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Statistical pattern recognition

e DTW is fine for small vocabulary or isolated word recognition

e Lacks the capability to model naturally occurring variations in
continuous speech

e Variations in spoken language (acoustic and maybe also lexical) can
be regarded as statistical fluctuations

e If we can find a suitable statistical model for speech production, it can
also be applied to speech recognition

e Hidden Markov models (HMM) are the basis for current state-of-the-
art in speech recognition




(First order) Markov process
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* Time discrete random process where state is directly associated with the output

* Next state is only dependent on current state and the transition probabilities

* Transition matrix defines the probability of state at next time instance given the current state
* Ergodic process means that any state is reachable in a single step from any other state

* Left-to-right topology suitable for the temporal structure of speech




Example: Weather

e Assume that the weather can be modeled as a
Ist order Markov process, i.e.:

— The weather today has a dependency on the
weather yesterday, but is not dependent on the
weather on any other previous day

— P(weather today | weather history)=P(weather
today | weather yesterday)

e Three types: Sunny (S), Rain (R), Cloudy (C)

e P(SIS)=2/6; P(RIS)=2/6; P(CIS)=2/6;
P(SIR)=1/6; P(RIR)=3/6; P(CIR)=2/6;
P(SIC)=3/6; P(RIC)=1/6; P(CIC)=2/6

e P(S)=2/6; P(C)=3/6; P(R)=1/6

* Probability of week with S;S;S;S;C;C;R given
that the last day of previous week had rain:

P(R)P(SIR)P(SIS) P(SIS)
P(SIS)P(CIS)P(CIC)P(RIC)=

1/6*%1/6*2/6%2/6*2/6*2/6*2/6%1/6=0.000152




Hidden Markov models

e In a Markov process, the observation is directly linked to the emitting
state

e In a hidden Markov model, the observation is a probabilistic function
of the state.
— The HMM is a doubly stochastic process
— Each state has an associated probability density of the emission symbols
— If the process is in a given state, output symbols are emitted according to
this probability density
e If we observe a sequence of symbols, the underlying state sequence is
not known

* But we can estimate the most likely state sequence for an observed
sequence of symbols, if the model parameters are known




Hidden Markov process

e FEach urn

contains colored
balls

e Color
distribution is
different for each
urn

e Movement of
person drawing
balls 1s not seen

e Estimate the
movement based
on the observed
sequence of ball
colors




Hidden Markov Models - HMM

b1(x) b2(x) b3(x)

Subword k-1 Subword k Subword k+1




HMM specification

e Number of states, N
» Initial probabilities, i.e. the probability of being in a state at time t=0
e Transition probabilities, {aij}, 1,)=1,...,.N

— aij=P(state jatt=n+1 | state i at t=n)

— Can be written as a NxN matrix

— Observing the left-right temporal structure of speech, the matrix will be
upper triangular (i.e. probability of going backwards is zero)

e Observation probabilities/densities, {bj(x)}
— bj(x)=p(x | state j )




HMM assumptions

Conditional independence assumption

— The observation at time ¢ is only dependent on the current state and is independent
of previous observations

— Known to be incorrect - from theory of speech production
e The durations of each state is implicitly modeled from the self-transition
probabilities
— le. - a geometric duration distribution
— Does not fit known duration distribution
e The Markov assumption:
— The state at time ¢ is only dependent on the state at time #-/
— P(s; s =P(s, I's. ;)
— Second order models would alleviate some of the duration modeling deficiencies
but are computationally very expensive

e In spite of this, they work!




HMMs for speech recognition

e The error rate will be minimized if the MAP criterion is employed:

®

M = argﬁlz}x p(Mj‘X, )

— Le. Select the model that has the highest probability of having generated
the observations

* We can rewrite the above expression using Bayes’ rule
-

M = arg]{/lllz}x p(Mj‘X, )
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HMMs for speech recognition (2)
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* Observations are time discrete sequence of feature vectors

e A sentence model is composed of a sequence of states (normally
constructed by concatenating subword/phone models)




The HMM problems

e Evaluation

Given a model and a sequence of observations, what is the probability
that the model has generated the observations?

Sum of probabilities of all allowed paths through model
Efficient solution using "Forward” and ”backward” algorithms

Similar to dynamic programming

* Decoding

Given a model and a sequence of observations, what is the most likely
state sequence in the model that produces the observations?

