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PREFACE 
      The aim of this compendium is to build an understanding for the acoustics of the guitar and 
the violin, and to explain how their different parts cooperate. This will be done with results 
obtained by research. I shall show what can be measured and what can be perceived by our ears. 
Further I shall hint at measuring procedures that the maker himself may develop. Finally I shall 
show how "standard" laboratory equipment can be used to measure characteristics of the violin 
and the guitar, which partly shall be used by the participants of this course. Much energy has 
been devoted to balance an informative presentation without too much complication. Hopefully 
this balance is appropriate for many readers. 
      The material presented is a combination of well known acoustical facts, late research on the 
acoustics of the violin and the guitar and results of the latest results of the ongoing research at 
KTH. The material has been collected by some 30 years of research and co-operation with a large 
number of persons and institutions. At my KTH-home, the Department of Speech, Music and 
Hearing, Prof. Johan Sundberg, Dr Anders Askenfelt, our first Dr of Music Acoustics Jesus 
Alonso, Prof. Gunnar Fant and his successor Prof. Björn Granström, all friends and colleagues 
have helped and inspired my work, and especially Mrs. Gudrun Weiner-Rispe who has plotted a 
large number of the figures. Much material has been collected at the Department of  Physics II, 
KTH and the Institute of Optical Research headed by Profs Erik Ingelstam and Klaus 
Biedermann together with my optical "colleagues" Drs Nils-Erik Molin and Leif Ek. Of the many 
makers I early came into contact with are Harry Sundin and Gunnar Mattson of the Stockholm 
Violin Maker's Club. Much work has been made in co-operation with Göran Levvin at AB 
Herman Carlsson Levin and Carlo and Birgit Hansen at Carlo Hansen Violinateljé AB. Lately 
much work has been made together with the Division of Experimental Mechanics at Luleå 
University of Technology and my early colleague Prof. Nils-Erik Molin, Prof. Lars Frydén and 
Benedykt Niewczyk, violin maker from Poznan Poland. Without all this help and co-operation, 
this information would never have been collected and summarised. In addition I would like to 
add two names: Prof. Arthur Benade and Dr Carleen Hutchins, who both have taught and 
inspired me a lot. Although much material is presented mainly from work by the author, it must 
be pointed out that there is much more collected by other persons. The manuscript has been read 
by Dr. Rodney Day which has resulted in considerable improvements, both presentation and 
language. I want to thank these persons and all other helpful persons not named. 
Misinterpretations and negligence to present important material by others is the fault of the 
author, who asks for forgiveness for his misbiased judgement.  
     The course is limited to acoustical fundamentals for the violin and the guitar. It is presented 
with little or no mathematics. Additional valuable information can be found in the CAS Journal 
(earlier called Newsletter). For readers with a more general interest in musical acoustics I 
recommend "The Science of Musical Sounds" by Johan Sundberg (Academic Press, Inc. 1991 ), 
which should be a good supplement to this course. Much information is collected by Dr Hutchins 
in Benchmark Papers in Acoustics (Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, 
vol. 5 1975, vol. 6 1976) and Research Papers in Violin Acoustics 1975-1993 (Acoustical Society 
of America through American Institute of Physics, 1996). The financial supports by above 
institutions, the Swedish Humanistic Science Research Council, Swedish Natural Research 
Council, Swedish Board for Technical Development, Carl Trygger Scientific Foundation, 
Wenner-Gren Scientific Foundation, and Swedish Institute are gratefully acknowledged. 
Stockholm 2002- Erik Jansson 
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The present compendium has been used teaching acoustics for violin and guitar makers by the 
author. The material contains in parts original information not generally known and therefore it 
has been translated into English and made public on the Internet. The written information can, 
however, be difficult to read for many makers. If questions, they can be directed to the author, 
erik@speech.kth.se, who hopefully can answer them. A simplified version may be put together after 
retirement, i.e. after 5 years if judged to be interesting. 
 
