- Data sparsity problem in training
 - Simple estimation by frequency counts
 - Trigram: $P(W_a|W_b, W_c) = Count(W_a, W_b, W_c)/Count(W_b, W_c)$
 - Uneven distribution of words in the language
 - Huge text databases required; hundres of millions of words
 - Even then, many quantities cannot be estimated
 - Need for methods to account for missing data
 - Discounting
 - Free part of probability mass for unseen events uniform probability assignment
 - Adjust observeable probabilities
 - Back-off
 - In N-gram does not exist, use N-1 gram
 - Keep going until a model exists

Last issue: The optimization criterion

- Training by maximizing the likelihood of the acoustic models
 - Models can be individually optimized
 - Does not ensure maximal discriminability
- Maximization of discrimination capability
 - Maximum mutual information (MMI)
- Minimum classification error
 - Optimization criterion: Minimize probability of error
 - Yields a more complex training procedure
- Corrective training
 - Adjust the models that make errors (and near errors)
 - Keep the rest unchanged

Current state-of-the-art (Soong&Juang, 2003)

Task	Vocabulary size	Mode	Word accuracy	Task	Vocabulary size	Perplex.	Word accuracy
Digits (0-9)	10	SI	~100%	Connected digits	10	10	~99%
Voice dialling	37	SD	100%	Naval resource management	991	<60	97%
Alphadigits+ Command words	39	SD/ <mark>SI</mark>	96%/ <mark>93%</mark>	Air travel information	1800	<25	97%
Air travel words	129	SD/ <mark>SI</mark>	99%/ <mark>97%</mark>	Business newspaper transcription	64.000	<140	94%
Japanese city names	200	SD	97%	Broadcast news transcription	64.000	<140	86%
Basic English words	1109	SD	96%				