Can be evaluated efficiently using dynamic programming - the Viterbi
algorithm




The HMM problems (2)

 Learning

— Given a model an a set of observations, how can we adjust the model parameters to
maximize likelihood (the probability of the observations for the given model)?

— Two main solutions:

*  Baum-Welch algorithm
— Guarantees that change in likelithood will be non-negative
— Theoretically best solution
— Efficient implementation using forward and backward algorithm

* Viterbi training
— Maximizes likelihood of best path, i.e. sub-optimal with respect to criterion
— Efficient

— Corresponds well to the recognition procedure




Recognition with acoustic models

e Evaluation of the likelihood is too costly

e Pragmatic choice:
— Likelihood of best path dominates the likelihood score
— Approximate likelihood with likelihood of best path
— Can use Viterbi algorithm for recognition

— Efficient implementation

M" =argmax p(X | M ,,0,) = argmax Ep(X,Q M ,.0,)
M .

j M Y{0=q,.qy}

~ argmax{argmaX p(X,0l Mj’®A )}
. Q

M ;




Observation probabilities

In early HMM systems, observations were discrete (e.g. VQ indices)
 In order to avoid information loss, this was abandoned

— x is a continuous multi-dimensional variable
Efficient description of a multivariate probability density function

— Parametric representation
— Gaussian mulitvariate mixture density
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Basic unit for speech recognition

e Longer unit -> better modelling of coarticulatory effects

e Large units require extremely large amounts of training data
— Coarticulation effects at unit boundaries

e Small units (e.g. phones) are attractive as they
— Can describe the language with a small number of units
— Are generalizable

— Have a linguistic interpretation
but they do not capture context dependent effects
e Solution: Context dependent phone models

— Train models for all phones in all possible context

e Immediat left-right context -> "trigram” models




Training 1ssues

e Context dependent phone models lead to an explosion in the number of
models that need to be estimated

— 50 phones -> 125.000 context dependent models
e Use of Gaussian mixture models contribute further to complexity

— Typecal parameter vector: 13 MFCC + A- and AA-parameters; i.e. 39 dimensional
vector

— Each mixture component requires mean vector, (diagonal) covariance matrix and
mixture weight, i.e. 79 parameters

» Example: independent models for all phone models, 3-state phone models
using 16 mixture components per state, 39-d feature vector:
— 125.000*3*79*16=474 million parameters
e Large number of parameters mean

— Problematic to obtain sufficient amount of training data for reliable estimates (note
that some sound combinations are very rare)

— High cost in recognition




State tying

e Many contexts result in acoustically similar realizations

e Similar states should be able to share parameters and training material

 How to identify states with similar acoustic distributions?

Current wisdom: phonetic desicion trees

e Procedure:

Train a reasonably good set of context independent models
From these, generate an initial set of context dependent models

Use a phonetic decision tree to cluster states of contextual variants of the
same ’center’” phone

Tie these states, 1.e. make them share training data and parameters

e Result: Big reduction in number of parameters (several orders of
magnitude), better trained parameters




Phonetic decision trees for state tying

 Assemble a list of phonetic questions (e.g. is left context a fricative, is
right context a sonorant)

e Collect all models with the same center phone at the top node

e For all (unused) quesitons, evaluate the likelihood increase by
splitting the models according to that question

e Select the split that provides the highest likelihood

e For each open node, repeat the splitting procedure until a threshold in
improvement is reached, or there are no further nodes to split.




Pronunciation lexicon

e Sub-word units requires need for lexicon to describe the constituents
of a word

* A lexicon will contain the vocabulary words and their assoicated
phone strings, e.g.

READ riyd
READABLE riydahbahl
READER riyder

etc.

e Canonic baseforms only or allow pronunciation variants

e During recognition, word models can be assembled by concatenating
sub-word HMMS according to the lexical description




Pronunciation lexicon issues

e Standard pronunciation lexica correspond reasonably well to how speech is
pronounced when reading with a normalized pronunciation
e Important issues are
— What to do if a pronunciation lexicon does not exist for a language
— Representation of dialects and accents
— Anomalities in spontaneous speech
 If TTS engine exists in a language, a first approximation lexicon can be
generated from the TTS front end
e Pronunciation modeling techniques are being pursued in order to
— Improve general performance of ASR
— Explain and model spontaneous and accented speech

— lLe. model the systematic differences that exist on a lexical level (as opposed to
acoustic variations due to voice characteristics or environmental noise)




