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Statistical pattern matching: Outline

• Introduction
• Markov processes
• Hidden Markov Models

– Basics
– Applied to speech recognition
– Training issues

• Pronunciation lexicon
• Large vocabulary speech recognition
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ASR step-by-step: Acoustic match (2)
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Statistical pattern recognition

• DTW is fine for small vocabulary or isolated word recognition
• Lacks the capability to model naturally occurring variations in

continuous speech
• Variations in spoken language (acoustic and maybe also lexical) can

be regarded as statistical fluctuations
• If we can find a suitable statistical model for speech production, it can

also be applied to speech recognition

• Hidden Markov models (HMM) are the basis for current state-of-the-
art in speech recognition
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(First order) Markov process

• Time discrete random process where state is directly associated with the output

• Next state is only dependent on current state and the transition probabilities

• Transition matrix defines the probability of state at next time instance given the current state

• Ergodic process means that any state is reachable in a single step from any other state

• Left-to-right topology suitable for the temporal structure of speech

(from Ellis)
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Example: Weather

• Assume that the weather can be modeled as a
1st order Markov process, i.e.:

– The weather today has a dependency on the
weather yesterday, but is not dependent on the
weather on any other previous day

– P(weather today | weather history)=P(weather
today | weather yesterday)

• Three types: Sunny (S), Rain (R), Cloudy (C)
• P(S|S)=2/6; P(R|S)=2/6; P(C|S)=2/6;

P(S|R)=1/6; P(R|R)=3/6; P(C|R)=2/6;
P(S|C)=3/6; P(R|C)=1/6; P(C|C)=2/6

• P( S)=2/6; P(C)=3/6; P(R)=1/6
• Probability of week with S;S;S;S;C;C;R given

that the last day of previous week had rain:
P(R)P(S|R)P(S|S) P(S|S)

P(S|S)P(C|S)P(C|C)P(R|C)=
1/6*1/6*2/6*2/6*2/6*2/6*2/6*1/6=0.000152

S

R C
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Hidden Markov models

• In a Markov process, the observation is directly linked to the emitting
state

• In a hidden Markov model, the observation is a probabilistic function
of the state.
– The HMM is a doubly stochastic process
– Each state has an associated probability density of the emission symbols
– If the process is in a given state, output symbols are emitted according to

this probability density
• If we observe a sequence of symbols, the underlying state sequence is

not known
• But we can estimate the most likely state sequence for an observed

sequence of symbols, if the model parameters are known
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Hidden Markov process
• Each urn

contains colored
balls

• Color
distribution is
different for each
urn

• Movement of
person drawing
balls is not seen

• Estimate the
movement based
on the observed
sequence of ball
colors
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HMM specification

• Number of states, N
• Initial probabilities, i.e. the probability of being in a state at time t=0
• Transition probabilities, {aij}, i,j=1,...,N

– aij=P(state j at t=n+1 | state i at t=n)
– Can be written as a NxN matrix
– Observing the left-right temporal structure of speech, the matrix will be

upper triangular (i.e. probability of going backwards is zero)
• Observation probabilities/densities, {bj(x)}

– bj(x)=p(x | state j )
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HMM assumptions

• Conditional independence assumption
– The observation at time t is only dependent on the current state and is independent

of previous observations
– Known to be incorrect - from theory of speech production

• The durations of each state is implicitly modeled from the self-transition
probabilities

– I.e. - a geometric duration distribution
– Does not fit known duration distribution

• The Markov assumption:
– The state at time t is only dependent on the state at time t-1
– P(st | s1

t-1) = P(st | st-1)
– Second order models would alleviate some of the duration modeling deficiencies

but are computationally very expensive

• In spite of this, they work!
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HMMs for speech recognition

• The error rate will be minimized if the MAP criterion is employed:

– I.e. Select the model that has the highest probability of having generated
the observations

• We can rewrite the above expression using Bayes’ rule

Acoustic model Language model
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HMMs for speech recognition (2)

• Observations are time discrete sequence of feature vectors
• A sentence model is composed of a sequence of states (normally

constructed by concatenating subword/phone models)
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The HMM problems