INTRODUCTION AND CONTENT 
FUNDAMENTALS OF ACOUSTICS: 
Chapter 1. SOUND AND HEARING 
First part: THE SOUND 
Second part: THE HEARING PROCESS 
 
Chapter 2. RESONANCE AND RESONATORS 
First part: RESONANCE 
Second part: RESONATORS 
 
Chapter 3. SOUND AND THE ROOM 
First part: FUNDAMENTAL ROOM ACOUSTICS 
Second part: THE SOUND IN THE ROOM 
 
 
APPLIED INSTRUMENT ACOUSTICS: 
Chapter 4. PROPERTIES OF THE VIOLIN AND THE GUITAR STRING 
First part: FUNDAMENTALS OF STRINGS 
Second part: PLAYED STRINGS AND SCALES 
 
Chapter 5. VIBRATION PROPERTIES OF THE WOOD AND TUNING OF VIOLIN PLATES 
First part: VIBRATION PROPERTIES OF THE WOOD 
Second part: TUNING OF THE TOP AND BACK PLATES OF THE VIOLIN 
 
Chapter 6. THE FUNCTION, TONE AND TONAL QUALITY OF THE GUITAR 
First part: THE FUNCTION OF THE GUITAR 
Second part: THE TONE AND TONAL QUALITY OF THE GUITAR 
 
Chapter 7. THE FUNCTION OF THE VIOLIN 
First part: PROPERTIES BUILT INTO THE VIOLIN 
Second part: INFLUENCE OF DIFFERENT PARTS 
 
Chapter 8. THE TONE AND TONAL QUALITY OF THE VIOLIN 
First part: FUNDAMENTALS OF THE VIOLIN TONE 
Second part: ACOUSTICAL QUALITY MEASURES  
 
Chapter 9. SOUND EXAMPLES AND SIMPLE EXPERIMENTAL MATERIAL. 
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ACOUSTICS FOR VIOLIN AND GUITAR MAKERS  
 
Chapter 1 – Fundamentals of acoustics 
SOUND AND HEARING 
 
 
Part 1: THE SOUND 
 
1.1. What is sound? 
 
1.2. Sound and spectrum 
 
1.2. Time history of the sound 
 
1.4. Summary 
 
1.5. Key words 
 
 
Part 2: THE HEARING PROCESS  
 
1.6. The ear and the hearing process 
 
1.7. Masking, critical bands, and roughness 
 
1.8 Timbre and spectrum 
 
1.9. Summary 
 
1.10. Key words 
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Chapter 1. 
FUNDAMENTALS OF ACOUSTICS - SOUND AND HEARING 
First part: THE SOUND 
 
INTRODUCTION 
In this first part of chapter 1 properties of sound will be presented. Fundamental measures such as 
frequency and level will be introduced. The measures will be developed into spectrum and time 
histories (oscillograms). Sounds as musical tones, single tones and noise will be described by 
their spectrum representation and by their time history representation. 
 
1.1. WHAT IS SOUND? 
Sound  is  quick  and  microscopically small variations  in  the  barometric air pressure.  The  
variations  are described by  two  fundamental  acoustical measures FREQUENCY and  LEVEL.  
FREQUENCY is related to the pitch,  i.e.,  a low  frequency  corresponds  to a low pitch and a 
high frequency to  a  high pitch.  LEVEL relates to loudness,  i.e.  a low level corresponds to a  
weak sound and a high level to a loud sound. 
 
A simple example can illustrate that air pressure variations are sound, see Fig.  1.1.  A 
loudspeaker emits sound. A loudspeaker placed with its opening directed upwards emits sound 
upward through the opening. A sheet of paper placed over  the  loudspeaker opening will vibrate 
and give a rattling  sound.  The loudspeaker membrane moves up and down,  which will result in 
the  following interaction with the paper sheet: 

                                                 
Figure 1.1. Cross-section of a loudspeaker box seen from the side, and stages 1  to  3  described  in  the text.  The 
arrows  mark  the  position  of  the loudspeaker  membrane  in  relation to its equilibrium and the  varying  air 
pressure (the sound pressure) acting on the paper sheet, respectively. 
 
1. At the equilibrium position of the loudspeaker membrane the air pressure is  the same below as 
above the paper and the paper sheet is not moving. 
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2.  When the loudspeaker membrane moves upwards, the air is compressed under the paper and 
the increased air pressure pushes the paper upwards. 
 
3.  When  the  membrane  moves towards its lowest  position  the  air pressure is lowered and the 
paper is pulled down towards the loudspeaker. 
 
The experiment is easily made and it shows that the vibrations of the  paper sheet (a rattling 
sound and sensations of tickling in a hand held over the loudspeaker) are related to sound.  When 
the loudspeaker emits strong sound the paper rattles strongly (strong hand tickling), and when the 
loudspeaker emits weak sound the paper rattles weakly (weak hand ticking). 
 
HOW LOUD IS THE SOUND – LEVEL? 
The  strength  of  the sound,  the sound pressure level is  measured  in  dB (decibel  
soundpressure level – mathematically the  level relative to a sound pressure of 0.00002 Pa).  To 
give a coarse feeling for sound pressure levels three extreme examples are given in Table 1.1 and 
to give a more detailed feeling, some sound pressure levels typically met in daily life are given in 
Table 1.2. The barometric sound pressure, well above the threshold of pain, can only be obtained 
theoretically (mathematically). 
 