Large vocabulary ASR

*  When the vocabulary is large, the resulting state network grows to
become unmanageable

e By restricting the search, big savings in computation and memory can
be achieved

e Beam search is commonly used

— Instead of keeping score of all competing paths, discard the paths that
seem unlikely to become the ultimate winner
* Keep only the best N paths

» Keep only the paths with likelihoods within a given percentage of the current
best path

— Can risk that the ’correct” path is discarded if beam width set too narrow
— Other alternatives exist




Large vocabulary ASR (2)

* Two-pass recognition

Perform N-best recognition using fairly crude models
* N-best: Output the N most likely word sequences instead of only the best
e (Can be structured as a word lattice

Do a second pass using your best models, restricted to search among the
candidates produced in the first pass

Significant reduction in computational demands without significant loss
in recgnition performance

Produces additional recognition delay

e Depth-first search

Explore most promising path(s) first
Asyncronous with input
Stack decoding, A" search




Large vocabulary ASR (3)

* Increased accuracy in acoustic models

— Cross-word triphones”™
e Context dependent models normally limited to intra-word contexts
* Build acoustic models also for contexts that only occur at word boundaries
* Use context dependency also at word boundaries
e Improves accuracy, but increases search complexity

— Quinphones and beyond
* Increase context dependency beyond the immediate neighbors

e N-phones: context includes N/2 neighbors on each side
— Triphone: N=3; Quinphone: N=5
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Language modelling

M’ =argmaxp(X |M ,,0,)  p(M,10,)

iy L

Acoustic model Language model

e The importance of the language model increase with the size of the
vocabulary

— Large vocabulary generally implies more complex language structure
— Perplexity, average branching factor
— A good language model can

* Improve recognition rate
e Reduce search complexity




Grammar

The grammar specifies

— The vocabulary

— Any restrictions on the syntax
e Defined as a finite state network
e Null grammar

— No restrictions

 Word pair grammar
— Define all allowable word combinations

* Adding weights to arcs lead to language
model
— Uniform weights: No LM
— Simple weighted arcs: Unigram
— Context dependent weights: N-gram




Statistical language model - N-gram

e N-gram LM describes the probability of word N-tuples
e Simplification of “real-world” language complexity

PW, W' Y=PW,IWW,.W,_)=PW,IW,_,.W,_....W_)

e N=3 - trigram language model; N=2 - bigram language model
e Bigram example
— Probability of a sequence of S words

Bigram,N=2:  P(W,IW/H)=P(W,IW,_)
PWH)=PW W, ) -PW W, ) ... P(W, IW)P(W,)

=Pw)-[[Pw, 1w )

j=2




N-gram language model (2)

Power of model increses with N
* Complexity of decoding increase exponentially with N

Data sparsity problem in training

— Simple estimation by frequency counts
e Trigram: P(W IW_,W )=Count(W_,W, W )/Count(W,,W )
— Uneven distribution of words in the language
* Huge text databases required; hundres of millions of words
* Even then, many quantities cannot be estimated
— Need for methods to account for missing data
* Discounting
— Free part of probability mass for unseen events - uniform probability assignment
— Adjust observeable probabilities
e Back-off
— In N-gram does not exist, use N-/ gram
— Keep going until a model exists




Last 1ssue: The optimization criterion

e Training by maximizing the likelihood of the acoustic models
— Models can be individually optimized
— Does not ensure maximal discriminability
e Maximization of discrimination capability
— Maximum mutual information (MMI)
 Minimum classification error
— Optimization criterion: Minimize probability of error
— Yields a more complex training procedure
e Corrective training
— Adjust the models that make errors (and near errors)

— Keep the rest unchanged




Current state-of-the-art (Soong&Juang, 2003)

Task Vocabulary | Mode | Word Task Vocabulary | Perplex. | Word
size accuracy size accuracy
Digits (0-9) 10 SI ~100% Connected 10 10 ~99%
digits
Voice dialling 37 SD 100% Naval 991 <60 97%
resource
management
Alphadigits+ 39 SD/SI 96%/93% | Air travel 1800 <25 97%
Command information
words
Air travel 129 SD/SI 99%/97% | Business 64.000 <140 94%
words newspaper
transcription
Japanese city 200 SD 97% Broadcast 64.000 <140 86%
names news
transcription
Basic English 1109 SD 96%

words