• Evaluation
– Given a model and a sequence of observations, what is the probability

that the model has generated the observations?
– Sum of probabilities of all allowed paths through model
– Efficient solution using ”Forward” and ”backward” algorithms
– Similar to dynamic programming

• Decoding
– Given a model and a sequence of observations, what is the most likely

state sequence in the model that produces the observations?
– Can be evaluated efficiently using dynamic programming - the Viterbi

algorithm
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The HMM problems (2)

• Learning
– Given a model an a set of observations, how can we adjust the model parameters to

maximize likelihood (the probability of the observations for the given model)?
– Two main solutions:

• Baum-Welch algorithm
– Guarantees that change in likelihood will be non-negative
– Theoretically best solution
– Efficient implementation using forward and backward algorithm

• Viterbi training
– Maximizes likelihood of best path, i.e. sub-optimal with respect to criterion
– Efficient
– Corresponds well to the recognition procedure
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Recognition with acoustic models

• Evaluation of the likelihood is too costly
• Pragmatic choice:

– Likelihood of best path dominates the likelihood score
– Approximate likelihood with likelihood of best path
– Can use Viterbi algorithm for recognition
– Efficient implementation
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Observation probabilities

• In early HMM systems, observations were discrete (e.g. VQ indices)
• In order to avoid information loss, this was abandoned

– x is a continuous multi-dimensional variable
• Efficient description of a multivariate probability density function

– Parametric representation
– Gaussian mulitvariate mixture density
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ASR step-by-step: Acoustic match (2)
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Basic unit for speech recognition

• Longer unit -> better modelling of coarticulatory effects
• Large units require extremely large amounts of training data

– Coarticulation effects at unit boundaries
• Small units (e.g. phones) are attractive as they

– Can describe the language with a small number of units
– Are generalizable
– Have a linguistic interpretation

but they do not capture context dependent effects
• Solution: Context dependent phone models

– Train models for all phones in all possible context
• Immediat left-right context -> ”trigram” models
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Training issues

• Context dependent phone models lead to an explosion in the number of
models that need to be estimated

– 50 phones -> 125.000 context dependent models
• Use of Gaussian mixture models contribute further to complexity

–  Typecal parameter vector: 13 MFCC + Δ- and ΔΔ-parameters; i.e. 39 dimensional
vector

– Each mixture component requires mean vector, (diagonal) covariance matrix and
mixture weight, i.e. 79 parameters

• Example: independent models for all phone models, 3-state phone models
using 16 mixture components per state, 39-d feature vector:

– 125.000*3*79*16=474 million parameters
• Large number of parameters mean

– Problematic to obtain sufficient amount of training data for reliable estimates (note
that some sound combinations are very rare)

– High cost in recognition
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State tying

• Many contexts result in acoustically similar realizations
• Similar states should be able to share parameters and training material
• How to identify states with similar acoustic distributions?

– Current wisdom: phonetic desicion trees
• Procedure:

– Train a reasonably good set of context independent models
– From these, generate an initial set of context dependent models
– Use a phonetic decision tree to cluster states of contextual variants of the

same ”center” phone
– Tie these states, i.e. make them share training data and parameters

• Result: Big reduction in number of parameters (several orders of
magnitude), better trained parameters
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Phonetic decision trees for state tying

• Assemble a list of phonetic questions (e.g. is left context a fricative, is
right context a sonorant)

• Collect all models with the same center phone at the top node
• For all (unused) quesitons, evaluate the likelihood increase by

splitting the models according to that question
• Select the split that provides the highest likelihood
• For each open node, repeat the splitting procedure until a threshold in

improvement is reached, or there are no further nodes to split.
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Pronunciation lexicon

• Sub-word units requires need for lexicon to describe the constituents
of a word

• A lexicon will contain the vocabulary words and their assoicated
phone strings, e.g.

READ  r iy d
READABLE r iy d ah b ah l
READER r iy d er
etc.

