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FOREWORD 

In recent years some basic aspects of music 
listening have attracted psychologists' and engi- 
neerers' attention more than in the past. As a result, 
our understanding of the acoustic fundamentals of 
harmony and tonality has improved considerably. 
This new understanding is useful not only to com- 
posers of computer music, but also in a more gene- 
ral sense, as it explains some basic phenomena in 
traditional harmony. 

On April 5, 1986, the Music Acoustics 
Committee of the Royal Swedish Academy of Music 
arranged a public seminar on HARMONY AND 
TONALITY. As with the preceding ten public 
seminars arranged by this Committee it was held at 
the Royal Institute of Technology (KTH), 
Stockholm, and it attracted some hundred partici- 
pants from various places in Sweden and its Nordic 
neighbor countries. The aim was to present recent 
advances in this area. Three foreign speakers were 
invited: Carol Krumhansl, Max Mathews, and 
William Thompson. In the area of harmony and 
tonality Max Mathews is renowned for his pioneer- 
ing research in constructing and exploring the 
possibilities offered by a new scale, a project that he 
has carried out together with John Pierce and Linda 
Roberts. Carol Krumhansl, with various coauthors, 

has published a series of articles on her excellent 
experiments on perception and cognition of musical 
pitch and tonal function. William Thompson just 
finished his doctoral dissertation on the sensing of 
tonality in music listening; we were fortunate to 
receive him as a guest researcher at the Department 
of Speech Communication and Music Acoustics at 
the time of the seminar. In addition, I contributed a 
primer on intervals and harmonic spectra and a short 
note on a possibility to extend Krumhansl's work to 
music performance. 

Here these authors publish, in a popular form. 
what they presented at the seminar. As with the 
other ten volumes in this series of books on music 
acoustics published by the Committee in the series 
of publications issued by the Academy of Music the 
sound examples belonging to the articles are pub- 
lished on a phonogram record, the production of 
which was handled by Lennart Fahltn. The articles 
have been typeset by the authors themselves, by 
means of word processor machinery. 

KTH, december 1986 

Alf Gabrielson Johan Sundberg 
Members of the Music Acoustics Committe 





HARMONY AND HARMONIC SPECTRA 

J. Sundberg, Department of Speech Communication & Music 
Acoustics, KTH, Stockholm 

The articles in the present volume center around 
certain acoustic phenomena related to harmony, 
scales and the perception of tonality. Some readers 
might not be fully familiar with the basic concepts of 
tonality and hannony and this would hamper the 
reading of most of the subsequent articles or at least 
slow down the reading tempo beyond the limits of 
comfort in some of the following articles. The aim 
of the present article was to review, for all readers 
who feel they need it, the basic acoustic concepts 
that are relevant to tonality and harmony. 

A Harmonic Spectrum 
All traditional instruments except some per- 

cussion instruments generate tones with spectra that 
are called harmonic. This implies that the fre- 
quencies of the spectrum partials constitute a 
harmonic series. A harmonic series is the same thing 
as a multiplication table; for example: 

100, 200, 300, 400, 500, etc, or 
150, 300, 450, 600, 750, etc. 

If one uses a linear frequency scale in the spectrum, 
such partials are equidistant on the frequency axis, 
as shown in Figure 1. 

Actually, there are more harmonic things than the 
harmonic series of frequencies that characterize har- 
monic spectra. Harmonic partials constitute har- 
monic musical intervals, such as pure octave, fifth, 
and fourth; major and minor thirds and seconds. 
This is illustrated in Figure 1. We can see that the 
interval between the first and second partial in a 
harmonic spectrum is a pure octave, there is a fifth 
between the second and third, and a fourth between 
the third and fourth. We can see that the musical 
intervals between adjacent partials grow smaller and 
smaller, the higher up we go in the harmonic series, 
in spite of the fact that the frequency difference 
between these adjacent partials remains the same. 

We have seen that the frequencies of the partials 
form a harmonic series and that the partials form 
harmonic intervals. In other words, whatever the 
fundamental frequency F1 is, there will always be a 
fifth between the second and third partials, and these 
partials have the frequencies of 2*F1 and 3*F1. We 
are now in a good position to draw an important 
conclusion: a given musical interval always corre- 
sponds to one and the same frequency ratio. For 
instance, the frequency ratio of an octave is 2:1, that 
of a fifth is 2:3, that of a fourth is 4:3 and so on. 



EXAMPLE OF HARMONIC PARTIALS 

A: IN NOTATION 

PARTIAL NO 1 2 3 4 5 6 7 8 

INTERVAL 
OCTAV F IFTH FOURTH MA.THIRD MI.THIRD MI.THIRD MA.SEC 

FREQUENCY RATIO 
1/2 2/3 3/4 4 1 5  5/6 6/7 7/8 

FREQUENCY 

110 220 330 440 550 660 770 880 Hz 

B: AS A SPECTRUM 

FREQUENCY (LINEAR SCALE 1 

FREQUENCY (LOGARITHMIC SCALE) 

Fig. 1. The series of harmonic partials notated in different ways: on the note staff, on a linear 
frequency scale, as a series of frequencies, and along a logarithmic frequency scale. Note that a 
given interval, such as the octave, corresponds to a fixed distance along the logarithmic scale, just 
as on a piano keyboard, while a frequency difference such as 110 Hz, corresponds to a fixed distance 
along the linear frequency scale. Note also that the partials in the harmonic series constitute 
harmonic intervals that are well known in music. 



The frequency ratios of some intervals are given in 
the Table. 

Table.  Frequency r a t i o s  corresponding t o  
musical i n t e r v a l s .  

Musical i n t e r v a l  Frequency r a t i o  

Octave 
f i f t h  
f o u r t h  
major t h i r d  
minor t h i r d  
major second 8 :9  

It is important to note that these are the harmonic 
versions of these intervals; there are also other ver- 
sions, such as the equally-tempered versions and the 
Pythagorean versions. We will return to this in a 
moment. 

Summarizing, it is enough to know the fre- 
quency ratio of an interval in order to compute the 
frequency of a tone that forms this interval with 
another tone of known frequency. For instance, if 
we want to compute the frequency of the pitch D4 
lying a pure fourth below the pitch A4, we should 
multiply the frequency of pitch A4, or 440 Hz, with 
the frequency ratio of the fourth, or 314: 

We realize that by inverting the frequency ratio 
314 the direction of the interval is reversed, because 
obviously, we will then obtain a frequency higher 
than the reference frequency. Hence, 

The same applies to other intervals. Summarizing 
once again, by recalling the musical intervals be- 
tween the partials in a harmonic spectrum, one can 
compute what the frequency of a pitch is that forms 
a given harmonic interval with a reference tone of 
known frequency. 

On a linear frequency scale, a given frequency 
difference in Hz corresponds to a given distance 
along the scale. Therefore, the partials of a harmonic 
spectrum appear equidistantly spaced along a linear 

frequency scale, as we saw in Figure 1. If the 
frequency scale is logarithmic, on the other hand, a 
constant frequency ratio corresponds to a certain 
distance. Therefore, on a logarithmic frequency 
scale a musical interval corresponds to a certain 
distance. From this we conclude that the frequency 
scale represented by a piano keyboard is loga- 
rithmic, as a given interval always corresponds to a 
given distance (What a problem to play if this were 
not the case!). For instance, an octave is always 
17'3 cm wide, regardless of whether it corresponds 
to a frequency difference of 55 Hz, as between 
pitches A1 and A2, or 880 Hz, as between pitches 
A5 and A6. 

Two Harmonic Spectra 
Let us now imagine what happens when two 

tones with harmonic spectra sound which form a 
harmonic musical interval such as a fifth. If the 
lower tone has the fundamental frequency of 200 
Hz, the higher one will have the fundamental 
frequency of 200*3/2=300 Hz. The frequencies of 
the partials that will be sounding if these notes are 
sounding together are the following: 

We observe that some partials are common to 
these two spectra; every third partial in the lower 
tone's spectrum coincides with every second partial 
in the higher tone's spectrum. This can be put in a 
more general form also: if the fundamental have the 
frequency ratio m:n, m<n, every n:th partial of the 
lower tone coincides with every m:th partial of the 
higher tone. This is illustrated in Figure 2. 

Roughness arises from simultaneously sounding 
tones that are close along a critical band frequency 
scale. (When a tone reaches the ear, it causes maxi- 
mum vibration at a certain place along the basilar 
membrane, and when two tones sound, two places 
are vibrating. The critical band is a unit that roughly 
reflects this spacing of frequencies on the basilar 
membrane.) If two complex tones sound simul- 
taneously, a lot of partials close to each other on the 
critical band scale will sound and make the sound 
rough. However, if these tones have harmonic 
spectra and if their fundamental frequencies 



COMMON PARTIALS FOR PURE FIFTH 

PLAYER 1 
F0 = 300 Hz 

-I 
W 
> 
W 
-I 

1 1 1 ;  : PLAYER 2 

0 200 600 1000 1400 1800 2200 

FREQUENCY ( H z )  

Fig. 2. Illustration of the phenomenon of coinciding partials occurring when two Loncs sou~~tl 
simultaneously which have with harmonic spectra and which have fundamental frcquencics forming 
a ratio that can be expressed by small integers. In the case illustrated here, the PundalncnL,il 
frequency ratio can be expressed as 3:2; as the spectra are harmonic, every second partial in [he 
spectrum of the upper tone coincides with every third partial in the speclruln of the low Lone. 

constitute a simple ratio between small integers, 
several partials will coincide and this will reduce the 
roughness. If, on the other hand, the frequencies do 
not correspond to a ratio between small integers, 
these coinciding partials will not coincide so they 
will cause roughness. Therefore, we realize that a 
minimum in roughness will be reached as soon as 
the fundamental frequencies correspond to a ratio 
between small integers. Such minima in roughness 
correspond to consonant intervals. We imagine that 
the more numerous the coinciding panials, i. e. the 
lower the integers in the frequency ratio, the less 
roughness will be generated. We also imagine that 

roughness will increase as soon as a consonant 
interval is mistuned, because then the otherwise 
coinciding partials will start generating roughness. 

The Circle of Fifths 
The circle of fifths appears in many unexpected 

contexts, generously offering some kind of 
"explanation", or at least a relationship between 
various phenomena. These phenomena appear in 
melody and harmony in particular. From where the 
circle of fifths derives these almost magic properties 
is still an unanswered question. However, it may be 
relevant that two tones having harmonic spectra and 



EXAMPLE OF HARMONIC PARTIALS 

A: IN NOTATION 

,l - 
PARTIAL NO 1 2 3 4 5 6 7 8 

INTERVAL 
AUGNMURTH AUGM.FOURTH AUGM.FOURTH AU GM.FOURTH 

AUGM.FOURTH AUGM.FOURTH AUGM.FOURTH 

B: AS A SPECTRUM 

FREQUENCY (LINEAR SCALE) 

110 156 220 311 440 622 880 1 2 4 5 H z  

FREQUENCY (LOGARITHMIC SCALE 1 

Fig. 3. Example of an inhamonic spectrum, in which the neighboring pariials form iritonc 
intervals. The partials are then equidistantly spaced along the logari~hmic frequency scalc hut not so 
on a linear frequency scale. 



constituting a fifth share a maximum number of 
partials, if we except the octave. In other words, the 
fifth is the most consonant interval after the octave. 
Also, no other intervals, except the dissonant minor 
second, in our diatonic scale has the circular 
prbperty of returning to the starting point after 
having visited all twelve tones that we use in our 
tone system. This is certainly not much of an expla- 
nation why the circle of fifths seems so fundamental 
in both music theory and music perception, but a 
future explanation is likely to start from or at least 
include these facts. 

Temperament 
One problem with the Western tone system is 

that the twelfth fifth does not produce a pure octave 
of the starting tone, but rather a tone that is slightly 
higher in frequency. This discrepancy has annoyed 
music theorists and, perhaps to some extent, also 
performers. In the case of instruments with fixed 
fundamental frequencies, such as keyboard instru- 
ments, there is a need for a solution to this problem. 
Several solutions called temperament5 have been 
proposed over the last centuries. The simplest and 
probably also the most important one in Western 
music culture is called the eaua l l~  temuered scale. 
This solution is highly beautiful, as seen from the 
point of view of mathematics: it splits the octave 
interval in twelve equal parts. Bearing in mind that a 
musical interval corresponds to a frequency ratio, 
and that the frequency ratio for the octave is 2: 1, it 
can be realized that the frequencies of the tones in 
the equally tempered scale are computed by a 
repetitive multiplication by a factor equal to a twelfth 
of an octave, i. e. (2)1/2 : l. 

Inharmonic spectra 
In most traditional instruments harmonic spectra 

are generated. However, in today's computer music 

studio there is no need to confine oneself to this type 
of acoustic signals. Inharmonic spectra can also be 
explored. It is possible to construct spectra in 
which, for instance, all neighbor partials constitute a 
fixed interval, such as a third or, as in Figure 3, a 
tritone. In such cases, the traditional rules for 
predicting the degree of consonance of intervals 
must be revised. 

SOUND EXAMPLE 1 demonstrates this point. 
The dyad sequence tritone > minor sixth is played 
twice. First it is played with tones having normal 
harmonic spectra. In this case, the first dyad sounds 
dissonant while the second dyad sounds consonant. 
The second time the same intervals are played with 
tones having spectra in which each neighbor pair of 
partials forms a tritone interval. In this case, the first 
dyad is much more consonant than the second one. 
Thus, by changing the spectra we made a consonant 
interval sound dissonant and vice versa! Inspecting 
once more Figure 3 we realize the reason: in the 
tritone, all partials of the higher tone are coinciding 
with the partials of the lower tone, just as in the cast: 
of an octave played with harmonic spectra: the high 
number of coinciding partials creates a consonant 
dyad. In the case of the sixth, on the other hand, 
there will be few coinciding partials, and a good 
number of roughness-generating partials will 
appear. 

From the above we conclude that the selection of 
scale tone frequencies and the selection of the main 
harmonies might need revision when playing with 
tones having inharmonic rather than harmonic 
partials. Indeed, an entirely new harmonic - or 
perhaps inharmonic - world opens up with the 
possibilities offered by the computer music studio. It 
will certainly be easier to make an efficient use of all 
these new possibilities if one is aware of the recent 
advances in the fields of auditory perception and 
music psychology. 



TONAL AND HARMONIC HIERARCHIES 

Carol L. Krurnhansl. Cornell University, Ithaca, NY, USA 

Listening to music, we hear the sounded ele- 
ments not as disconnected units, but in relation to 
one another. The listener's experience goes beyond 
the simple registration by the sensory system of the 
acoustic events in isolation. Each event is heard in 
its temporal and pitch context, and is understood as 
it functions within that broader context. To under- 
stand the listener's response to music, it is necessary 
to specify which of the potentially available features 
of the music are realized by the listener, how they 
are processed and remembered, and how they 
co~tribute to the listener's appreciation of the overall 
plan of the piece of music. 