Table 1.1. Sound pressure levels – minimum to maximum and  barometric pressure 
Faintest audible sound                     0 dB 
               Loudest (without pain)              120 dB 
               Barometric pressure (760 mm Hg)     194 dB 
 
Table 1.2. Sound pressure levels of  typical sounds  
               Threshold of pain   120 dB 
               Disco                              100 dB 
               Heavy traffic                       80 dB 
               Conversation                         60 dB 
               Library                               40 dB 
               Rustling of leaves                20 dB 
               Threshold of hearing                    0 dB 
 
PITCH OF THE SOUND -  OR  FREQUENCY? 
Frequency  is a measure of how often an event (in the time history) is repeated per  second  and  
the  unit  of measurement  is  Hz  (hertz).   Often  the  given  frequency  unit  is  kHz (kilohertz),  
which is 1000 Hz in the same way as 1000 gram is 1 kilogram. Thus 2 kHz and 2 000 Hz are the 
same. 

 
Example  1.1.  A metronome adjusted to 60 gives 60 beats  per  minute,  which equals  1  per  

second  and  the frequency is 1  Hz.  If  the  metronome  is readjusted to 120 it 
gives 120 beats per minute,  which equals 2 per  second and the frequency is 2 Hz. 

 
Example 1.2.  Sound is the vibration of air. If the membrane of a loudspeaker moves out and in 

20 times a second,  i.e., with the frequency 20 Hz, we can hear a very  low tone.  If 
the membrane moves in and out 440 times per  second,  we hear a tone of 440 Hz, 
i.e. the standard tuning A (A4). 
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The young, fresh human ear can hear sound approximately from 20 to 20 000 Hz, i.e., from 0.02 
to 20 kHz.  The frequency of the lowest note on the piano has a frequency of 27.5 Hz (A0 
nominal value) and its highest note is 4.186 kHz (C8 nominal value). 
 
1.2. SOUND AND SPECTRUM 
Let us look at pictures of the sounds.  What do the sounds  "look like"? Usually one draws the 
spectrogram of a musical note, shortly to be called the SPECTRUM.  The spectrum is an 
acoustical snapshot of the note.  The spectrum can be explained by means of Fig. 1.2.  
 
The horizontal scale - the frequency axis - of the spectrogram corresponds to the staves in the 
musical representation.  A specific tone has a specific staff such as the note A of 220 Hz.  In the 
spectrogram the tone is represented by a bar (a vertical line) at the frequency 220 Hz.  The 
strength of the tone, strong (musical ff) corresponds to a high bar and weak  (musical pp) 
corresponds to a low bar.  The level of the tone can be read at the (vertical) level scale in dB and 
its frequency at the (horizontal) frequency scale in Hz.  It has thus been shown that the frequency 
in Hz and level in dB can describe a TONE.  The TONE is an acoustical building stone of the 
sound we hear. 
 
Example 1.3.a) The time signal (at least in Sweden) contains a tone of the frequency 1000 Hz, 

i.e., 1 kHz.  The level of the tone can be adjusted by the volume control. 
b) The tuning forks with the standard tone give a tone with the frequency 440 Hz. 
The level is high in the beginning and decreases slowly. A stronger hit gives a 
higher level. 

 
Most musical tones do not have the simple representation shown so far.  They consist of several 
tones, c.f. Fig. 1.3. The musical tone A 220 Hz in Fig. 1.3 is placed two staves below the five 
permanent ones (in guitar notation 110 Hz, a transposition to one octave lower).  A more 
complete representation has been given on the staves to the left, i.e. a tone (the fundamental), a 
tone an octave higher (acoustically twice as high), a tone an octave plus a fifth higher (three 
times as high), a tone a double octave higher (four times as high), and a tone a double octave plus 
major third higher (five times as high).  The played notes of the melody instruments such as 
violin, clarinet and trumpet are made up by several single tones as sketched in Fig 1.3. 
 
The spectrogram of a real musical tone consists of several bars, c.f. Fig. 1.3.  The frequencies of 
the bars can be read at the horizontal scale.  The levels of the different tones, the heights of the 
bars, can be read at the vertical scale.  The different tones are called PARTIALS (harmonics) and 
the lowest partial is called the FUNDAMENTAL.  A little closer look reveals that the frequency 
of the second tone is twice that of the fundamental, the frequency of the third partial is three 
times that of the fundamental, etc.  The bars show the SPECTRUM of the musical tone.  The 
partials are numbered 1, 2, 3 etc. and the partial frequencies are 2,3 etc times that of the 
fundamental.  The frequency of the fundamental corresponds to the pitch and the levels of the 
partials correspond to the timbre.  The spectrum of a sound is measured with a spectroscope.  
 