• Canonic baseforms only or allow pronunciation variants
• During recognition, word models can be assembled by concatenating

sub-word HMMS according to the lexical description
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Pronunciation lexicon issues

• Standard pronunciation lexica correspond reasonably well to how speech is
pronounced when reading with a normalized pronunciation

• Important issues are
– What to do if a pronunciation lexicon does not exist for a language
– Representation of dialects and accents
– Anomalities in spontaneous speech

• If TTS engine exists in a language, a first approximation lexicon can be
generated from the TTS front end

• Pronunciation modeling techniques are being pursued in order to
– Improve general performance of ASR
– Explain and model spontaneous and accented speech
– I.e. model the systematic differences that exist on a lexical level (as opposed to

acoustic variations due to voice characteristics or environmental noise)
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Large vocabulary ASR

• When the vocabulary is large, the resulting state network grows to
become unmanageable

• By restricting the search, big savings in computation and  memory can
be achieved

• Beam search is commonly used
– Instead of keeping score of all competing paths, discard the paths that

seem unlikely to become the ultimate winner
• Keep only the best N paths
• Keep only the paths with likelihoods within a given percentage of the current

best path
– Can risk that the ”correct” path is discarded if beam width set too narrow
– Other alternatives exist
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Large vocabulary ASR (2)

• Two-pass recognition
– Perform N-best recognition using fairly crude models

• N-best: Output the N most likely word sequences instead of only the best
• Can be structured as a word lattice

– Do a second pass using your best models, restricted to search among the
candidates produced in the first pass

– Significant reduction in computational demands without significant loss
in recgnition performance

– Produces additional recognition delay
• Depth-first search

– Explore most promising path(s) first
– Asyncronous with input
– Stack decoding, A* search
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Large vocabulary ASR (3)

• Increased accuracy in acoustic models
– Cross-word ”triphones”

• Context dependent models normally limited to intra-word contexts
• Build acoustic models also for contexts that only occur at word boundaries
• Use context dependency also at word boundaries
• Improves accuracy, but increases search complexity

– Quinphones and beyond
• Increase context dependency beyond the immediate neighbors
• N-phones: context includes N/2 neighbors on each side

– Triphone: N=3; Quinphone: N=5

t r ay f ou n s

N=3

N=5
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Language modelling

• The importance of the language model increase with the size of the
vocabulary
– Large vocabulary generally implies more complex language structure
– Perplexity, average branching factor
– A good language model can

• Improve recognition rate
• Reduce search complexity
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Grammar

• The grammar specifies
– The vocabulary
– Any restrictions on the syntax

• Defined as a finite state network
• Null grammar

– No restrictions
• Word pair grammar

– Define all allowable word combinations
• Adding weights to arcs lead to language

model
– Uniform weights: No LM
– Simple weighted arcs: Unigram
– Context dependent weights: N-gram
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Statistical language model - N-gram

• N-gram LM describes the probability of word N-tuples
• Simplification of ”real-world” language complexity

• N=3 - trigram language model; N=2 - bigram language model
• Bigram example

– Probability of a sequence of S words
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N-gram language model (2)

• Power of model increses with N
• Complexity of decoding increase exponentially with N
• Data sparsity problem in training

– Simple estimation by frequency counts
• Trigram: P(Wa|Wb,Wc)=Count(Wa,Wb,Wc)/Count(Wb,Wc)

– Uneven distribution of words in the language
• Huge text databases required; hundres of millions of words
• Even then, many quantities cannot be estimated

– Need for methods to account for missing data
• Discounting

– Free part of probability mass for unseen events - uniform probability assignment
– Adjust observeable probabilities

• Back-off
– In N-gram does not exist, use N-1 gram
– Keep going until a model exists
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Last issue: The optimization criterion

• Training by maximizing the likelihood of the acoustic models
– Models can be individually optimized
– Does not ensure maximal discriminability

• Maximization of discrimination capability
– Maximum mutual information (MMI)

• Minimum classification error
– Optimization criterion: Minimize probability of error
– Yields a more complex training procedure

• Corrective training
– Adjust the models that make errors (and near errors)
– Keep the rest unchanged



32

Current state-of-the-art (Soong&Juang, 2003)
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