The listener's experience of a particular musical 
sequence is driven and constrained by the sounds 
registered by auditory mechanisms and processed by 
available mental resources. But, the construction of 
the music itself must take into account the listener's 
capacities for appreciating and remembering struc- 
tured auditory information. In other words, the way 
musical materials are formed must take into con- 
sideration the nature of the listener's perceptual and 
cognitive systems. This suggests, then, that there 
are two separate but strongly interdependent 
components of music psychology: the structured 
sound material of the music itself, and the listener's 

capacity for apprehending and remembering rela- 
tions that obtain among the temporal and pitch 
events. 

The experimental work I will summarize here 
was directed at the problem of characterizing the 
listener's knowledge of pitch structure, focusing on 
traditional Western tonal-harmonic music. The 
outline of the program of research is shown in the 
Figure l. Three different sets of musical elements 
are considered: tones, chords, and keys. The set of 
tones consists of the twelve tones of the chromatic 
scale, and in all cases equal-tempered tuning was 
used. The chords used in most experiments are 
triadic harmonies built on the diatonic scale tones. 
The set of keys consists of the twenty-four major 
and minor keys. 

These sets are restricted in various ways, but the 
small number of elements in each set makes it 
possible to exhaustively investigate the perceived 
relations between the elements. 

In the experiments I will describe, listeners made 
judgments about how closely related different 
elements are to one another. I have argued that 
relations between musical events are central to our 
experience. Different tones are heard as more or less 
related, depending on the context, as are different 



TONES CHORDS KEY S 

TONES 

CHORDS 

KEY S 

Figure 1. The experiments summarized here investigate the perceived degree of relatedness between 
elements in three sets: tones (twelve chromatic scale tones), chords (diatonic triads), and keys 
(twenty-four major and minor keys). 

harmonies. In addition, a musical key establishes a 
kind of hierarchy on the sets of tones and chords; 
that is, the tones and chords are heard as more or 
less closely related to the prevailing tonality. 
The research is directed at quantifying these 

perceptual relations. 

Tonal hierarchy 
For ease of presentation, I will describe first 

those results concerning the relations between tones, 
between tones and keys, and between different 
musical keys. The first experiment concerns the 

hierarchy that a musical key establishes on the set of 
twelve chromatic scale tones. 

Krumhansl and Shepard (1979) first measured 
this hierarchy using a method we called the probe 
tone technique, which was used in a later replication 
and extension by Krumhansl and Kessler (1982); I 
will describe the results of the later study here. 

Each mal of the experiment began with a musical 
unit, such as a scale, tonic mad chord, or a chord 
cadence, that unambiguously establishes a major or 
minor key. The key- defining context was followed 
by a single tone, called the probe tone, which was 



PROBE TONE 
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Figure 2. The probe tone ratings from Krumhansl and Kessler (1982) exhibit a hierarchy of 
stability or structural significance that major and minor keys establish on the set of chromatic scale 
tones. 
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one of the twelve tones of the chromatic scale. The 
listener's task was to rate on a seven point scale how 
well the final probe tone fit with with the key- 
defining context at the beginning of the trial. Sound 
Example 1 plays a number of trials in which the 
context is a C major scale; these are followed by a 
number of mals in which the context is a IV V I 
cadence in C minor. 

The listeners had on average about ten years ex- 
perience playing music, but little formal training in 
music theory. Listeners in other experiments had 
similar music backgrounds. The results are shown 
in Figure 2. The ratings are plotted as though the 
context key were C major or C minor. In fact, a 
number of different keys were used and the results 
were similar when shifted to a common tonic tone. 
The results were also similar whether the context 
key was established by a scale, tonic triad, or chord 
cadence. 

For both major and minor keys, the highest 
rating was given to the tonic tone, followed by the 
third and fifth degrees of the scale which, together 
with the tonic, form the tonic triad chord. Next 
highest ratings were given to the other tones of the 
diatonic scale, and lowest ratings were given to 
tones not in the scale. The pattern fits well with 
music-theoretic descriptions of the relative degree of 
structural significance or stability that different tones 
have in tonal contexts. And, there is good agreement 
with the "tonic charge" values of Sundberg, Frydtn, 
and Askenfelt (1983). 

Moreover, Kessler and I were able to derive 
from these data a very regular and interpretable map 
of musical keys. If two keys are closely related, we 
argued, they should impose similar hierarchies on 
the set of musical tones. In support of this, the hier- 
archies for C major and A minor were similar and, 
in contrast, the hierarchies for C major and F# major 
were dissimilar. The similarity was quantified as the 
correlation of the probe tone ratings for all possible 
pairs of keys. These correlations were then analyzed 
using multidimensional scaling. This produces a 
spatial configuration such that keys having similar 
tonal hierarchies are located close to one another in 
the space, and keys having dissimilar hierarch: les are 
far apart. 

This analysis produced a four-dimensional 
solution in which the points for the twenty-four 

major and minor keys fell on the surface of a toms. 
A toms can be depicted as a rectangle in two dimen- 
sions, where it is understood that opposite edges are 
identified. That is, the top and bottom edges are to 
be considered the same, as are the left and right 
edges. Presented in this way in Figure 3, the posi- 
tions of the twenty-four keys make sense musically. 
Each major key is flanked by its neighbors on the 
circle of fifths and its relative and parallel minor 
keys. Similarly, each minor key is flanked by its 
neighbors on the circle of fifths and its relative and 
parallel major keys. This analysis demonstrates that 
the information contained in the probe tone ratings is 
sufficiently rich to generate structure at the level of 
musical keys, and I will describe later how this 
spatial map of keys can be used to represent how the 
sense of keys develops and changes over times. 

The tonal hierarchy also affects the degree to 
which different tones are heard as related to one 
another. The experimental method (Krumhansl, 
1979) is a variant of the one just described; sample 
trials can be heard in Sound Example 2. Again, each 
trial began with a key-defining context (ascending or 
descending scale or tonic triad), which was followed 
by two tones now rather than one. The listeners 
were asked to rate how closely related the first of 
these tones is to the second in the key context. This 
produces a matrix of ratings for each possible pair of 
tones that can be analyzed by multidimensional 
scaling to produce a spatial representation. 

The results for a C major context are illustrated 
in a slightly idealized form at the bottom of Figure 4. 
The twelve tones of the chromatic scale are located 
on the surface of a cone. They are positioned so that 
going around the cone, the tones are ordered by 
pitch proximity as shown in the top of the figure. 
The vertical axis corresponds to the previously mea- 
sured tonal hierarchy. The tonic itself is at the vertex 
of the cone, the other closely related tones, G and E 
are relatively near the vertex, followed by the other 
tones of the diatonic scale, and finally the nondia- 
tonic tones which are judged as distant both from 
each other and the more structurally significant tones 
near the vertex. In addition, this study showed 
another effect of the tonal hierarchy, which cannot 
be represented in a geometric configuration such as 
that in Figure 4. There was a preference, in general, 
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Figure 3. The map of key distances derived from the Krumhansl and Kessler (1982) probe tone data 
placed the twenty-four keys on the surface of a toms, depicted here as a rectangle with opposite 
edges identified. 

for two-tone sequences ending on more stable tones 
over sequences ending on less stable tones. In other 
words, there were differences depending on the 
order in which the two tones were sounded., 

To summarize the results for tones and keys, the 
perceived relations between different tones can be 
represented by a conical surface generated by pitch 
proximity and the tonal hierarchy. The relations 
between tones and keys are characterized by the 
tonal hierarchy measured in the probe tone study. 
And, key distances are summarized by the toroidal 
configuration containing the circle of fifths and the 
relative and parallel major-minor key relations; this 
map was generated from the experimentally quanti- 
fied tonal hierarchy. 

In addition to the rating studies I have described, 
a number of studies using memory performance 
have been conducted (Krumhansl, 1979). These 

studies serve to confirm the basic results. The tonal 
hierarchy affects listeners' abilities to recognize 
tones in tonal contexts. Tones that are relatively 
stable in the system are better recognized than those 
that are unstable. And, listeners tend to confuse 
unstable tones with more stable tones rather than the 
reverse. So, there are a whole variety of psycho- 
logical effects reflecting tonal structure. 

The final point I would like to emphasize is that 
the patterns depend strongly on the context in which 
the tones are embedded. According to the Gestalt 
psychologist, Wertheimer (1924): "The flesh and 
blood of a tone depends from the start upon its role 
in the melody: a b as leading tone to c is something 
radically different from the b as tonic. It belongs to 
the flesh and blood of things given in experience, 
how, in what role, in what function they are in the 
whole." 



Figure 4. Multidimensional scaling of relatedness judgments of two-tone sequences in a C major 
context (Krumhansl, 1979) produced a circular dimension corresponding to pitch proximity and a 
vertical dimension corresponding to the tonal hierarchy. 
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Figure 5.  Theoretical values of consonance for intervals formed by each tone of the chromatic scale 
and a fixed reference tone (C) from Helmholtz (186311954) on left and Kameoka and Kuriyagawa 
(1969) on right; these are superimposed on the tonal hierarchies for C major (left) and C minor 
(right). 



A similar point is made by Meyer (1956, p. 34): 
"Thus it is pointless to ask what the intrinsic 
meaning of a single tone or series of tones is. Purely 
as physical existences they are meaningless. They 
become meaningful only in so far as they point to, 
indicate, or imply something beyond themselves ... 
Though the perception of a relationship can only 
arise as the result of some individual's mental 
behavior, the relationship itself is not located in the 
mind of the perceiver. The meanings observed are 
not subjective. Thus the relationships existing be- 
tween the tones themselves, ... though a product of 
cultural experience, they are real connections 
existing objectively in culture." What, then, are the 
objective musical correlates of the experimental 
results I have been describing? 

Let me approach this question by first consid- 
ering the possibility that the psychological effects of 
tonality are in some sense derived from the acoustic 
structure of tones. More specifically, is it the case 
that the tonal hierarchy corresponds to the dimension 
of psychoacoustic consonance, which is turn is pre- 
sumed to be related to the overtone structure of 
complex tones? 

To explore this possibility, Figure 5 shows on 
the left the values of consonance taken from 
Helmholtz's (186311954) treatise on music. The 
value plotted for each tone is that for the tone 
sounded simultaneously with a constant reference 
tone which is taken to be the tonic of the key. 
Superimposed are the tonal hierarchies for major 
(top) and for minor (bottom). The correlation for 
major, .63, shows some correspondence between 
the two sets of values, that is, consonant intervals 
are rated highly in the probe tone study. The 
correlation for minor, .43, is lower and not signifi- 
cant. On the right of Figure 5 is the same 
comparison with a more recent study (Kameoka & 
Kuriyagawa, 1969). Of the various treatments of 
consonance considered, this provided the best fit to 
the tonal hierarchy. Here, the correlations are 
reasonably high for both major and minor, .84 and 
.65 respectively, although some fairly large 
discrepancies can still be seen. It would seem, then, 
that psychoacoustic consonance may have some role 
in determining the perceived tonal hierarchy, but 
other factors are operating in addition. 

One possibility is that the tonal hierarchy reflects 
the way tones are used in music. Hughes (1977) 
tabulated the total duration of each tone of the 
chromatic scale in a short piano piece by Schubert, 
Moments Musicaux (Op.94, No.1). The total 
duration of each tone is plotted in Figure 6, together 
with the probe tone ratings for the predominant key 
of the piece, G major. As can be seen, the corre- 
spondence is almost perfect. Tones that receive high 
ratings in a G major context in our experiment are 
precisely those that are sounded for the longest total 
duration in this piece. 

The next question is: to what extent is this 
statistical distribution of tones typical of Western 
tonal- haxmonic music? Studies by Youngblood 
(1958) and Knopoff and Hutchinson (1983) tabled 
the frequency of occurrence of tones in a variety of 
vocal melodies, as shown'in Table 1. What I did 
was to correlate these distributions with the probe 
tone ratings for the appropriate major or minor key. 
The correlations were uniformly high, and all 
statistically significant. Thus, the distribution of 
tones matches closely the ratings from the probe 
tone experiment. 

What about the listeners' ratings of pairs of 
tones? Are these consistently related to the frequen- 
cy of two-tone combinations in music? Youngblood 
(1958) tabled the frequency of all possible pairs of 
successive tones in twenty songs by Schubert, 
Mendelssohn, and Schumann. This sample included 
a total of 1,972 pairs of tones. The frequencies 
correlated significantly, .67, with listeners' judg- 
ments of tone pairs in tonal contexts. So, again, we 
see a match between the experimental results and the 
statistics describing the use of tones in tonal- 
harmonic music. It seems likely that through ex- 
perience listeners have abstracted and internalized 
the patterns of tonal distributions, and these are 
reflected in our empirical studies. 

Finally, what are the objective correlates of the 
relations expressed in the toroidal representation of 
keys? Here, no statistical summaries were available, 
but it can be noted that Schoenberg's (195411969) 
maps of musical keys are contained in local regions 
of the toroidal configuration. Moreover, Daniel 
Weas (1983) recently developed a toroidal descrip- 
tion of key distances very similar to that derived 
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Figure 6. The total durations of each chromatic scale tone in Schubert's Moments Musicaux, Op. 
94, No. l ,  correlate strongly with the tonal hierarchy of the predominant key of the piece, G 
major. 

Table 1. Total frequency of occurrence of chromatic scale t o n e s  in 

vocal melodies (N = 24,852) 

Piece Correlation with Tonal Hierarchy 

Schubert Songs (Major) 

Schubert Songs (Minor) 

Mozart Arias 

Hasse Cantatas 

Strauss Lieder 

Mendelssohn Arias 

Schumann Songs 



from the probe tone ratings. His description is based 
in part on his theory of scale reference, but is also 
supported by the analysis of a large number of 
compositions. Changes between keys, both between 
and within movements, were precisely those that 
appear close together in the spatial configuration. 
These correspondences suggest that the psycho- 
logical measure of key distance has an objective 
correlate in compositional practice. 

To summarize these correlates of the experi- 
mental results, the perceived relations between tones 
are correlated with first-order statistics in a sampling 
of tonal music, that is, the relative probabilities of 
successive two-tone combinations. The tonal hier- 
archy is related to the zeroth-order statistics, that is, 
the frequency of occurrence of the chromatic scale 
tones. And, finally, the measure of key distance 
derived from the tonal hierarchy agrees well with 
key relations expressed in musical compositions. 
These correspondences suggest that knowledge of 
tonal practice evident in listeners' judgments is 

abstracted from their musical experience, and that 
through this experience they have internalized the 
regularities of the musical style. 

Harmonic hierarchy 
This section summarizes experimental results on 

perceived relations between chords and considers 
how the representation of harmonic structure fits 
with conceptions of interkey distance. Just as a key 
imposes a hierarchy on the set of tones, it also 
imposes a hierarchy on the set of harmonies. This 
hierarchy has been explored experimentally, using 
methods very similar to those described earlier. In 
one study (Krumhansl, Bharucha, & Kessler, 1982) 
pairs of triadic harmonies were presented, and 
listeners were asked to rate how perceptually related 
they are to one another. Some sample trials from 
this experiment can be heard in Sound Example 3. 