The spectrogram of the musical tone in Fig 1.3 show five partials  (bars), which are placed at 
even distances. The partials are equally strong, i.e. of the same level, as the five bars have equal 
height.  
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Figure 1.2. Musical description and acoustical description of a tone. 
 
 

 
 
Figure 1.3.  Musical  description  of a real tone and acoustical description.  
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Figure  1.4.  Time histories (left) and spectra (right) for a) a simple tone (upper plots),  and b) a more real tone 
(lower plots) with four equally strong partials. 
 
Example 1.4.  A violinist plays the open A-string, i.e., a spectrum with the fundamental of 440 

Hz.  The second partial has the frequency 2 times the fundamental, i.e., 2 times 
440 equals 880 Hz. In the same way the third, fourth and  fifth partial frequencies 
can be calculated as 3,  4,  and 5 times  the fundamental frequency, respectively. 
The frequencies are 1320 Hz (1.32 kHz), 1760 Hz (1.76 kHz), and 2 200 Hz (2.2 
kHz), respectively. 

 
1.3. TIME HISTORY OF THE SOUND  
The simple tone with only one partial (= the fundamental) has a time history (oscillogram) and a 
spectrum corresponding to Fig.  1.4a.  The time history repeats itself after equal time intervals. A 
spectrum with four equally strong partials has a time history corresponding to Fig.  1.4b (the 
simplest case).  The time history repeats itself after equal time intervals here too.  The time 
history is considerably more complicated though than that of one partial. 
 
A played tone does not look the same all the time.  It may look as in Fig. 1.5.  This played tone 
has a beginning, an extended constant (more or less) part and an end.  The beginning is usually 
called the starting transient and corresponds musically to the attack.  The end of the tone is 
usually called the ending transient and corresponds to the decay of the string vibrations. The time 
history is measured with an oscilloscope. 
 
 
Example 1.5.  The motion of the tuning fork is very rapid but the tone of a tuning fork decays 

slowly, c.f. Fig. 1.6. It vibrates so rapidly but decays so slowly that it is not 
possible to plot in detail the sound pressure variations and the full ending 
transient. In the upper part of Fig. 1.6 the time history of the decaying motion has 
been drawn.  Below, parts of the time history has been enlarged considerably, i.e., 
the central part shows the detailed time history at three instants.  In the lower part 
of Fig.  1.6 the spectra  corresponding to the three instants have been plotted.  The 
figure shows that the tuning fork gives a simple tone at the different instants and a 
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single partial bar in the spectrum (c.f., Fig.  1.4a). The sound pressure decreases 
slowly and thus the level of the single partial decreases slowly. 

 

                                                        
 
Figure 1.5.  Time history of a tone in principle: A the starting transient, B the constant (more or less) part, and C the 
ending transient (the oscillations are generally to close to be drawn, and are marked here by the shade).  

 
 
Figure 1.6.  The full time history of the tone of a tuning forks  (an ending transient), detailed time histories and 
corresponding spectra. 
 
Example 1.6.  The pipe organ is an instrument, in which the starting transient is most important.  

It can be adjusted differently and can give different sounding qualities.  Two 
different starting transients of the same pipe are shown in Fig.  1.7.  The upper 
time history is somewhat more complex than the lower one.  In a detailed time 
history one can read that the second partial (the octave shown as the fine pattern 
shade) dominates during the earliest part (0.02 to 0.03 seconds): Thereafter the 
first partial (the fundamental, the coarse pattern shade) starts to dominate.  In the 
lower time history the first partial dominates the starting transient and just 
increases. 
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Figure 1.7. Time histories (shaded oscillograms) of starting transients of two pipe organ tones, the same pipe 
differently adjusted. In the upper frame the second partial dominates initially (dark area) the time history, in the 
lower frame the fundamental (the lowest partial) just grows (after Sundberg 1966). 

 
 
Figure 1.8. Time history (oscillogram) of a played violin tone. 
 
Usually technical people measure time in units of 0.001 seconds, which are called ms 
(milliseconds) compare m (meter) and mm (millimetres), 1 mm being 0.001 m). 
 