The results of this study are shown in Figure 7. 
Here, the chords are labeled by Roman numerals to 

Figure 7. The judgments of chord pairs from Krumhansl, Bharucha, and Kessler (1982) results in a 
central cluster of harmonically significant chords in the multidimensional scaling analysis (left) and 
a harmonic hierarchy in the hierarchical clustering analysis (right). 



indicate the position of their roots in the diatonic 
scale. Note that in the multidimensional scaling 
analysis of the data shown at the left there is a 
central cluster of the most harmonically significant 
chords, I, V, and IV. Around these are located 
chords with weaker harmonic functions. On the 
right, in a hierarchical clustering analysis of the 
same data, we see a hierarchy emerging, with the I 
joined first by the V chord, followed by the IV, VI, 
11,111, and VII chords. 

This hierarchy has, in a number of ways, been 
shown to be closely tied to key distance. Chords that 
play significant roles in closely related keys are 
found to be perceptually related (Krumhansl, 
Bharucha, & Kessler, 1982) and chords in distantly 
related keys are perceptually unrelated (Bharucha & 
Krumhansl, 1983; Krumhansl, Bharucha, & 
Castellano, 1982). Moreover, the different keys in 
which chords play harmonic functions are close 
together in the key map (Krumhansl & Kessler, 
1982). And, it is possible to derive from the 
harmonic hierarchy a measure of key distance that is 
virtually identical to that derived from the tonal 
hierarchy (Krumhansl, in preparation). Thus, it 
appears that in tonal-harmonic music, the two 
hierarchies converge on precisely the same de- 
scription of key relationships. 

Briefly, let me mention that these descriptions of 
harmonic structure are supported by a variety of 
other empirical studies using memory performance 
(Bharucha & Krumhansl, 1983; Krumhansl, 
Bharucha, & Castellano, 1982; Krumhansl & 

Castellano, 1983). Sequences of chords that con- 
form to harmonic conventions are better remembered 
than those that do not. Chords consistent with the 
tonal context are easier to recognize and are quite 
readily confused with one another, but rarely con- 
fused with a chord that is inconsistent with the tonal 
context. So, again, these studies converge on the 
structural descriptions obtained from the rating 
studies. 

Are there objective correlates of these experi- 
mental measures? Again, I will consider acoustic 
consonance first. Hutchinson and Knopoff (1979) 
tabled consonance values of all possible three-tone 
combinations in an octave range based on a model of 
consonance proposed by Plomp and Levelt (1965). 
This is Helmholtz's model modified to take critical 
bandwidth into account. Is it the case that the triads 
most commonly used are relatively consonant in the 
set of sixty- six possible triads? Table 2 shows the 
ranks for major, minor, diminished, and augmented 
chords in the set of sixty- six. For the first three 
kinds of chords, there are three consonance ranks 
depending on how the chord is voiced. As can be 
seen, these common triads are relatively consonant, 
with major and minor approximately equal and 
considerably more consonant than the diminished 
chord, as would be expected. However, the aug- 
mented chord is relatively consonant according to 
this model. These values do not correspond well to 
the experimentally measured harmonic hierarchy and 
deviate in certain ways from musical intuitions, 
suggesting acoustic consonance may be only one 
factor influencing the construction of tonal harmony. 

Table 2. Consonance of triads. (Hutchinson & Knopoff, 1974) 

Triad type Rank (out of 66) Average Rank 

Major 5, 9, 17 
Minor 7, 11, 14 
Diminished 16, 21, 25 

Augmented 12 



The harmonic hierarchy corresponds much more 
closely to the frequency of occurrence of chords in 
tonal-harmonic music. Budge (1943) analyzed 
representative 18th and 19th century compositions 
and tabled the frequency with which the diatonic 
triads occurred. All together there were nearly 
66,000 chords considered in this extensive analysis. 
For both major and minor keys, the psychological 
harmonic hierarchy correlated significantly with the 
frequency count; the correlation was .83 for both 
major and minor. This suggests the hierarchy is 
established in part through internalizing these 
statistical distributions which, incidentally, are quite 
stable over the period of music Budge analyzed. 

Psychological judgments of two chord se- 
quences also appear to be rooted in compositional 
practice. Piston's (1978, p. 21) table summarizes 
the usual chord progressions. He lists, for each 
chord, the chords that typically follow it with three 
levels of frequency: often, sometimes, and less 
often. These can be roughly quantified as three, 
two, and one, respectively, with zero assigned to a 
chord pair not appearing in the table. This can be 
treated as a rough measure of the frequency of two- 
chord sequences because, according to Meyer 
(1956, p. 54), "this is actually nothing more than a 
statement of the system of probability which we 
know as tonal harmony". The values resulting from 
quantifying the table in this way correlated 
significantly (.53) with listeners' judgments of the 
relatedness between successively sounded chords. 

To summarize these objective correlates of the 
experimental results, the ratings of pairs of chords 
correlated with Piston's table of usual root 
progressions (which reflects the probability of two- 
chord sequences). The harmonic hierarchy corre- 
lated with the zeroth-order statistics (that is, the 
frequency of occurrence of the chords). So, again, 
the psychological judgments, here about harmonies, 
appear to find strong correlates in the way these 
elements are used in tonal-harmonic music. 

The final cell of the experimental program 
concerns the relations between tones and chords. 
Here the question is whether the harmonic hierarchy 
can be accounted for in terms of the tonal hierarchy 
of its component tones. That is, does the structural 
significance of chords depend on the tones contained 
within it? To test this, I correlated the psychological 

harmonic hierarchy with the sum of the values of its 
tones in the tonal hierarchy. Although some 
relationship is apparent, for neither major nor minor 
keys was this correlation significant. Also, I 
correlated the relative frequency of chords and the 
frequency of the component tones in the various 
statistical counts I described earlier. Again, some 
relationship is apparent, but neither correlation is 
significant. Thus, it appears that the harmonic and 
tonal hierarchies operate somewhat independently, 
both subjectively and objectively. Recall, however, 
that both converge on the same description of key 
structure. This suggests that whatever corre- 
spondence is found between the two hierarchies it 
may be mediated through key structure. 

Tracing the developing and changing sense 
of key 

The final experiment I will describe concerns 
how the sense of key develops and changes over 
time. Kessler and I (Krumhansl & Kessler, 1982) 
used the probe tone technique to investigate this 
problem. We constructed ten different nine-chord 
sequences, some of which contained modulations 
between keys. For each sequence, the listener first 
heard just the very first chord, followed by all 
possible probe tones. This generated a profile for the 
sequence after the first chord. Then, the listener 
heard the first two chords, followed by all possible 
probe tones, generating a profile for the sequence 
after the first two chords. This process was 
continued until the sequence was complete. Sound 
Example 4 illustrates this technique with contexts 
consisting of one, two, and three chords. 

This method gives a way of evaluating the 
strength of each possible key after each chord of the 
sequence. More specifically, we correlated the probe 
tone ratings for each point through the sequence 
with the probe tone ratings for all twenty-four major 
and minor keys collected in the experiment described 
earlier (Krumhansl & Kessler, 1982). This gives a 
numerical value indicating how strongly each 
possible key interpretation is felt at each point in 
time. These values can then be used to generate a 
point on the key map, using a technique called 
multidimensional unfolding. The use of the spatial 
representation reflects a commitment to the notion 



SEQUENCE: C MAJOR 
7 f "  d bb -7 

Figure 8. Points representing the relative key strengths after each successive chord for thc sequence 
in C major (Krumhansl & Kessler, 1982) 

SEQUENCE : C MAJOR - G MAJOR 

Figure 9. Points obtained as in Figure 8 for the sequence modulating from C major to G major. 



SEQUENCE: C MAJOR - 8 ,  MAJOR - ff l  

Figure 10. Points obtained as in Figure 8 for the sequence modulating from C major to Bb major. 

SEQUENCE: C MINOR - C' MINOR 

Figure 11 .  Points obtained as in Figure 8 for the sequence modulating from C minor to C# minor. 



that both musically and psychologically tonality is 
best described with reference to key regions rather 
than in terms of a single major or minor key. 

I will show the results for just four sequences 
which can also be heard in Sound Example 4. The 
first sequence was written in C major. However, the 
tonic mad was not sounded until the fifth position. 
As can be seen in Figure 8, the points for this 
sequence moved quickly to the region around C 
major and remained there throughout. The second 
sequence was written to modulate from C major to 
G major. Here, as in all modulating sequences, a 
pivot,chord was contained in position five and a 
chord unique to the new key was contained in 
position six. Listeners easily assimilated this key 
shift, moving readily into the region around G major 
as shown in Figure 9. The next sequence contained 
a somewhat more distant modulation, between C 
major and Bb major. Figure 10 shows that the 
listeners exhibited a tendency to remain longer in the 
region of the original key and then shift rather 
suddenly to the region of the second key. The final 
sequence contains a very distant modulation, 
between C minor and C# minor. As can be seen in 
Figure 11, the trajectory reflects the large distance 
between keys and, in fact, travels the long way 
around the toms from one key to the other. 

Finally, I will describe a computer algorithm 
written by Mark Schmuckler and myself that can be 
applied to musical pieces to identify the initial key 
and trace modulations throughout. The algorithm is 
based on the idea that listeners may match the 
sounded tones within segments of a musical piece to 
their internal tonal hierarchies, with the best- 
matching major or minor key being the most likely 
key interpretation. Specifically, we took each 
segment and totalled the durations with which each 
tone of the chromatic scale is sounded using the 
notated durations. This gives a twelve-dimensional 
input vector of durations. This vector was then 
correlated with the probe tone rating profile for each 
of the twenty-four major and minor keys, producing 
a twenty-four dimensional output vector, showirig 
the degree of match between the input duration 
vector and each of the key profiles. The value for 
any key will be high to the extent that the disai- 
bution of tones in the musical segment matches the 
tonal hierarchy of the key. The results can then be 

used to find a point on the key map so as to reflect 
the relative strengths of the different keys. 

In the application I will describe here we used 
the entire Prelude in C minor Erom Book 11 of J. S. 
Bach's Well- tempered Clavier. We selected this 
prelude because it contains an interesting pattern of 
shifting tonal centers. To have a basis for evaluating 
the success of the algorithm, we asked two music 
theorists to independently give us a quantitative 
estimate of the relative key strengths in each measure 
of the piece. These values were then used to find a 
point on the torus map of keys that best represents 
the relative weights of the different keys. 

Figures 12 - 17 show the match between the 
experts' judgments (dashed lines) and those of our 
algorithm (solid line); the music can be heard in 
Sound Example 5. The first phrase of the prelude, 
measures one through four, corresponds to points in 
the region of C minor (Figure 12). The second 
phrase, measures five through nine, shows a shift to 
the Eb major region (Figure 13), where the points 
remain until the end of the next phrase in measure 
twelve (Figure 14). The next phrase, in measures 
thirteen through eighteen, contains a pattern of 
shifting tonal orientations moving from Eb major to 
the region around F minor (Figure 15). The follow- 
ing phrase, measures nineteen through twenty-two, 
remains in the F minor region (Figure 16), followed 
by a shift back to the original key of C minor in the 
final phrase in measures twenty-three through 
twenty- eight (Figure 17). 

In general, the key judgments of the experts 
agreed more with one another than with the algo- 
rithm, but the algorithm came quite close and 
indicated the same pattern of shifting tonal centers. 
Clearly, their key estimates are based on much more 
detailed and sophisticated criteria than our algorithm, 
which simply matches the durations of the tones to 
the tonal hierarchies. But it is interesting to see that a 
simple algorithm of this sort is as efficient and 
accurate as it is. Its success suggests that listeners 
could develop a sense of key by matching the 
sounded tones against their internalized tonal 
hierarchies and use this matching process to rapidly 
orient to the correct tonal center initially and track 
modulations as they occur. This provides a frame- 
work for encoding and remembering the sounded 
events, which allows the listener to generate 



MEASURES 1-4 

Figure 12. The points obtained from the experts' judgments of key strengths (dashed lines) and the 
model's analysis of tone duration$ (solid line) for measures one through four of the C minor 
prelude. Book 11. 

MEASURES 5 - 9  

Figure 13. The points obtained as in Figure 12 for measures five through nine. 



MEASURES 9 -12 

Figure 14. The points obtained as in Figure 12 for measures nine through twelve. 

MEASURES 13-18 

Figure 15. The points obtained as in Figure 12 for measures thirteen through eigtiteen. 



Figure 16. The points obtained as in Figure 12 for measures nineteen through twenty-two. 

M ASURES 23 - 28 

Figure 17. The points sbtained as in Figure 12 for measures twenty-three through twenty-eight. 



expectations for subsequent events and appreciate 
tensions and contrast of varying degrees. 
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identified: tones, chords, and keys. The experiments 
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GENERAL PROPERTIES OF MUSICAL PITCH SYSTEMS: 
Some Psychological Considerations 

Carol L. Krurnhansl, Cornell University, Ithaca, NY, USA 

In this paper, I would like to consider structural 
properties of musical pitch systems in somewhat 
more general terms than in the accompanying paper 
in this volume. The experiments summarized there 
all used stimulus materials based on traditional 
Western tonal-harmonic music. For example, they 
used diatonic scales, triadic harmonies, traditional 
chord progressions, and major and minor key 
contexts. These investigations demonstrated that 
listeners have a great deal of knowledge about 
conventional pitch structures. These may reflect 
psychological constraints from sensory and cogni- 
tive processes, as well as knowledge that results 
from applying various learning strategies to music in 
the tonal style. 

One of the most intriguing questions, however, 
is how novel pitch systems might be devised. This 
question is interesting from both a musical and a 
psychological point of view. Musically, it is a 
question of expanding available compositional re- 
sources. Psychologically, it is a question of ex- 
ploring the range of sound attributes that can be 
effectively encoded, organized, and remembered. 
The issue of how novel pitch systems might be 
constructed is particularly pertinent because the 

recent revolution in computer music technology has 
made possible the manipulation of every conceivably 
relevant dimension of musical sound. The basic 
premise is that, for a musical style or individual 
piece to work successfully as communication, the 
way the auditory materials are structured must fit or 
be compatible with the way listeners tend to process 
and store auditory information. And, the music. 
should be suited to the kinds of learning strategies or 
principles listeners bring to bear when presented 
with unfamiliar perceptual information. 

My approach will be to begin with traditional 
Western music and describe in more general terms 
the structural properties exhibited there. These 
generalizations may then serve to suggest, by 
analogy, other ways of constructing scales and 
chords. In each case, wherever possible, I will 
indicate the psychological considerations or experi- 
mental results that seem relevant. The rationale for 
this approach is simply to use tonal-harmonic struc- 
tures as a way of suggesting other possibilities -- but 
ones that seem consistent with what we have learned 
about music perception, and the kinds of descrip- 
tions that have proved useful in music theory for 
characterizing traditional pitch systems. 



Table 1. P r o p e r t i e s  of s c a l e  s t r u c t u r e .  