Example 1.7.  A musical instrument such as the violin results in still more complicated time 

histories, c.f., Fig.  1.8. The time history is changing all the time in a specific 
way and monitored by the skilled musician. If one listens to the early, the middle, 
and the late part of the tone  (by computer manipulations this can be done) one 
will hear that the loudness, timbre and also the pitch of the tone are different in 
the different parts. Timbre and pitch will be defined later in this chapter 
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Figure 1.9. Time history (left plots) and spectra (right plots) of a guitar tone immediately after attack, 0.2, and 0.4 
seconds later. 
 
Example 1.8.  The guitar string is plucked and is thereafter left to decay freely.  The time history 

of a guitar tone may look as in Fig.  1.9.   It is rather irregular at the attack, but 
shows clearly repetitive (periodic) time histories at the later two instants. The time 
histories are more similar to that of Fig. 1.4 b (four partials) than that of Fig. 1.4a 
(one partial only). The spectra corresponding to the different instants also show 
that the guitar tone is made up by several partials.  It shows 14 partials just after 
the attack, 9 after 0.2 seconds, and 7 after 0.4 seconds. The levels of the partials 
decrease differently.  The highfrequency partials decay faster than the 
lowfrequency ones.  Every partial can be thought of as produced by a tuning fork 
and the tuning forks of the different partials decay with different speeds.  The 
shown guitar tone could be produced by fourteen different tuning forks and not by 
one (the line between the partial peaks is called the spectrum envelope). 
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Figure 1.10.  Time history (left) and spectrum (right) of noise. 
 
 

 
 
Figure 1.11.  Time history and spectrum of an impulse. 
 
NOISE AND IMPULSE SOUND 
In the violin-making world and in modern technology two different kinds of test sounds are used, 
i.e. IMPULSE sound and NOISE sound. 
 
NOISE is technically a sound that has irregular variations with time. Noise has the property that 
it contains partials at all frequencies and on average of the same level. 
 
A noise thus contains partials at 100 Hz, 101 Hz, 102 Hz, etc. It has also partials between 100 Hz 
and 101 Hz, i.e. at 100.1 Hz, 100,2 Hz .... 100.8 Hz,  and  100.9  Hz.  But between these partials 
there are also partials  at 100,11  Hz,  100.12  Hz,  etc.  Between the latest partials there  are  also 
partials and so on. The noise is made up by a spectrum of infinitely densely packed  partials,  
which on average are of equal  strength  (technically called  white noise).  At any frequency there 
is a partial,  for instance at 100 Hz and 173.937 Hz. 
 
The time history for a noise sound may look as in Figure  1.10 ,  a completely irregular and 
wriggly curve.  The spectrum looks as in the right part of the figure.  The partials are so densely 
packed that single partials can not be seen and all partials are on the average equally strong. 
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Example 1.9. a) A  television set emits noise when the transmission is turned off after the end  of 
the last program. 

                         b) When a wooden surface is ground with sandpaper noise is obtained. 
 
An impulse is a single short sound (a spike) with a time history as shown  in Fig.  1.10b.  The 
impulse has partials of all frequencies (as the noise) but only at one instant. 
 
Example  1.10. a) When you hit a nail with a hammer, an impulse is obtained at the moment of 

the hammer impact. 
b) When you hit a violin top plate with you knuckle,  an impulse is obtained at 
the moment of impact. 

 
Violinmakers use these two kinds of sounds to test the properties of a free top plate for instance.  
By letting a finger slide along the top plate surface a noise sound is obtained.  Depending on the 
acoustical properties of the plate some partials of the noise are amplified.  The maker can hear a 
sound of certain pitch and timbre.  With some experimenting the maker can learn to use the 
procedure as a guiding test during the shaping process. 
 
The violinmaker can also use impulsive sound.  By tapping (knocking) the free top plate with a 
knuckle, an impulsive sound is injected  (the procedure is the same as hitting the tuning fork at a 
table edge).  The response of the plate to the injected impulse give the resonances of the plate  
(each corresponding to a tuning fork giving different pitch, level and time decay). Thereby the 
pitches, levels and decays of the resonance vibrations reflect the properties of the plate and can 
guide the maker towards a wanted result.  The maker cans optimise the tapping sound for specific 
purposes.  By hitting with a soft "club"  (the fingertip) the low resonances vibrations are favoured 
(longer duration of the impulse).  The impulse spectrum is also changed.  A softer club gives a 
spectrum with weaker partials at high frequencies. 
 
In tones from musical instruments there are also impulsive and noisy sounds, which can be 
important for the timbre. 
 
 
Example 1.11. a) When the violin bow is pulled over the string, a musical tone is generated, 

which also contains noise.  
b) Noise can be heard in the beginning of the irregular time history of the guitar 

tone, c.f., Fig. 1.9. When a left hand finger slides along a wrapped string, noise is 
generated. 

                     c) In wood wind instruments such as the clarinet, air turbulence causes noise in the 
same way as for a microphone outdoors in wind.  Hitting a key gives impulsive 
sound. 