Small number of p i t c h e s  with well-defined i n t e r v a l s  
I n t e r v a l s  s e l e c t e d  w i t @  respec t  t o  overtone s t r u c t u r e  
Tonal framework e s t a b l i s h e d  by: 

Focal p i t c h e s  
Asymmetric p a t t e r n  of lavge and smal l  i n t e r v a l s  
D i s t i n c t i v e  i n t e r v a l s  

P a t t e r n  repeated a t  i n t e r v a l  throughout f requency range 
Generates r e l a t i o n s  between d i f f e r e n t  s c a l e s  

Pitch materials 

I begin with the observation that most listeners 
do not have absolute pitch. That is, memory for the 
absolute value of a pitch in isolation is quite poor. 
This means that relative pitch, the relations between 
pitches, is what is important for petception and 
memory. Moreover, the number of items along any 
continuous dimension that can be reliably remem- 
bered and labeled is limited to about seven items or 
so. These considerations suggest the first property 
in Table 1 -- that musical materials should be 
constructed from a relatively small number of 
discrete pitches with well- defined intervallic 
distances. A system with this property would seem 
best matched to the psychological system. Dowling 
(1978) has noted that, indeed, the scales used in 
most cultures seem to conform to this constraint. 

How might the selection of pitches be deter- 
mined? In Western music, a number of intervals 
including the octave, fifth, and major third are 
prominent, and the octave and the fifth, in particular, 
appear in many other musical cultures. As is well 
known, these intervals are formed by tones whose 
fundamental frequencies have simple numerical 
ratios. Therefore, they appear relatively early in the 
overtone series, and when two complex tones 
forming these intervals are played simultaneously, 
the result is a smooth, consonant sound. This 
suggests that one may wish to choose scale tones 
with respect to the overtone structure. If a number of 
consonant intervals are included this would allow 
contrasts with more dissonant intervals. 

It should be noted that the exact nature of the 
overtones can be manipulated. Most string and wind 
instruments have overtones that are integer multiples 
of the fundamental, but other relationships are 
possible, especially with computer generated tones. 
Mathews and Pierce (1980; see accompanying paper 
by Mathews) generated tones using a stretched 
octave and the partiais of each tone were similarly 
stretched. That is, the partials were such that their 
ratios with the fundamental were slightly larger than 
the normal ratios of 2, 3, 4, and so on, A short 
passage was written, and their listeners were quite 
accurate in judging the tonality of the passage. They 
did, however, judge that the final cadences produced 
with the stretched overtones sounded less final than 
analogous cadences using tones with normal 
harmonic overtones. 

A third property that may be desirable to 
incorporate into novel systems is establishing a tonal 
framework through various means. One way is to 
include one or more focal tones. Elsewhere in this 
volume, I described the probe tone method used to 
quantify the tonal hierarchy as applied to major and 
minor key contexts. The probe tone ratings were 
strongly correlated with the frequency of occurrence 
or durations of tones in a number of tonal 
compositions, suggesting that a piece of music may 
establish a central reference pitch or pitches through 
their explicit emphasis in the music. 

Castellano, Bharucha, and Krumhansl (1984) 
obtained evidence that listeners use this kind of 
information to abstract the appropriate tonal hier- 
archy with unfamiliar musical styles. That study 



used themes from North Indian rags and listeners 
who were either familiar or unfamiliar with the style. 
Both groups of listeners gave probe tone ratings 
consistent with music-theoretic descriptions of 
North Indian music. Moreover, the ratings corre- 
lated significantly with the relative durations of the 
tones in the musical contexts used in the experiment. 
So, it appears that even naive listeners can appreciate 
the style- appropriate tonal hierarchy, and use the 
explicit emphasis given the tones in the music to do 
SO. 

Of course, frequency of occurrence and 
relatively long durations are only two ways to 
establish focal pitches; these factors are emphasized 
here simply because they can be easily quantified 
and compared to empirical measures. Focal pitches 
may also be established by their position in the 
phrase, for example if they appear at the beginning 
and'end of rhythmic units, if they fall on strong 
beats, if they appear as the goal of an ascending or 
descending contour line, or if they are sounded in a 
prominent or distinctive timbre. In any case, if 
certain pitches are emphasized throughout a segment 
of music, they can serve as reference points in 
relation to which other pitches can be encoded and 
remembered. 

A second way in which a pitch reference system 
may be established is through the use of an 
asymmetric pattern of relatively large and small steps 
between adjacent scale tones. For example, the 
major diatonic scale consists of intervals in the 
following relative step sizes: large, large, small, 
large, large, large, small. In Indonesian music, the 
pelog scale has just the complementary pattern: 
small, small, large, small, small, small, large. These 
patterns may serve the purpose of helping the 
listener maintain a constant framework for encoding 
the sounded pitches or to help in "position finding", 
to use Richmond Browne's (1981) phrase. 

Other scales lack this property of having an 
asymmetric pattern of relatively large and small scale 
steps. For example, the slendro scale of Indonesia 
consists of five approximately equally spaced tones 
in an octave. That may, in part, account for the fact 
that in the cross-cultural study done by Kessler, 
Hansen, and Shepard (1984) both Western and 
Balinese listeners produced relatively flat and 
inconsistent probe tone ratings following the slendro 

context in their experiment. 
In a recent study, Krurnhansl and Schmuckler 

(1986) used the octatonic scale as context in a probe 
tone study. This scale consists of the symmetric 
pattern: whole tone, half tone, whole tone, half tone, 
whole tone, half tone, whole tone, half tone. 
Although there is an alternating pattern of large and 
small intervals, the pattern repeats four times per 
octave rather than one. This is why Messiaen (1944) 
called this a mode of limited transposition. Owing to 
this property, the pattern would seem less well- 
suited to defining a pitch reference system than one 
that repeats only once per octave. Indeed, the 
listeners in the experiment found it difficult to make 
consistent probe tone ratings following the octatonic 
scale context. The rating profiles obtained were 
relatively flat. Incidentally, the octatonic scale 
appeared to function perceptually somewhat like a 
dominant seventh chord; the probe tone ratings 
resembled the key whose dominant was the tone at 
the beginning and end of the octatonic scale context. 

If the scale contains an asymmetric pattern of 
intervals, then it will tend to contain a number of 
relatively rare intervals. Browne (198 1) noted that in 
the diatonic scale, for example, there are just two 
minor seconds, between the third and fourth scale 
degrees and between the seventh scale degree and 
the tonic. And, there is just one interval of a mtone, 
between the fourth and seventh scale degrees. These 
intervals, according to Browne, provide the listener 
with strong cues as to the diatonic set. In support of 
these observations, Butler and Brown (1984) 
demonstrated that Listeners made accurate key judg- 
ments when presented with just three tones if they 
included the unique tritone interval. Thus, these 
attributes -- focal tones emphasized by frequent 
sounding, longer durations and other means, 
asymmetric patterns of relatively large and small 
intervals, and distinctive or rare intervals -- would 
seem to promote the listener's maintaining a 
reference frame for encoding tones and their 
interrelations. 

The fourth property in Table 1 is that, whatever 
the pattern of scale steps, it repeats throughout the 
frequency range. Listeners have limits in the number 
of discrete pitch classes that can be remembered. So, 
if one is interested in using a wide frequency range, 
the number of musical pitches can be increased by 



repeating the scale pattern at various intervals 
throughout the range. Most musical cultures use the 
octave. Presumably this is because the octave 
appears as the first overtone in the harmonic series 
and, thus, is a natural choice for acoustic reasons. 
In addition, there are a variety of empirical results 
showing that tones separated at octave intervals are 
psychologically similar. These factors presumably 
facilitate the listener's coding of the octave equiva- 
lent tones in different pitch ranges in terms of the 
same underlying scale framework. The system 
described in the accompanying paper by Mathews 
(see also Roberts, Reeves, Mathews, & Pierce, 
1986) employs an alternative interval, the mtave, as 
the basic interval with respect to which the scale 
pattern is repeated. This mtave appears as the third 
partial in the normal harmonic series, and is equal to 
an octave and a fifth. 

The fifth and final property concerning scale 
structure is that it determines in a natural way 
relations between different scales. Consider for 
example the major diatonic scale. Raising the fourth 
scale degree by a half step generates the collection of 
scale tones of the next key around the circle of 
fifths. Repeating this process continues to produce 
scales around the circle until the initial key is 
returned to again. A variety of empirical dzta indicate 
that listeners are aware of the relations between 
different scales. Bartlett and Dowling (1980), and 
Cuddy and collaborators (Cuddy, Cohen, & Miller, 
1979; Cuddy & Lyons, 1981; Cuddy, Cohen, & 
Mewhort, 1981) have shown that key distance 
affects the recognition of transposed sequences. 
Thompson (1986; see also the paper in this volume 
summarizing some of his results) demonstrated that 
musically trained listeners can judge both direction 
and distance of modulations. Krumhansl & Kessler 
(1982) found it was possible to derive distances 
between keys from probe tone ratings, and that 
listeners assimilated modulations between closely 
related keys more easily than modulations between 
distant keys. 

There is a similar principle for generating the 
circle of thats representation of North Indian scales. 
In our cross-cultural study (Castellano, et al., 
1984), we found that the probe tone ratings, at least 
those for listeners familiar with North Indian music, 
could be used to recover the circle of thats. That is. 

scales that are theoretically similar had similar tonal 
hierarchies. The natural determination of scale 
distances is also exhibited by the Pierce scale (see 
Mathews, this volume; Roberts et al., 1986) and the 
scale of twenty microtones proposed by Balzano 
(1980; 1986). This and other aspects of the 
proposed scales will be described in greater detail 
below. 

At a general level, why might a system of related 
scales be a desirable feature? Again, I would suggest 
that it may have to do with cognitive limits in pitch 
coding. If one scale framework is predominant, and 
listeners know its close relationship to other scales, 
then this expands the resources available. It provides 
for the possibility of shifting smoothly to other 
scales and allows the expression of varying degrees 
of contrast and tension. 

To summarize so far, I have described attributes 
of musical scales that may make them well-matched 
to the psychological system for organizing and 
remembering pitch sequences. These properties are 
concerned primarily with the selection of scale 
pitches, not with their combination into melodic, 
rhythmic, and harmonic patterns. The formation of 
these patterns would seem to be governed primarily 
by aesthetic considerations, although some progress 
is being made on the representation of melodic and 
metrical structures with a view to psychological 
processes (see, for example, Sundberg & Lindblom, 
1976; Deutsch & Feroe, 1981; Lerdahl & 
Jackendoff, 1983). In the following section, I will 
offer a few suggestions based on empirical work 
concerning basic properties of harmonic systems. 

Harmonic materials 
Not all musical cultures emphasize vertical, that 

is, harmonic, relations to the extent that they are 
emphasized in traditional Western tonal music. 
However, this musical system has been shown to 
contain an extremely rich set of compositional 
possibilities, so it is natural to inquire what kinds of 
principles of organization are found in this style and 
why they work perceptually. The first property in 
Table 2 is that tones sounded simultaneously are 
chosen with respect to the effects they will have in 
terms of consonance versus dissonance. This is not 
to say that only consonant intervals should be 
employed, but that whatever choice is made there 



Table 2 .  P r o p e r t i e s  of harmonic s t r u c t u r e .  

Chord types  s e l e c t e d  with  respec t  t o  overtone s t r u c t u r e  
Small number of chord types  c o n s i s t e n t l y  mapped t o  s c a l e  degree  
Harmonic h ie ra rchy  
Chord tones  d i spersed  throughout range of s c a l e  
Generates r e l a t i o n s  between d i f f e r e n t  s c a l e s  

will be consequences for the listener owing to 
psychoacoustic consonance, and this derives largely 
from the harmonic structure of the tones, as 
discussed before. 

The second property is that there is a relatively 
small number of chord types employed, and a fairly 
consistent mapping between chord type and the 
degree of the scale on which the chord is built. In 
traditional music, one finds predominantly major, 
minor, and diminished mads and seventh chords as 
determined by the structure of the diatonic scale. 
There may be two psychological principles operating 
here. First, if chord construction is determined in 
some principled way by scale structure, then this 
further serves to maintain the tonal framework for 
encoding pitch information. Second, memory 
limitations may constrain the system to a relatively 
small set of chords whose distinctive functions can 
be appreciated and remembered. 

The third property is the establishment of a 
harmonic hierarchy. Through their explicit emphasis 
in the music, certain chords become reference points 
for perception and memory. This will be true 
especially to the extent that there is some corre- 
spondence between tonal and harmonic hierarchies. 
Chords built on tonally stable pitches, for example 
the tonic, would be natural candidates for harmonic 
reference points. Our perceptual studies, however, 
show some independence of the chord and single 
pitch hierarchies; the harmonic hierarchy is not well 
predicted from the tonal hierarchy of its component 
tones. This suggests that vertical and horizontal 
organizations may only loosely constrain one 
another. 

The second to last property concerns the way in 
which chord tones are selected from the set of scale 

pitches. In the diatonic scale, mads are formed from 
every other tone, in part because this results in 
relatively consonant intervals of fifths and thirds. 
However, it is interesting to note that choosing the 
chord tones in this way also disperses the tone 
throughout the scale range so that smooth voice- 
leading is possible. That is, when successive chords 
are sounded, it is possible to choose tones so that 
most voices do not jump more than a third or so. 
Proximity is a predominant factor in pitch 
perception, giving a sense of coherence between 
successive tones. So whatever tones comprise the 
scale, chord tones should be dispersed throughout 
the scale range to allow for smooth voice- leading. 

Finally, the harmonic structure should give rise 
to the same interkey relations as the scale structure. 
In the diatonic system, harmonically significant 
chords, such as the tonic, dominant, and sub- 
dominant are shared by closely related keys, and 
Krumhansl (in preparation) shows that the harmonic 
hierarchy yields the same measure of interkey 
distance as the tonal hierarchy. This is true even 
though the two hierarchies seem to be at least 
partially independent. In developing novel systems, 
then, to the extent that they are intended to 
emphasize vertical relations, harmonic hierarchies 
should be constrained by the intended key relations. 
More particularly, harmonically significant chords 
should be precisely those that are shared by closely 
related keys. 

Analyses of traditional and novel pitch 
systems 

Psychological investigations of musical pitch 
structure employing materials from traditional tonal- 
harmonic music suggest a set of characteristics or 



features that may, by analogy, be incorporated into 
novel systems, The lists above are not intended to be 
comprehensive or obligatory. But these features 
seem well-grounded in existing musical literature 
and psychological evidence. Musical explorations 
and concomitant psychological investigations 
promise to further our understanding of the range of 
musical attributes that are matched to the psycho- 
logical system for encoding, organizing, and 
remembering structured auditory information. 

In what follows, I consider a number of different 
musical system in terms of the above characteristics. 

Included are well-established systems 
extensively employed in compositions, such as 
diatonic, pentatonic and North Indian scales, and 
novel systems that have been proposed recently, 
particularly those by Pierce (see accompanying 
paper by Mathews; Roberts et al., 1986) and 
Balzano (1980, 1986). The objective of these 
analyses is to make explicit the parallels between 
these systems and to highlight their differences. The 

potential of the novel systems can be evaluated 
finally only in terms of the richness of their com- 
positional resources. But, to the extent that the 
above list of characteristics are grounded in psycho- 
logical principles, these observations may serve to 
guide their development. 

Diatonic scale 
The first set of analyses is of the diatonic scale 

and traditional triadic harmony. The properties are 
summarized in Table 3, and are assumed to be 
generally well-known. They are given here primar- 
ily for the purpose of later comparisons and to 
establish notation general enough to be employed 
when considering other systems. The diatonic set 
can be considered as a subset of the chromatic set, 
labeled in the first column as 0 through 12 (which 
corresponds to the octave). The second column 
gives the ratios in equal- tempered tuning of the 
pitches with the zero tone, and the third column their 
values in cents. The fourth column gives simple 

Takle 3. Diatonic scale. 