 
1.4 SUMMARY: THE SOUND 
In this part I have shown what a played musical tone can look like.  It consists of very small and 
rapid variations in the atmospheric pressure. The variations are as a rule complicated.  The time 
history of the tone varies with timbre. In addition the played tones have a beginning and an end, 
i.e. a starting transient and an ending transient.  The spectrum of a tone shows an instantaneous 
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view of the tone at one particular time. The spectrum varies from one part to another of the same 
tone.    As a rule a spectrum representation is not typical for all tones of the played instrument. 
 
1.5 KEY WORDS: 
Frequency, Hz, kHz, level, dB, spectrum, partials, fundamental, time history, ms, starting 
transients, ending transients, noise, and impulse.
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Chapter 1. 
Second part: THE HEARING PROCESS 
 
INTRODUCTION 
In the second part of the first chapter the measured properties of sound will be connected to the 
perception by our hearing. First the function of our hearing organ is sketched, the sensitivity and 
the working range. Thereafter masking phenomena and the so-called critical bands of hearing are 
introduced. Finally timbre and spectrum of tones are discussed. 
 
 
1.6. THE EAR AND THE HEARING PROCESS 

 
 
 
Fig 1.12.  Sketch of the ear. 
 
The ear is a very complicated microphone with a built-in spectroscope, c.f., Fig. 1.12. The outer 
part of the ear or the pinna is the part we in everyday language call the ear. The pinna works as 
an antenna, picks up the sound, leads it via the auditory canal to the eardrum or tympanic 
membrane (corresponding to the microphone membrane).  The vibrations of the eardrum are 
coupled via three small bones, the ossicles, to the oval window of the cochlea, c.f. Fig. 1.13a. The 
vibrations of the oval window set the upper liquid filled part of the cochlea, scala vestibuli, 
vibrating. The vibrations of the liquid will in its turn make the basilar membrane vibrate. 
 
Muscles connected to the ossicles adjust the sensitivity of hearing, i.e. these work as an automatic 
volume control.  By adjusting the sensitivity, the hearing is protected against strong sounds. The 
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sensitivity adjustment takes, however, a short time during which the hearing is "unprotected".  
Therefore this adjustment can not protect our hearing against strong impulsive sounds, such as 
the firing of a gun.  For very high sound levels it is also insufficient and ear protectors must be 
used.  
 

 
 
 
 
Figure 1.13. a) Sketch of the function of the outer ear (upmost picture). The cochlea has the shape of a spiral with 2 
and 3/4 turns,  but has been drawn straight to give a clearer picture (after Hadding and Petersson). b) The 
displacement of the basilar membrane at different frequencies (frames below picture, after Denes and Pinson). 
 
 
The basilar membrane is the part where the mechanical vibrations are transformed into electrical 
nerve pulses, see Fig. 1.13a. For single tones the basilar membrane gives maximum 
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Figure 1.14. The working range of the hearing 
 
vibrations at special positions depending on  their frequencies.  Low-frequency tones give a 
maximum far away from the oval window and high frequency tones close to the oval window see 
Fig.  1.13b. At the basilar membrane there are vibration sensitive cells, so called hair cells.  It is 
the hair cells that react to the basil vibrations and transmit the nerve pulses.  If we put our hand 
close to a loudspeaker we feel tickles, which are registered by the brain.  If we put a part of our 
arm close to a loudspeaker it is received by the brain as tickling at a specific position of the arm.  
In a similar way the brain registers the positions of the basilar membrane vibrations.  Different 
frequencies correspond to different places, which makes the basilar membrane act as a 
spectroscope. 
 
 
THE HEARING PROCESS 
The ear works as a complicated microphone as has been shown.  The working range of hearing 
covers frequencies from 16 to 16 000 Hz (16 kHz), c.f., Fig. 1.14. This is a wide frequency range 
corresponding to  10  octaves  (visible  light  has  a much,  much wider  frequency  range,  from 
390 000 000 000 000 to 750 000 000 000 000 Hz but this is less than a one-octave range in 
musical language).  The dynamical working range of hearing is from -5 to 120 dB.  The lower 
limit where a tone is just noticeable is called the HEARING THRESHOLD.  The hearing 
threshold is different for different frequencies and is at the lowest at -5 dB at 2 kHz. The upper 
limit is called the PAIN THRESHOLD, because here the hearing sensation is changed into a 
sensation of pain (if a sound results in a pain sensation, stick a finger in each ear and leave the 
sounding area immediately). The threshold of pain is approximately at 120 dB. The maximal 
working range of level from -5 to +120 dB, i.e. close to 120 dB. A digital tape recorder is needed 
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to cover this range. The hearing threshold varies appreciably with frequency.  At 30 Hz the 
hearing threshold is at 60 dB.  Between 500 Hz and 5 000 Hz it is approximately at 0 dB.  For 
frequencies above 5 000 Hz the hearing threshold increases rapidly. The threshold of pain can be 
regarded as independent of frequency and constant at 120 dB. 
 