Pitch Ratio Cents Simple-integer Interval Diatonic Interval 
with 0 above 0 ratio name scale vector 

Cycle of fifths: 

Unison 
m2 
M2 
m3 
M 3  
P 4 

Tritone 
P 5 
m 6 
M 6  
m7 
M 7  

Octave 

. . . . .  1 8 3 1 0  5 0 7 2 9 4 11 6 1 . . . . .  
Diatonic x x x x x x x  
Pentatonic x x x x x  



integer ratios approximating the equal-tempered 
ratios, and the fifth the names of the intervals. The 
next column indicates the subset that comprises the 
diatonic set, the seven tones in an octave range. 

The pattern of scale degrees is asymmetric; it 
maps onto itself only at the interval of an octave. 
The pitches of the scale generally have small integer 
ratios with the zero pitch, which means that they 
would form relatively consonant intervals. If one 
considers the total set of intervals defined by the 
diatonic set, there are a total of two minor seconds 
(or major sevenths), five major seconds (or minor 
sevenths), four minor thirds (or major sixths), three 
major thirds (or minor sixths), six perfect fourths 
(or perfect fifths), and one tritone. This can be 
summarized in vector notation as <2,5,4,3,6,1>, 
where the first value corresponds to the number of 
minor seconds (major sevenths), the second to the 
number of major seconds (minor seconds), and so 
on. These values are shown in the last column of 
Table 3. 

Note that the most consonant interval, the perfect 
fourth (or fifth) is the most frequent interval, and the 
least consonant intervals, the minor second and the 
tritone, the least frequent. Beyond this, there is only 
an approximate correspondence between the 
simplicity of the integer ratio and the number of 
intervals in the diatonic set. This interval vector has 
the property that each enay is unique; the number of 
intervals of any type is different than the number of 
intervals of any other type. And, there is at least one 
interval of each type. 

A cycle of scales, the cycle of fifths, emerges 
naturally from the scale structure; it is shown at the 
bottom of Table 3. For any scale, raising the fourth 
scale pitch by a half-step (in conventional 
terminology) or a step in the chromatic set gives the 
scale of the next key on the cycle whose tonic is an 
interval of a perfect fifth above the first tonic. 
Another way of saying this is that the cycle of keys 
has a generator of seven (corresponding to a perfect 
fifth) or, equivalently, a generator of five 
(corresponding to a perfect fourth). The diatonic set 
consists of tones that are adjacent on this cycle, and 
the next scale is obtained by dropping the left-most 
pitch and adding one on the right. Any generator that 
is mutually prime with the number of chromatic 
scale tones (twelve) would have the property of 

generating a complete cycle of this sort. But it is 
interesting to note that there is just one such number 
(five or, equivalently, seven) that is mutually prime 
with twelve, other than the trivial generator of one. 

One can also inquire whether there is a 
connection between the number of scale tones 
(seven) and the generator of the cycle of fifths. 
Under the constraints that scale tones must be 
adjacent on the cycle, and that the shift between 
adjacent scales is accomplished by changing a single 
tone one step in the chromatic set, there are just two 
possible scale sizes: seven and five. Seven, of 
course, is the diatonic scale and, as will be dis- 
cussed below, five adjacent pitches on the cycle of 
fifths form the pentatonic scale. In contrast, suppose 
the scale consisted of six adjacent tones on the cycle 
(the hexachord), for example, the scale with tones: 0 
2 4 5 7 and 9. Then the next scale would be reached 
by deleting the tone 5 and substituting the tone 11 -- 
not a change of a single tone by one step in the 
chromatic set. 

Another concern is how many scale pitches are 
needed to give a unique interval vector. Suppose just 
two adjacent tones on the cycle of fifths are taken; 
this gives the interval vector of <0,0,0,0,1,0>. 
Then, suppose three adjacent tones on the cycle are 
taken; this gives the interval vector of 
<0,1,0,0,2,0>. The interval vectors for different 
scale sizes are given in Table 4. Note that the first 
scale size with an interval vector that has all nonzero 
entries and no repeated values is seven, the diatonic 
scale. After this there are duplicated values in the 
vector. Before this, there are missing intervals. 

Turning now to harmonic structure, the present 
discussion will be limited to triads formed by 
selecting every other diatonic scale degree. For 
example, the triad built on 0 has the pitches (0,4,7); 
the triad built on 2 has the pitches (2,5,9); and so 
on. For the (major) diatonic set, this gives major 
chords on pitches 0, 5, and 7, minor chords on 2,4, 
and 9, and a diminished chord on l l .  Thus, there is 
a small number of chord types consistently mapped 
to the scale degree on which the triads are built. 
Constructing chords in this fashion also has the 
consequence of dispersing the tones throughout the 
octave range, making possible smooth voice-leading 
between successive chords. 



Table 4. Interval vectors for cycle of fifths and chromatic 
set. 

Scale size Scale 

Pentatonic 

Diatonic 

The tones of the major chords can be expressed 
in terms of the ratios 4:5:6, which would mean that 
they are relatively consonant. The tones of the minor 
chords can be expressed in terms of the ratios 
10: 12: 15, and are therefore less consonant. The 
tones of the diminished chord can be expressed in 
terms of the ratios 25:30:36, and are therefore less 
consonant still. This suggests that the major chords 
might naturally serve as structural harmonies within 
the system. 

The function of the major chords as structural 
harmonies is also consistent with the cycle of fifths 
relation between different scales. Consider the 

Interval vector 

diatonic set built on 0, as in Table 3, and its two 
neighboring scales on the cycle of fifths, built on 5 
and 7, respectively. Table 5 shows the triads in the 0 
scale, and their functions in the other two scales. 
Roman numerals indicate the scale degree of the root 
tone of the chords and whether they are major, 
minor, or diminished. Given that the I chord is built 
on the central reference pitch of each scale, it would 
be expected to dominate in the harmonic hierarchy. 
Then, because of the interlocking pattern of chord 
functions in neighboring keys, secondary structural 
importance would be indicated for the IV and V 
chords, which is consistent with harmonic practice. 

Table 5. Chords of related diatonic scales. 

Chord tones Chord type Function in Function in Function in 
0 scale 5 scale 7 scale 

0 4 7  Major I V IV 
2 5 9 Minor ii v i - 
4 7 11 Minor iii - v i 
5 9 0  Major IV I - 
7 11 2 Major V - I 
9 0 4  Minor v i iii ii 

11 2 5 Diminished viiO - 



To conclude this section, the system of diatonic 
scales and triadic harmonies satisfies each of the 
properties given in Tables 1 and 2. The diatonic 
system has a small set of tones and chords with 
well-defined intervals, a predominance of relatively 
consonant intervals, an interval vector with unique 
entries, and a generator for a cycle of scales 
compatible with scale membership and the functions 
of chords in closely related scales. The question to 
be considered in the next analyses is the extent to 
which these properties are shared by other systems. 
I consider first a number of scales that can be 
constructed from the same basic chromatic set: the 
pentatonic, octatonic, and the ten North Indian 
scales on the circle of thats. 

Pentatonic scale 
As indicated above, the pentatonic scale, shown 

in Table 6, consists of five adjacent pitches on the 
cycle of fifths. That is, the scale pitches can be 
obtained using the same generator as the major 
diatonic scale, and a natural cycle of pentatonic 
scales emerges. To obtain the next scale on the 
cycle, the tone 0 is lowered to l l -- a half-step (in 
conventional terminology) or a step in the chromatic 
set. This can be seen with reference to the bottom of 
Table 3. The interval vector is <0,3,2,1,4,0>. 

Neither the minor second nor the tritone is present, 
the least consonant intervals. Excluding these, there 
are unique entries in the vector for every other 
interval, the most frequent of which is the perfect 
fourth (fifth) which is also the most consonant. The 
pattern is asyrnmeaic, repeating only at the octave 
interval. Because of the small number of tones (five) 
the set would seem less well-suited to the 
construction of chords than the diatonic set, so 
harmonic properties will not be considered. 

To summarize, the pentatonic scale consists of a 
small number of scale tones fornling an asymmetric 
pattern within the octave. Ignoring the missing 
intervals, which are also the most dissonant, the 
interval vector has unique entries, and the most 
frequent interval is also the most consonant. There 
emerges a natural cycle of scales with a generator of 
seven (or, equivalently, five) which gives the cycle 
of fifths. The next scale on the cycle results from 
changing one scale tone by a step in the chromatic 
set. Thus, the pentatonic scale exhibits all the 
characteristics of the diatonic scale, with the 
exception that the interval vector shows two missing 
intervals. 

Octatonic scale 
The octatonic scale was chosen for consideration 

Table  6 .  P e n t a t o n i c  and o c t a t o n i c  s c a l e s .  

P i t c h  P e n t a t o n i c  I n t e r v a l  Oc ta ton ic  I n t e r v a l  
s c a l e  v e c t o r  s c a l e  v e c t o r  



because it emerged as a useful theoretical construct 
in a perceptual study of Stravinsky's music 
(Krumhansl & Schmuckler, 1986); it is also found 
in the music of Messiaen, Bartok, and jazz where it 
is known as the "diminished scale". The octatonic 
scale exhibits very different structural characteristics 
than thk diatonic and pentatonic scales. It consists of 
the set of tones shown in Table 6. There are alter- 
nating half and whole steps (in conventional ter- 
minology) or, equivalently, steps of one and two in 
the chromatic set. This pattern repeats four times per 
octave which means that the set maps onto itself 
with transpositions of three, six, and nine steps in 
the chromatic set. The interval vector, 
<4,4,8,4,4,4>, shows a great deal of redundancy, 
and no predominance of consonant intervals. There 
is no cycle which would generate a system of related 
octatonic scales. The only possible complete cycles 
for the chromatic set do not contain the octatonic set 
as adjacent tones. Instead, the octatonic set can be 
represented as the sum of two subcycles: (0,3,6,9) 
and (1,4,7,10). 

The presence of a number of minor and major 
thirds allows the construction of traditional chord 
types, including major, minor, diminished, and 
dominant seventh chords. The choice of these par- 
ticular tone combinations does not follow naturally 
from the distribution of intervals, however. That is, 
there is no simple rule for forming chords that is 
analogous to the rule for constructing diatonic triads 
from alternate scale tones. Nor is there a natural 
hierarchy of chords resulting from a cycle of scales. 
Thus, the harmonic possibilities are quite 
independent of the structure of the octatonic scale, in 
sharp contrast to the triadic harmonies of the diatonic 
scale. 

To sum up, the octatonic scale is seen to exhibit 
none of the characteristics of the diatonic and 
pentatonic scales, other than the rather trivial 
characteristic that the number of scale tones is again 
relatively small. This suggests that the choice of 
simultaneities and the articulation of tonal and 
harmonic hierarchies is determined compositionally, 
rather than following from inherent structural 
properties of the scale. 

North Indian circle of thats 
North Indian classical music employs a vastly 

expanded set of scales (called thats) compared with 
Western music. They are, however, drawn from a 
basic set of twelve focal pitches per octav=t with 
tunings approximately equal to the chromatic set. All 
together, there are a total of thirty- two different 
seven-tone scales, all of which have the same tonic 
tone. Each of these contains an interval of a fifth 
between the tonic (Sa) and the fifth scale tone (Pa); 
this is an invariant of the musical system. Each of 
the other five tones can appear in one of two 
positions: the second, third, sixth, and seventh scale 
tones can be lowered by a step (in the chromatic set) 
and the fourth scale tone can be raised by a step. All 
combinations of these can occur, generating a full 
set of thirty-two scales. Different scales are 
considered theoretically to be more or less similar, 
and geometric representations are used to summarize 
the relations. A cycle of scales, called the circle of 
thats, is embedded in the multidimensional 
representation of scales. The tones in the scales on 
the circle are indicated in Table 7. The present 
discussion will be limited to these because of the 
cyclical relation between scales. More details can be 
found in Jairazbhoy (1971) on which the description 
here and in Castellano et al. (1984) is largely based. 

The cyclic nature of the scale relations is brought 
out clearly at the bottom of Table 7, where the scale 
tones are indicated with respect to the cycle of fifths. 
As can be seen, neighboring scales differ only in 
terms of one step in the chromatic set. The first six 
scales consist of seven adjacent tones on the cycle of 
fifths; as such, they correspond to different diatonic 
scales. It should be emphasized, however, that the 
tonic of all these scales is the pitch 0, unlike the 
diatonic scales. For these six scales, the numbers in 
the interval vector are unique: <2,5,4,3,6,1> with a 
rough correspondence between the number of 
intervals and consonance. 

The remaining four scales consist of the invariant 
tones 0 and 7 plus five adjacent tones separated from 
these. These five tones, thus, comprise a pentatonic 
scale. In these four cases, the interval vectors do not 
have unique entries. They are: for A1 
<3,4,4,3,5,2>; for Todi <4,3,3,4,5,2>; for Purvi 
<4,3,3,4,5,2>; and for Marva <3,4,4,3,5,2>. 
There is a less consistent relationship between these 
numbers and consonance. However, if the 0 and 7 
tones are omitted (the invariant tones), the resulting 



Table 7. North Indian scales on the circle of thats 

Kalyan Bilaval Khamaj Kafi Asavri Bhairvi Purvi Marva 

Cycle of fifths: 

..... 2 9 4 11 6 1  8 3 1 0  5 0  7 2 9 4 1 1  6 l..... 

Kalyan 
Bilaval 
Khama j 
Kaf i 
Asavri 
Bhairvi 
A7 
Todi 
Purvi 
Marva 

x x x x x x x  
x x x x x x x  

x x x x x x x  
x x x x x x x  

x x x x x x x  
x x x x x x x  

X X X X X  X  X  
X X X X X  X  X  

X X X X X  X  X  
X X X X X  X  X  

vector, <0,3,2,1,4,0>, has unique entries (ignoring 
the missing intervals), as discussed above for the 
pentatonic scale. 

Each of these scales forms an asymmetric pattern 
that repeats only once per octave. The relations 
between scales are based on the same generator as 
the diatonic and pentatonic scales. It is interesting to 
note this characteristic because North Indian music 
does not employ modulations between scales. 
Another distinctive feature of North Indian music is 
that it does not employ tones sounded ~ imul -  
taneously in chords, with the exception that the Sa 
(0) and Pa (7) are sounded constantly in the drone 
accompanying the melody -- hence the strict ad- 

herence to the invariant perfect fifth between these 
tones. The greater emphasis on melodic than har- 
monic aspects may be related to the greater variety of 
scales and the fact that the distribution of intervals 
shows less correspondence to consonance. 

Despite these differences, the scales on the circle 
of thats share many formal characteristics with 
diatonic and pentatonic scales: a small number of 
tones forming asymmetric patterns repeating only at 
the octave, a unique generator in terms of which 
scale relations can be expressed, an influence of 
consonance, and an unequal distribution of values in 
the interval vector. The last two characteristics are, 
however, somewhat less clear than for the diatonic 
scale. 