 

 
 
Figure 1.15. Levels of equal loudness (phone-curves) 
 
The loudness of a tone depends both on its frequency and its level.  Fig. 1.15 shows the level that 
a tone should have to give the same loudness at different frequencies.  Levels of equal loudness 
have been plotted starting from 0,  20,  40 etc. dB at 1 000 Hz. The figure shows, that for 
frequencies below 500 Hz a fairly loud sound is necessary to be heard  (the hearing threshold is 
at a fairly high level).  Above the hearing threshold the lines of equal loudness are closely 
spaced, i.e. our hearing is very sensitive to increased sound level at low frequencies.   The 
hearing threshold and the sensitivity decreases up to 500 Hz.   Between 500 Hz and 5 000 Hz the 
equal loudness lines are approximately horizontal and parallel, i.e. the hearing is equally sensitive 
in this range and corresponds to the volume control of an amplifier. 
 
The importance of the equal loudness lines can be evaluated in a different way.  At low sound 
levels the sensitivity of hearing is rather different at different frequency ranges, especially at low 
frequencies.  At higher sound levels these differences become less prominent, the equal loudness 
lines become more horizontal. Thus the hearing properties can be summarised in the following 
way. Different sound levels give different sound impressions. High sound levels favour the low 
frequency sounds (the bass sounds).  
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Figure 1.16.  Masked threshold of hearing from a) a simple tone of constant frequency but varying level and b) from 
a tone spectrum (from Sundberg) 
 
 
1.7. MASKING CRITICAL BANDS AND ROUGHNESS 
Different frequencies give different positions of maximum deflections of the basilar membrane  
(cf., Fig.  1.13b).  This fact explains two fundamental hearing phenomena, MASKING and 
ROUGHNESS. 
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The masking effect is that a sound may hide or mask, another, weaker sound. In the presence of a 
tone the hearing threshold (for an additional tone) is partially increased from the hearing 
threshold (in silence, the hearing threshold of one tone only).  This so-called masked hearing 
threshold is 10 dB below the level of the first tone for another tone close in frequency.  For 
frequencies below the masking tone, the hearing threshold soon reaches the threshold of hearing 
in silence, c.f., Fig. 1.16a. 
 
For frequencies above that of the first tone, the masked threshold is considerably higher than the 
hearing threshold in silence.  For a tone as marked with a bar at 0.4 kHz (400 Hz) it is easily seen 
that the masked threshold  (the full line leaning downwards to the right) lies considerably above 
the silence threshold up to 4 kHz.  Towards lower frequencies the masked threshold is only 
higher to 0.2 kHz (200 Hz).  The condition for a second tone to be noticed is that its level is 
above the masked threshold (it is not sufficient that its level is above the threshold in silence). 
The rule of thumb is that a loud tone masks (hides) a weak tones of higher frequency but not a 
weak tone of a lower frequency.  Thus in tests with tap and noise sounds, one should avoid 
exciting resonances of lower frequencies than the one of interest.  Resonances excited at 
frequencies above are less disturbing. 
 

 
 
Figure 1.17.  Analysis bands, so called critical bands of the hearing.  The width of the critical bands in relation to the 
frequency (from Sundberg). 
 
A played musical tone is not a single tone but a complete spectrum of partials.  Therefore the 
masked threshold for the played tone is fairly complicated to estimate.  Each partial will have its 
own masked threshold, c.f., Fig.  1.16b.  The complete, the effective masked threshold of the 
partial spectrum is the highest partial threshold within each frequency range.  Only the partials 
that reach above the effective masked threshold contribute to the hearing sensation of the partial 
spectrum.  From the masked partial spectrum in Fig. 1.16b one can see that only the first, second, 
third, eighth and ninth partials contribute to the hearing sensation - the other partials are masked. 
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CRITICAL BANDS AND ROUGHNESS 
The second phenomenon that can be related to the deflection curves for the basilar membrane in 
Fig. 1.12b, is the roughness of a sound. If two partials are close in frequency, the two partials 
cannot be heard as separate.  One can only hear them together, which gives the sound a sensation 
of roughness. The roughness sensation appears as the partials are closer spaced in frequency than 
a CRITICAL BAND of hearing.  The widths at the different frequencies for the critical bands are 
shown in Fig.  1.17.  For frequencies below 500 Hz the critical bands are 100 Hz wide but above 
they are 1/3 of an octave (approximately 25 %) wide. 
 