Pierce scale 
Impetus for these analyses originally came from 

the development of the Pierce scale described in the 
accompanying paper by Mathews and also by 
Roberts et al. (1986). This system shares many 
characteristics with traditional diatonic harmony, and 
I was interested in formalizing these. Apart from 
clarifying similarities and differences between the 
systems, it seemed possible that these observations 
may, in some way, prove useful as the potential of 
this system is explored compositionally. In the next 
section, I give a similar analysis to the twenty- fold 
microtone system proposed by Balzano (1980, 
1986). 

Table 8 presents the essential characteristics of 
the Pierce scale as presently formulated, more details 
can be found elsewhere in this volume. The full set 
of tones is generated in equal-tempered tuning with 
ratios of the thirteenth root of three, which has the 
consequence that the thirteenth tone has a ratio of 3:l 
with the first. Hence, it corresponds to the second 

Table 8 .  P i e r c e  s c a l e  

P i t c h  R a t i o  Cents  
wi th  0  above 0  

Cycle wi th  g e n e r a t o r  t h r e e :  

overtone in the harmonic series and forms an 
interval (called a tritave) of an octave and a fifth. A 
number of tones in this set can be expressed in 
simple ratios of the integers three, five, and seven 
(and these multiplied by three which corresponds to 
a transposition by a tritave). As can be seen from 
looking at the values of the tones in cents, the tones 
generated in this way do not correspond to those in 
the chromatic set, despite the fact that simple integer 
ratios appear in both systems. 

The Pierce scale itself consists of the nine tones 
indicated, forming an asymmetric pattern repeating 
only at the interval of a tritave. The choice of this 
subset of scale tones is such that most tones form a 
simple ratio with the tone 0. This property can also 
be seen when the interval vector, <5,5,8,6,5,7>, is 
examined; the three most frequent intervals have 
simple numerical ratios. With the exception of these 
intervals, however, the entries are not unique, 
although all intervals are present. There is a natural 
cycle of scales that emerges, with a generator of 

Simple- in teger  
r a t i o  

P i e r c e  
s c a l e  

I n t e r v a l  
v e c t o r  

. . . . .  8 1 1  1 4  7 1 0  0  3 6 9 1 2  2 5 8 . . . . .  
P i e r c e  x x x x x x x x x  



Table  9 .  I n t e r v a l  v e c t o r s  f o r  c y c l e  wi th  g e n e r a t o r  t h r e e  and 
P i e r c e  set .  

S c a l e  s i z e  

three as shown at the bottom of Table 8. In this 
cycle, the Pierce scale tones are adjacent and the next 
scale can be found by a change of one step, i.e., by 
changing the tone 1 to the tone 2. 

Given this cycle with generator of three, one can 
inquire whether there are other scales with different 
numbers of tones that would permit this kind of 
modulation by changing a single scale tone by a 
step. The only other possibility would be a scale 
consisting of four tones, which presumably would 
be too impoverished for musical purposes. One can 
also ask whether scales of other sizes have unique 
entries in the interval vectors and all intervals 
represented at least once. Table 9 shows the interval 
vectors for the different scale sizes. The only scale 
with unique nonzero values has seven tones -- and it 
is such that the most consonant intervals are the 
most common. This scale size, however, does not 
permit modulation to the next scale by a single one- 
step change. 

Given that the Pierce set has thirteen tones, a 
prime number, a complete cycle can be generated by 
any number. Table 10 shows the possibilities, 
excluding the trivial generator of one. Indicated for 
each generator are the numbers of scale tones that 
would allow the next scale to be reached by 
changing a single tone by a step. Following this are 
indicated the number of scale tones needed to 

I n t e r v a l  v e c t o r  

generate a unique interval vector with all nonzero 
entries and the corresponding interval vector. In a l l  
cases, the number of tones needed is seven. The 
only case giving a unique interval vector and 
permitting scale changes by a single step is tile 
seven-tone scale with generator two. Its tones are: 
(0,2,4,6,8,10,12). Between adjacent tones, there is 
just one interval of one step (between 12 and 0); the 
others are two steps. The prevalence of two-step 
intervals may limit its utility. Moreover, the interval 
vector does not show a prevalence of intervals with 
simple ratios. Nonetheless, this alternative scale 
may warrant further consideration. To conclude, th.: 
nine-tone scale with generator three -- that is, the 
Pierce scale as currently formulated -- may be a 
reasonable compromise between a number of 
structural characteristics. It lacks only the unique- 
ness of entries in the interval vector. 

From the Pierce scale tones, it is possible to 
construct two different types of chords with integer 
ratios. One of these, called major, has ratios of 
3:5:7; in it, there are six steps between the root and 
the middle tone and four steps between the middle 
tone and the highest tone. The other chord type, 
called minor, has ratios of 15:21:35; in it, there are 
four steps between the root and the middle tone and 
six steps between the middle tone and the highest 
tone. The Pierce system has the somewhat peculiar 



Tab le  10 .  P i e r c e  set.  S c a l e  s i z e s  f o r  d i f f e r e n t  g e n e r a t o r s  
p e r m i t t i n g  modulation and wi th  unique i n t e r v a l  v e c t o r s .  

Gene ra to r  S c a l e  s i z e s  S c a l e  s i z e  I n t e r v a l  
p e r m i t t i n g  wi th  unique v e c t o r  
modulation i n t e r v a l  v e c t o r  

Table  11. P i e r c e  s e t .  Chords of r e l a t e d  s c a l e s .  

Chord t o n e s  Chord t y p e  Funct ion  i n  Funct ion  i n  
P i e r c e  l a b e l  0 s c a l e  10 s c a l e  

Major 
Minor 

I I11 
i iii 

Major I11 
Minor iii 

Major I V  V 1  

Major 
Minor 

- 
v i i  

Major V 1  V 1  I I 

Minor v i i  i x  

Major 
Minor 

v111 
v i i i  

Minor i x  - 

Func t ion  i n  
3 s c a l e  

v111 
v i i i  

I I I 
iii 

v i i  



property that both major and minor chords can be 
built on the first, third, fifth, and eighth scale 
degrees. Neither type can be built on the second 
scale degree; only major chords can be constructed 
on the fourth and sixth scale degrees; and only 
minor chords can be constructed on the seventh and 
ninth scale degrees. Thus, the present formulation 
does not have the property that there is a consistent 
mapping between chord type and the degree of the 
scale on which the chord is built. The distribution of 
chord tones throughout the tritave range would, 
however, seem to make possible smooth voice- 
leading. 

One can inquire whether the relations between 
scales suggests a natural chord hierarchy. Table 11 
shows the major chords and the minor chords of the 

0 scale and their functions in neighboring keys. 
There, the chords are labeled by Roman numerals to 
correspond to the scale degree of the root, and major 
and minor chords are indicated in capital and small 
letters, respectively. The diagram shows there are 
many chords in the 0 scale that also function in the 
neighboring scales. If primary structural significance 
is given to the I/i chord, then the relationships 
between scales would indicate the Wii i  and VIIUviii 
to have secondary structural roles. The diagram, 
however, suggests no natural way to determine the 
chord type to be assigned to the ambiguous cases, 
although the simpler numerical ratios for the major 
chords may weigh in favor of these. 

To summarize, the Pierce scale exhibits virtually 
all the structural characteristics of the diatonic scale. 

Table  12 .  Twenty-fold microtone  s c a l e  

P i t c h  R a t i o  Cents S c a l e  I n t e r v a l  
w i th  0 above 0 v e c t o r  

Cycle wi th  g e n e r a t o r  n i n e :  

. . .  17 6 15 4 13  2 11 0 9 18 7 16 5 1 4  3 12 1 10 19 8 17 . . .  
S c a l e  : x x x x x x x x x  



The only exceptions are the redundant values in the 
interval vector and the somewhat greater number of 
scale tones. The primary difference from the diatonic 
case is in the construction of chords. There is no 
entirely consistent mapping between the scale degree 
of the root and chord type. There are numerous 
chords that have multiple functions in related scales 
which would support modulations, and a natural 
harmonic hierarchy is suggested by these scale 
relations. However, the scale cycle cannot be used 
to disarnbiguate the chord types assigned to the scale 
degrees. 

Twenty-fold microtone scale 
Balzano (1980, 1986) proposed a system with 

twenty equally-spaced (in log frequency) microtones 
per octave based on what he calls group-theoretic 
principles. The essential characteristic is that the set 
of tones is generated by two mutually prime 
numbers (four and five) whose product is the 
number of tones in an octave (twenty). This is by 
analogy to the chromatic set, which can be generated 
by two mutually prime numbers (three and four) 
whose product is the number of tones of the 
chromatic set (twelve). The properties of the twenty- 
fold system are presented in Table 12. As can be 
seen, the set includes one minor third, one mtone, 
and cne major sixth, but otherwise the tones do not 
coincide with the chromatic set. From this set of 
twenty, a nine-tone scale is selected that has an 
asymmetric pattern repeating once per octave. 

The system is constructed without regard to 
consonance; the intervals cannot be expressed as 
ratios of integers. This factor, Balzano (1980, 
1986) argues, is not essential and the emphasis, 
instead, is on group-theoretic or geometric pro- 
perties. The scale is given by a cycle with generator 
of nine, shown at the bottom of Table 12, where the 
scale steps are indicated. The next scale on the cycle 
is achieved by changing the tone 2 by a step to the 
tone 3. The interval vector for this scale, as shown, 
has two missing intervals but otherwise the entries 
are unique. The vector is, thus, similar to that for the 
pentatonic scale. 

For this generator of nine, the number of scale 
tones needed to give a unique interval vector with 
nonzero entries is eleven, as shown in Table 13. The 
eleven-tone scale, like the nine-tone scale, also per- 

mits modulation with a change of a single tone by a 
step. In this case, then, there is a scale size that both 
supports modulations and has a unique interval 
vector: the scale with eleven tones and generator 
nine -- not the nine-tone scale proposed by Balzano. 

Moreover, the generator of nine is not the only 
possibility; any value that is mutually prime with 
twenty will generate a complete cycle. So, the 
possibilities, other than the trivial generator of one, 
are three, seven, and nine. Table 14 shows for each 
of these values, the scale sizes permitting modula- 
tion by a one-step change, and the scale sizes with 
unique interval vectors. The only case in which 
these coincide is for the scale, discussed above, with 
eleven tones and a generator of nine. It would seem, 
then, that given the twenty microtone divisifin of the 
octave, this is a unique case in which a number of 
structural properties converge. 

Turning now to the harmonic properties of the 
twenty- fold microtone scale, Balzano (1980) 
originally proposed that triads be formed using 
every other tone of the scale. More recently, 
Balzano (1986) noted these chords leave large gaps 
in the octave range, and has proposed using tetrads 
instead. Both proposals will be considered here. 
Their commonalities will be described first. The 
chords in both cases would be highly dissonant and, 
likely, undifferentiated in this respect. However, the 
schemes proposed produce a consistent mapping 
between the scale degree of the root of the chord and 
the chord type, and a distribution of chord types. 
The mads are of three types. The first has an interval 
of five steps between the root and the next tone, and 
then an interval of four steps. There are four of these 
on scale degrees one, two, five, and six, denoted I, 
11, V, VI, respectively. The second type of triad has 
an interval of four steps between the root and the 
next tone, and then an interval of five steps. There 
are four of these on scale steps three, four, eight, 
and nine, denoted iii, iv, viii, ix, respectively. There 
is one triad with two four-step intervals on the 
seventh scale degree, denoted vii . Table 15 shows 
the triads and their functions in the neighboring 
scales of 11 and 9. The numerous chords having 
multiple functions in these related scales would 
support modulations between them. The interlocking 
pattern suggests that the V and V1 would have 
secondary structural significance to the I chord, and 



Table  13 .  I n t e r v a l  v e c t o r s  f o r  c y c l e  wi th  g e n e r a t o r  of  n i n e  
and twen ty - fo ld  microtone  s c a l e .  

S c a l e  s i z e  I n t e r v a l  v e c t o r  

Table  1 4 .  Twenty-fold microtone  set .  Sca le  s i z e s  f o r  
d i f f e r e n t  g e n e r a t o r s  pe  <18,18,18,18,18,18,18,  18,  18,  9> 

Table 14 .  Twenty-fold microtone  set .  S c a l e  s i z e s  f o r  
d i f f e r e n t  g e n e r a t o r s  p e r m i t t i n g  modulation and w i t h  unique  
i n t e r v a l  v e c t o r s .  

Genera tor  S c a l e  s i z e s  Sca le  s i z e  I n t e r v a l  
p e r m i t t i n g  wi th  unique v e c t o r  
modulation i n t e r v a l  v e c t o r  



Table 15. Twenty-fold microtone set. Triads of related scales 

Chord tones Function in 
0 scale 

I 
I I 

iii 
iv 
v 

v1 

viio 
viii 

that the I1 chord might follow these. However, 
because the chord types are undifferentiated by 
consonance, this factor would not reinforce this 
harmonic hierarchy. As Balzano (1986) noted, these 
triads do not span the octave range and would, thus, 
make smooth voice-leading difficult. 

Because of this, Balzano (1986) proposed using 
tetrads instead. The tetrads, consisting of four tones 
each, are again formed from every other scale tone. 
All together there are four different types of tetrads. 
The first has intervals of five, four, and five steps; 
they appear on scale degrees one, two, and six, 
denoted I, 11, and VI, respectively. The second 
tetrad type has intervals of four, five, and four steps; 
they appear on scale degrees three, four, eight, and 
nine, denoted iii, iv, viii, and ix, respectively. The 

Function in 
11 scale 

v 
v1 
- 

viii 
- 
I 
- 

iii 
iv 

Function in 
9 scale 

v1 
- 

viii 
i X 

third has intervals of five, four, and four; this is one 
on the fifth scale degree, denoted v . The final tetrad 
type has intervals four, four, and five; there is one 
on the seventh scale degree, denoted vii. Table 16 
shows the tetrads and their functions in the 
neighboring scales of 1 1  and 9. Again, an 
interlocking pattern of chord functions is found, 
supporting modulations. However, the pattern is 
somewhat weaker, and it seems problematic that the 
I of the 9 scale is not in the 0 scale. Given this, the 
I1 and V1 tetrads would appear to have secondary 
significance to the I tetrad. 

To summarize, the primary feature lacking from 
the system proposed by Balzano is respect for the 
acoustic dimension of consonance. The system, as 
proposed, does exhibit a number of more abstract 

Table 16. Twenty-fold microtone set. Tetrads of related 
scales. 

Chord tones Function in Function in Function in 
0 scale 11 scale 9 scale 

0 5 9 1 4  I 
2 7 11 16 I I 
5 9 14 18 iii 



structural properties. It has an asymmetric pattern of 
scale degrees, and a cycle of scales in which 
neighbors differ only in terms of a single one-step 
change. The generator for this cycle, however, is 
not unique, nor does the interval vector contain all 
possible intervals. Ignoring these, it does have 
nonredundant entries. In these respects, it differs 
from the diatonic case. There is a consistent rule for 
generating triads and tetrads with a fairly well- 
balanced distribution of a small number of chord 
types. And, the formation of chords is generally 
consistent with the relations between different 
scales. 