 
Figure 1.18. Spectra of single tones and the single tones added.          
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Figure 1.19. Tone spectra with four and six partials respectively - the first spectrum sounds smooth, the second 
sounds rough. 
 

 

 
Figure 1.20. Spectra of different vowels (only envelopes, c.f. Fig. 1.9 are drawn, from Fant) 
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Figure 1.21.  Spectrum for a spoken vowel (o in often.  dashed line) and sung (with full line, only envelopes drawn 
from Sundberg). 
 
A simple listening exercise can be prepared as shown in Fig.  1.18. The single partials 1 through 
4 give tones with little character and without roughness. If the partials are added  a "tone" is 
heard, still without much character. In the spectrum of the four partials added one can still 
separate each of the four partials. 
 
Example 1.19. What will happen if we add many partials, can all partials still be distinguished? A 

little consideration gives that when the critical bandwidth and the frequency 
separation between partials match, then it should be difficult to separate the 
partials and roughness will occur.  A few calculations show that the bandwidths 
and the partial separations for musical tones occur up to the fifth partial.  Thus we 
should expect that a played tone with four partials has no roughness but a played 
tones with six has some roughness.  A listening exercise as sketched by Fig. 1.19 
will confirm that with six partials a sense of roughness is obtained. 

 
The critical bands of hearing can thus explain the sensation of roughness.  Furthermore the 
musical dissonance can partly be explained by roughness phenomena.  
 
1.8 TIMBRE AND SPECTRUM 
The partials of a spectrum results in a character called timbre (often represented as spectrum 
envelopes).  We learn early to recognise differences in timbre of tonal sounds.  The vowels of 
speech are as a matter of fact tonal sounds of different timbre.  The timbre of a specific vowel is 
adjusted in an elegant way.  In the vowel in "word" the partial levels follows the full line (i.e. the 
envelope) in the upper frame of Fig.  1.20.  The same vowel is heard also if the fundamental 
frequency but not the envelope is changed.   In the vowel in "cat" the partial levels (the envelope) 
follow the dashed line.  In this case the vowel timbre is independent of the fundamental 
frequency too.  The spectral difference between the two vowels is that the frequency of the 
leftmost hump has been shifted.  By shifting the second leftmost hump the vowel "o" in shoot is 
shifted to the vowel "e” in three. 
 
The spectral humps are also used to give the sung vowels their timbre and character (not the 
fundamental frequency), c.f., Fig. 1.21. The male opera singer trains his voice to give strong 
partials in the range of maximum sensitivity of the hearing.  It gives his voice a more brilliant 
timbre and it comes through the orchestra accompaniment better.  This spectrum hump is 
generally called the singer's formant (a similar spectrum maxim is generally favourable for 
musical instruments). 
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As a rule of thumb it can be said that a strong first partial (the fundamental) is necessary for a full 
sounding timbre. Many and strong high partials give the timbre a more brilliant but also more 
rough character. 
 
In everyday speech noise and impulse sounds are also included. The fricative consonants such as 
s,  f and sh are filtered noise sounds.   Stop consonants such as k, p and t are impulse excited 
sounds.  The character of the fricatives and the stop sounds are formed by different adjustments 
of the speech organs.  The consonant sounds give different timbres and sometimes also a feeling 
of pitch - similar to the tap and noise sounds used by the violinmaker. It must be pointed out that 
the sketched ear function is far from complete. Only most fundamental function has been 
introduced. 
 
1.9.  SUMMARY: THE HEARING PROCESS 
In the preceding part some of the properties of the hearing process have been presented.  The 
working range of the hearing has been described. Examples on how we perceive sounds have 
been presented by using common speech sounds. Perception "units" such as pitch, loudness and 
masking have been introduced. 
 
The presented information on hearing could be used to predict well-known facts further, now not 
included. It is well known that playing louder, from mf to ff, is not only a turning up of the 
volume control, it corresponds mainly to an increase of the treble control. However, to show how 
this is done is outside the scope of the present compendium. 
 
1.10. KEY WORDS:   
Measurable units  - Frequency, level, spectrum, frequency and level of partials                  
Perception - units - Pitch, loudness, timbre, hearing threshold, masking, and roughness.  
 