Conclusions 
These analyses highlight a number of similarities 

and differences between the pitch systems 
considered. Using diatonic harmony as a reference 
point, its characteristics are found to be shared by 
other systems to varying degrees. Some of these 
characteristics are primarily psychological in nature, 
deriving from psychoacoustic and memory 
processes. Other characteristics are more formal, but 
have been shown to have consequences for per- 
ceptual organization and memory in the context of 
traditional tonal-harmonic music. The extent to 
which other systems with analogous properties 
produce comparable psychological effects is an 
interesting question that would seem most fruitfully 
addressed through a combination of approaches. 
The perceptual effects can be assessed empirically, 
but such studies should be guided by theoretical 
formulations and compositional explorations of the 
resources of the proposed novel pitch systems. 

The two novel systems considered here provide 
interesting contrasts, but also share a number of 
characteristics. In both the Pierce system (see 
Mathews, this volume; Robens et al., 1986) and the 
twenty-fold microtone system (Balzano, 1980; 
1986), there are nine-tone scales forming an 
asymmetric pattern. A cycle of scales can be found 
such that scale tones are adjacent and modulation to 
the next scale is accomplished by shifting one scale 
tone by a step. Both systems allow for the 
construction of a variety of chord types, and closely 
related scales have a number of chords in common. 
This interlocking pattern would support modulations 

between scales and suggest a hierarchy of chord 
functions. 

The Pierce system is strongly influenced by 
considerations of consonance. The determination of 
scale tones and the formation of chords are such that 
intervals which can be expressed in terms of integer 
ratios predominate. The system as presently formu- 
lated, however, does not have the property that there 
is a consistent mapping between chord type and the 
scale degree of the root of the chord. In contrast, the 
twenty-fold microtone system has well-defined rules 
for constructing chords, but consonant intervals are 
lacking from the scales and chords. Indeed, the 
whole system is based on the premise that its 
abstract structural properties can be perceived with- 
out intervals that are differentiated in terms of 
consonance. Empirical support for this is presently 
lacking. 

The primary characteristic that was difficult to 
assess given the present formulation of these two 
systems was how a tonal hierarchy might be 
determined. This property of the diatonic system has 
been shown to have a variety of consequences for 
perception and memory, as summarized in the 
accompanying paper. The tonal hierarchy, 
moreover, is strongly correlated with statistical 
distributions of tones in Western tonal-harmonic 
music. This raises the question as to whether, in 
these novel systems, the hierarchy can be deter- 
mined compositionally or whether there are inherent 
constraints from other structural characteristics. It 
would seem that scale tones ought to dominate over 
nonscale tones, and that the hierarchy should be 
consistent with the cycles of scales. The degree to 
which these considerations constrain the tonal hier- 
archies and the consequences for the relationship 
between tonal and harmonic hierarchies is a matter 
for further theoretical and empirical investigations. 
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J. Sundberg & L. Frydkn, Department of Speech Communication & 
Music Acoustics, KTH, Stockholm 

Introduction 
This article presents part of a rule system that can 

be used when note signs are automatically converted 
into the corresponding sound sequences by means 
of a computer. In a way, then, these rules describe 
what the skilled musician is supposed to do when 
performing music in a musically appropriate way. 

Music Performance Rules 
The rules have been developed during "music 

lessons" given by an experienced musician and 
music teacher (author LF). Thus, rather than a 
normal music student, a computer has served as the 
pupil: melodies have been written in conventional 
notation into the computer memory, and these 
melodies were then performed by the computer 
system. The instrument played by the computer was 
a synthesizer. Thus, the strategy has been 
bv-svnthesis; performance rules have been tenta- 
tively formulated, implemented one by one in the 
computer program, and the effect of each rule on the 
performance of melodies has been assessed by care- 
ful listening. Depending on the musical result, the 
individual rule has been accepted, modified, or re- 
jected. In this way explicit statements can be made 
regarding performance rules. 

Evidently, the musical judgement of the authors 
cannot be accepted as the final proof for a rule. 
Therefore formal listening experiments were also 
carried out (Thompson & al, 1986). The results 
show that musically competent listeners (pro- 
fessional musicians) prefer performances where 
these rules have been applied to performances where 
no rules were applied. In other words, musically 
trained listeners prefer performances following these 
rules to performances which are in a closer 
agreement with the nominal notation. 

Here we will present two rules that relate to the 
measurements described by Carol Krumhansl else- 
where in this volume. It seems that one of these 
rules puts emphasis on notes that are remarkable in 
some sense. We have tried to quantisize the remark- 
ableness in terms of something that we have called 
the note's melodic charge. The other rule generates 
crescendos and decrescendos reflecting harmonic 
progressions. Again we use the notion of remark- 
ableness as the key, and we quantify the remark- 
ableness of chords in terms of the harmonic charge. 
Thus, the harmonic charge for a chord, derived from 
the chord notes' melodic charges, is used for com- 
puting changes in sound level. A more detailed 



Fig. 1 .  Definition of melodic for notes when appearing over a C major chord. Note that thc 
melodic charge increases by one unit per fifth-step, but all charge values are higher on the 
subdominant than of the dominant side of the root of the prevailing C major chord. 

description of the various steps involved will be 
given below. 

Melodic Charge 
The melodic charge of a note reflects its remark- 

ableness, given the harmonic context, as was just 
mentioned. It is cIosely related to the "Quint- 
spannung" presented by Ernst Kurth in the 
beginning of this century (Kurth, 1917). Figure 1 
defines, along the circle of fifths, the melodic charge 
of notes for a C major chord context. Note that the 
melodic charge increases by one unit for each fifth- 
step along the circle. Thus, it increases with the 
distance to the root of the chord as measured in 
fifths. Note also that the values are higher in the 
anticlockwise (subdominant) direction than in the 
clockwise (dominant) direction. In other words, 

there is no symmetry with respect to the root of the 
chord. 

The melodic charge of a note is computed using 
the root of the prevailing chord as the zero reference. 
In the performance program the loudness and 
duration of a tone is increased in proportion to its 
melodic charge; the sound level in dB is increased 
by a factor of 0.19 times the melodic charge. 
~ikewise,  the duration is increased by a factor of 
[ 1 + 0 . 0 1 8 * ~ ~ ] ~ / ~ ,  where AL is the change in sound 
level due to the melodic charge. For example, the 
tone one minor second above the root of the 
prevailing chord has the melodic charge of 6.5. Its 
sound level is increased by 0.19*6.5 = 1.2 dB, and 
its duration is increased by a factor of 
[1+0.018*1.2]1/~ = 1.0107, or about 1 %. 

Even though the effects are very small in terms 
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Fig. 2. Correlation between melodic charge and the Krumhansl & Kessler probe tone ratings Cor a 
major tonic. To the left the values are plotted for a C major context, to the right as a correlogram. 
The agreement suggests that our melodic charge and Krumhansl's probc tone ratings might rcrcr LO 

the same thing, although the exact numbers differ slightly. 

of dB and msec, this way of marking melodic 
charge turned out to improve the musical quality of 
performance (Thompson & al, 1986). Subjectively, 
it seems that this rule serves the purpose of 
emphasizing the remarkable notes. 

It is interesting that listeners want the musician to 
announce the melodic charge of the notes, because, 
evidently, this implies that the listener is able to 
sense this melodic charge by himself, without assis- 
tance of the performer. The situation is not unsimilar 
to that of listening to a person speaking: it is 
embarrassing to listen to people reading a text if they 
do not show, by means of e. g. emphasis, that they 
understand what is important in the text. 

As can be observed in Figure 2 this melodic 
charge shows a significant correlation with 
Krumhansl's probe tone ratings. The agreement 
suggests the possibility that our melodic charge and 
Krumhansl's probe tone ratings are actually the 
same thing, although they appear slightly different 
because of different methods of measurement. It 
should be realized that the test used for validating 
melodic charge in our performance program can 
hardly be very sensitive to small changes of the 
values. Also, it is possible that the probe tone 
ratings reflect a combination of more than one 
factor, and the position on the circle of fifths is 
merely one such factor. 



Fig. 3. Harmonic charge values for various chords. In a C major tonality t l~e  symbols refer to 
T=C major, S=F major, SS=Bb major, D=G major, DD=D major, DSR=A major, DTR=E major, 
DDR=B major, SR=d minor, TR=a minor, and DR=e minor. The harmonic charge is derived as a 
weighted sum of the chord notes' melodic charge. 

Harmonic Charge 

The harmonic char=, CH, is a weighted sum of 
the chord notes' melodic charges CM,J, CM,IIJ, and 

CM,V: 

The harmonic charge of chords in a C major 
tonality are shown in Figure 3. 

The amplitude of the first note after each chord 
change is increased by AL, which is derived from 
the CH: 

Then, the intermediate notes are given intermediate 
levels, so that crescendos and decrescendos are 
created. Too slow crescendos are hard to notice, and 
therefore such crescendos have to be avoided. T h i c  
is realized by delaying the onset of amplitude in- 
crease until 1.9 sec ahead of the chord change. 
Decrescendos, on the other hand start immediately 
after the chord change. The duration of each note in 
a crescendo or decrescendo is lengthened by a factor 
CDR proportional to the increase in sound level AI,: 

For example, the level increase from a C-major tonic 
to the dominant of the relative of the tonic, or E- 
major, implies an increase in harmonic charge from 
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Fig. 4. Illustration of how crescendos frnd decrescendos are derived from the changes in harmonic 
charge in the harmonic progression. The chord symbols are shown above the music in a notation 
specifying the distance in semitones between the root of the chord and the root of the tonic; minus 
sign denotes minor chord. The harmonic charge values are shown just below the music. The graph 
illustrates the resulting sound level changes. 
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Fig. 5. Correlation between harmonic charge and data gathered by Krumhansl and Kessler mirroring 
listeners' ratings of major chords in a tonality context. The line is the linear regression linc with 
the correlation coefficient r=0.777. In computing this regression the Eb chord was includctl whilc 
the D# chord was not; the line comes close to the mean of the values for Eb and D# chords, 



0 to 12. The level will then increase by a AL = 
1.5*(12)1/2 = 5.2 dB, and the maximum increase of 
duration, occurring at the onset of the new chord, 
will amount to a factor of CDR = (1+0.018*5.2)1/2 
= 1.046, or 4.6 %. 

Chord changes suggested by each test melody 
are decided upon by the user. The principles for 
creating crescendos and decrescendos are illustrated 
in Figure 4. This rule improved the musical accepta- 
bility of the performance of melodies (Thompson & 
al., 1986). This supports the conclusion that the 
harmonic charge is an essential property of har- 
monies in music. 

Again, there is a correlation with regard to the 
major chords with the data gathered by Carol 
Krumhansl and coworkers from listeners' experi- 
ences of various chords in a tonality context, as 
shown in Figure 5. The correlation coefficient 
(r=0.777) is reasonably high but would have been 
considerably higher if the E flat major chord were 
omitted. The harmonic charge of this chord would 
be much higher (C~=28)  if regarded as a D sharp 
major chord. Interestingly, the correlation coefficient 
would have increased if the average of these two 
harmonic charge values had been used. 

This correlation between listeners' evaluations of 
scale tones and chords, on the one hand, and rules 
for the performance of music, on the other, is by no 
means unexpected. On the contrary, given the fact 
that music is communication between a sender (the 
performer) and a receiver (the listener), it seems 

almost trivial that listeners' preferences are in some 
sort of accordance with performers' playing; it 
would merely reflect the self- evident (though rarely 
appreciated) fact that they have a code in common. 

In any event, given the fundamental differences 
between Krumhansl's and our methods of measure- 
ment, it is encouraging to see the correlations in 
Figures 3 and 5; they point toward the possibility of 
bridging the traditional gap between music psycho- 
logy and music performance research, two fields 
that ideally should mutually support each other. 
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HARMONY AND NEW SCALES 

M.V. Mathews, J.R. Pierce, and L.A. Roberts 

INTRODUCTION 

Modem composers have a large appetite for new 
musical materials. This has lead to big changes in 
music including the generalization of the rules of 
traditional harmony in late romantic music, twelve- 
tone music, and music in which periodicity is 
deemphasized, such as percussive music, multi- 
phonic music, and music depending heavily on 
random noises. Although many successful pieces 
have been written with these new materials, both 
composers and listeners have had to struggle to 
provide and appreciate alternatives to the rich har- 
monic structure which is so important in diatonic 
music. For the most part, the new materials do not 
provide alternatives M keys, modulations, and chord 
progressions. 

Is it possible to design new scales which are 
different from diatonic scales but do have perceptible 
and rich underlying harmonic structures? This 
question is very much unanswered. We can certainly 
say it is difficult to create such new materials. The 
major difficulty is that it takes a long time to learn to 
hear and appreciate harmony, and it is difficult to 
predict what can, and what cannot, be learned. Our 
appreciation of diatonic music is an overlearned 

cultural state that has developed over our entire 
lifetimes. Experiments with long-term learning are 
almost impossible to do because of the time in- 
volved. 

Although long-term learning is not one of its 
notable successes, psychoacoustic science has made 
great progress in the last decades. Much has been 
learned about perception, particularly at peripheral 
levels; computers have provided ways of generating 
completely general test sounds; paradigms for 
reliably collecting listener's opinions have been 
developed; data analysis and multidimensional 
scaling methods to understand the experimental 
results have been created. Can we use these scien- 
tific techniques to design new musical materials 
which have prespecified properties? We do not 
know the answer to this question, but we are 
optimistic and hopeful that it is yes. 

In this paper we will discuss three studies. The 
first proposes "intonational sensitivity" as a measure 
of the validity of a chord to form the harmonic basis 
of a scale. Intonational sensitivity is a measure of 
the ability of a listener to hear whether or not a chord 
is in tune. The second study develops a set of new 
scales from two nontraditional chords that have the 
same intonational sensitivity pattern as has the 



traditional major chord from which the diatonic scale 
can be developed. The third study develops a new 
scale by "stretching" the intervals in the diatonic 
scale and also stretching the intervals between the 
partials of the timbres used to play the scale by a 
similar amount so as to preserve coincidences of 
partials in chords in the stretched and unstretched 
scales. Although some theories of harmony would 
predict similar harmonic relationships in the 
stretched and unstretched music, our studies show 
that differences exist. 

INTONATIONAL SENSITIVITY 

We here propose a tool to characterize and study 
chords. We call this tool "intonation sensitivity." 
The operational test for intonation sensitivity is some 
form of judgment test in which listeners say, for 
example, which chord of a pair they prefer. The 
sensitivity of their preference to changes in inton- 
ation is a possible quantitative measure of intonation 
sensitivity. 

In order to explore and validate this test, we have 
studied perceptions of four different chords. Two of 
these chords are traditional: the major triad, in which 
the notes have frequency ratios 4 5 6 ;  and the minor 
triad, with ratios 10: 12: 15. In addition, we have 
used two nontraditional chords. These nontraditional 
chords are also mads but with frequency ratios 3 5 7  
and 5:7:9, respectively. 

These particular nontraditional chords were 
chosen for comparison with the traditional chords 
for two reasons. First, they involve frequencies 
which are not part of any traditional scale system 
(their notes fall in the cracks between the keys of a 
piano). Thus we can study perceptions of these 
chords apart from harmonic biases based on musical 
exposure and training. Second, they have a clear 
pattern of coincident upper partials and a reasonably 
high, unambiguous, fundamental bass. Coincident 
partials are the most important factor in Helmholtz' 
(1954) theory of harmony. The fundamental bass is 
the key to Rameau's (1971) theory of harmony and 
is also important in Terhardt's (1974, 1977) recent 
extension of Rameau's theory. 

For the chords we are studying, the pattern of 
the coincident partials and the fundamental bass 
frequency is immediately apparent from the fre- 

quency ratios of the tones in the chords. For 
example, for the major chord with ratios 4 5 6 ,  the 
5th harmonic partial of the first note will have the 
same frequency as the 4th harmonic partial of the 
second note. For the 3 5 7  chord, the 5th partial of 
the fust note will be coincident with the 3rd partial 
of the second note, and so on. 

The ratio of the fundamental bass to the 
frequency of the lowest note in the chord is simply 
the number specifying the frequency ratio of that 
note. Thus for the major chord (4:5:6), the fre- 
quency of the fundamental bass is 114 the frequency 
of the lowest note of the chord. For the 3:5:7 chord, 
the frequency of the fundamental bass is only 113 
that of the lowest note. 

The minor chord (ratios 10: 12: 15) differs from 
the major and nontraditional chords. The frequency 
of its fundamental bass is at 1/10 the frequency of its 
lowest note and coincidences occur at higher num- 
bered partials than for the other three chords. 
Consequently, we might expect results for the minor 
chord to be unique. 

In order to implement a test of intonation sens- 
itivity, several versions of each chord were synthe- 
sized in which the frequency of the center note of the 
chord could be varied from its just value (where 
"just" means integer frequency ratio). The upper and 
lower notes were kept at their just frequencies. 

Listeners heard two versions of a chord, one 
following the other, and were asked to make judg- 
ments about these chords. The center note of each 
chord deviated from just intonation by 30 cents 
below to 30 cents above just intonation (1 cent = 
1/100 semitone). This range was selected on the 
basis of preliminary listening tests. However, it is 
also in the same order of magnitude that some inter- 
vals in the equally-tempered scale deviate from just 
intervals. For example, the equally-tempered major 
third is 14 cents larger than the just major third; the 
equally- tempered minor third is 16 cents smaller 
than the just minor third. 

If listeners' preference curves for intonation are a 
monotonic function of the absolute deviation of the 
intonation from some ideal intonation, then a quanti- 
tative evaluation of intonation sensitivity should be 
easily made. Our results show that this view is too 
simplistic. Intonation preferences are nonmonotonic 
in interesting ways. The nonmonotonicity compli- 



cates the quantitative evaluation of intonation sens- kHz, and played over a loudspeaker. 
itivity, but does not invalidate the concept. Each chord contained three tones. Each tone 

Experiment on intonational sensitivity 
In each session of a listening experiment, 

subjects listened to a series of 80 trials. Each trial 
consisted of two chords, each lasting 1 second and 
separated by 1 second of silence, A period of 5 
seconds was allowed between mals for the subjects 
to write an opinion about the chords on an answer 
sheet. Each session lasted about 15 min. 

The stimuli were generated by a computer, using 
the Music V sound synthesis program (Mathews, 
1969). The samples of the sound waveform were 
read from a disk by an SEL 32 computer at a rate of 
20 900 samples per second, converted to an analog 
signal with a 16 bit digital-to- analog converter, 
filtered with a Rockland 752A low-pass filter set at 8 

consisted of ten partials whose amplitude decreased 
with frequency relative to the fundamental at 9 dB 
per octave. Phases of the partials were randomly 
selected to be 0 or 180 degrees, in order to achieve a 
tone with a reasonably low-peak factor. The tones 
commenced with a linear attack lasting 15 ms and 
ended with a linear decay lasting 18 ms. These 
parameters were selected to achieve a musical 
sound-quality. The timbre can be described as a 
typical bland electronic organ timbre. The sound 
pressure level in the test booth was not measured, 
but was set at a comfortable listening level estimated 
to be about 70 dB at the subjects' ears. 

As discussed above, four different kinds of 
chords were studied: major chords (just frequency 

TABLE 1. Frequencies in Hertz of the three tones in the 
stimulus chords. 

Major 
[4:5:6) 

Minor 
(10: 12: 15) 

Deviation of f 2  from 
just intonation,cents £1 £2 



ratios 4:5:6); minor chords (just frequency ratios 
10:12:15); and two nontraditional chords (just 
frequency ratios 3 5 7  and 5:7:9). Five versions of 
each type of ed from their just ratios. The frequency 
of the lowest note of the chord was synthesized as 
262 Hz (middle C) for all chords. Table I gives the 
actual frequencies used for the chords. 

Subjects were presented with all possible pairings 
of the five different intonations within each of these 
four chords, thus resulting in 20 different uials. 
Trials for the different chord types were intermixed. 

For each trial, the subjects indicated on their 
answer sheets which of the two chords sounded 
more in tune. In a later experiment, which we will 

not discuss here, they judged two other qualities of 
these chords: which chord was more smooth, and 
which was more pleasant. Results for these ques- 
tions were essentially the same as for the intonation 
question. 

For each chord, we derived a score based on the 
number of times a particular chord was selected as 
being more in tune. Each particular chord was paired 
with eight other chords within the same chord type 
(e.g., major). If a chord was always selected, it was 
given a score of 8; if it was never selected, it was 
given a score of 0, and so on. Thus we were able to 
compare perceptions of these chords across the four 
different chord types. 

Fig. 1. Ratings, averaged across chord type, for each of the 13 subjects. Rating (based on the 
derived score) is plotted as a function of the deviation of the center note from just intonation (in 
cents). 



Subjects were 13 volunteers from Bell 
Laboratories in Murray Hil1,N.J. They varied 
greatly in terms of their musical expertise, ranging 
from professional violinist to musically untrained. 

Figure 1 shows the results for each of the 13 
subjects, averaged across chord type. The abscissa 
gives deviations from just intonation and the 
ordinate gives the derived scores, described above. 
It is important to note that all listeners were able to 
discriminate among the different intonations. 

We were very surprised to observe that subjects 
showed two distinct patterns. Nine subjects (top 
three rows of Fig.1) had " M  patterns, in which 
chords deviating from just intonation by +l5 and - 
15 cents are judged to be most in tune and chords 
with just intonation or deviating fiom just intonation 
by +30 and -30 cents are judged to be less in tune. 
For reasons to be discussed later, we describe these 

subjects as "rich" listeners. A second distinct pattern 
is apparent for the four subjects shown on the 
bottom of Fig. 1. It shows inverted "V" patterns, in 
which just chords were preferred to all others. We 
refer to this group as "pure" listeners. The grouping 
of the listeners does not correspond to any classifi- 
cation according to training that we have been able to 
discover. 

As a result of this apparent grouping, we 
combined the data for each group. This is shown in 
Fig. 2, where results are averaged across chord and 
across subjects for each group. This figure shows 
very clear "inverted-V" and "M" functions, each of 
which is very symmetrical. 

We were interested in seeing whether these 
patterns occurred for all four chord types. Figure 3 
shows the results for the "rich" listeners. For the 
major, 5:7:9, and 3:5:7 chords, patterns are very 

-30 -15 0 + l 5  t30 
DEVIATION FROM J U S T  INTONATION 

Fig. 2. Ratings for the two groups of listeners, averaged across chord type. Rating (based on the 
derived score) is plotted as function of deviation of the center note from just intonation (in cents). 
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Fig. 3. Rating for the "rich" listeners for each of the four chords. 

similar. The minor chord shows a different pattern, 
in which subjects preferred the chord in which the 
third of the chord deviated from just intonation by - 
15 cents. 

Figure 4 shows results for the "pure" listeners. 
The major 5:7:9 and 3 5 7  chords again have very 
similar patterns, whereas the minor chord appears to 
behave somewhat differently. 

From this experiment we conclude that: 
(1) the nontraditional chords have a pattern of in- 
tonational sensitivity similar to that of major chords; 
(2) that listeners fall into two groups: one of which, 
the "pure" group, prefers chords with just intonation 
and the other of which, the "rich" group, prefers 
chords which deviate enough from just intonation so 
a pleasant beating can be heard; and 

(3) the minor chord is judged differently from the 
other chords. 

Discussion of intonational sensitivity 
Intonation sensitivity appears to be useful for 

studying harmonic structures such as chords. All 
subjects were able to discriminate chords that had 
only small intonation differences. Furthermore, their 
discrimination functions resulted in regular patterns 
for both traditional and nontraditional chords. 

Our subjects divided into two classes according 
to the shape of their intonation preference functions. 
The "purists" prefer just intonation. Their prefer- 
ences decrease monotonically as intonation deviates 
from just intonation. The "rich" listeners do not 
prefer just intonation, but rather prefer intonation 
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Fig. 4. Rating for the "pure" listeners for each of the four chords. 

slightly different from just intonation. In most cases, 
their preference curves have an M-like shape, In 
some cases, particularly for the minor chord, the M 
is asymmetrical with a greater preference for the 
intonation deviation which is present in equally- 
tempered chords. 

We have two possible explanations for these 
group differences. The first is that whereas "pure" 
listeners do not like beats, "rich" listeners do. 
Judgments for the latter group may be due to the 
perceptual similarity between slow beats and vibrato 
rates. The beat rate of the preferred stimuli (devia- 
tions from just intonation by +/- 15 cents)is similar 
to the average vibrato rate of 6.5 pulsations per 
second reported by Seashore. 

Another explanation is that "rich" listeners like 
chords in equal temperament. For the equally- 
tempered major chord, the major third frequency is 
14 cents higher than the just major third. "Rich" 
listeners tended to favor chords that deviated from 
just intonation by + 15 cents. This explanation is 
further supported by the finding that,for both 
groups, the minor chord was preferred when the 
third deviated from just intonation by -15 cents. 

The nontraditional chords which we studied have 
clear and strong patterns of intonation sensitivity. 
These regularities suggest that these nontraditional 
chords are appropriate both for experimental studies 
of harmony and for new compositional systems. 
Our results strongly suggest that intonation for the 



two nontraditional chords (just frequency ratios of 
3 5 7  and 5:7:9) is perceived in the same manner as 
that for the major chord Cjust frequency ratios of 
4:5:6). 

Finally, it is not too surprising that the minor 
chord is judged differently from the other chords. It 
has fewer overtones that can beat with each other. 
Its fundamental bass is at 1/10 the frequency of its 
lowest note, which is lower than any of the other 
chords. Consequently, we might expect results for 
the minor chord to be unique. 

SCALES BASED ON THE 
NONTRADITIONAL CHORDS 

Following the intonational sensitivity study, 
Mathews designed several scales based on the 3 5 7  
and 5:7:9 chords using techniques similar to the way 
in which the just diatonic scale can be derived from 
the major ( 4 5 6 )  chord (Mathews & al., 1984). 
Although the harmony of the chords on which the 
scales were based clearly contrasted with the 
harmony of other random triads formed from scale 
notes, many important features in diatonic music 
could not be represented in these scales and, so far, 
no music has been composed with them. In partic- 
ular, different keys and modulation are not included. 

The Pierce scale 
The Pierce scale was actually first discovered by 

H. Bohlen (1978), who published an article in 
Acustica, in which he described the scale almost 
exactly as we have done here. The work was not 
known to us at the time we did our research or 
prepared the draft for this article. However, now 
that we have read the Bohlen paper, we believe that 
it is clear that he proposed exactly the same scale 
including the tempered form of the scale using the 
13th root of 3 as the tempered factor and including 
timbres which have only odd partials such as a 
square wave for playing this scale. Bohlen derived 
his scale from a theory of combination tones and, in 
particular, combination tones involving 3*f 1 - 
f 2 . We derived the scale based on experimental 
measurements of the intonational sensitivity of the 
3 5 7  and 5:7:9 chords. The two sources for the 
scale, although different, are not in conflict, since 

Bohlen's derivation was primarily theoretical and 
ours was primarily experimental. We find it 
heartening that we arrived at the same result from a 
completely different direction. Obviously there is no 
question about who derived the scale first, since 
Bohlen published a decade sooner than we did. 

After learning about intonational sensitivity and 
the 3 5 7  and the 5:7:9 chords, Pierce devised a set 
of scales based on both of these chords. More 
specifically he devised a 13 tone equal-tempered 
chromatic scale and a set of 13 different scales each 
of which has 9 tones that are subsets of the the 
chromatic scale. The chromatic Pierce scale is 
analogous to the normal chromatic scale and the 13 
other scales are analogous to the 12 diatonic major 
scales that are the different keys of normal music. 

The Pierce chromatic scale is based on a 3:5:7:9 
tetrachord and consists of 13 steps, each having a 
frequency ratio of the 13th root of 3. The repetition 
interval in the Pierce scale is 1:3. This is analogous 
to the octave or 1:2 repetition interval in the diatonic 
scale. The 1:3 ratio is the ratio of the highest to the 
lowest tones of the tetrachord. We have chosen to 
call this 1:3 ratio, the tritave. 

Appropriate powers of the 13th root of 3 give 
excellent approximations to the frequency ratios in 
the 3 5 7  chord. Table 2 computes the approxi- 
mation of these powers to the chord in musical cents 
and for comparison does the same computation for 
the equal-tempered diatonic scale to its major triad, 
4:5:6. The maximum error in the Pierce scale 
approximation is 6.6 cents which compares to H 

maximum error of 15.6 cents for the diatonic. I'ht 
average absolute error in the Pierce scale is 4.4 cents 
while the average absolute error in the diatonic scale 
is 10.4 cents. The equal- tempered approximation of 
the Pierce scale to its chord is somewhat better than 
is this approximation for the diatonic scale. 

The 13th root of 3 seems to be an appropriate 
choice to approximate a 3:5:7:9 chord. How was i t  
discovered? The factor 3 came from the chord itself. 
The 13th root was chosen by trial and error from a 
series of integer roots. This root just happens to ap- 
proximate the chord well and to produce an ap- 
propriate number of tones in the tritave. 

The structure of the Pierce scale is diagramed in 
Figure 5. A circle, representing a 3:l frequency 
ratio, is divided into 13 equal steps which are noted 



Table 2 .  Comparison of t h e  equal  tempered i n t e r v a l s  i n  t h e  
P ie rce  and t h e  d i a t o n i c  s c a l e s  t o  i n t e g e r  r a t i o s  of t h e  
chords which form t h e  b a s i s  of t h e  s c a l e s .  

Table 2 ( a )  P ie rce  Scale  

Scale  S tep  I n t e r v a l  In teger  In teger  Ra t io  Difference 
i n  cen t s  Ratio i n  c e n t s  

N ZP CR CRC ZP - CRC 

Table 2 (b )  Diatonic Scale  

Scale  S tep  I n t e r v a l  In teger  In teger  Ra t io  Difference 
i n  cen t s  Rat io  i n  c e n t s  

N ZD CR CRC ZD - CRC 

0,1, ..., 12. Also shown are the nine tones selected 
from the 13 to be the scale for a particular key. 
These are designated 1,II ,..., K. 

The selection of the nine tones is much more 
arbitrary than the selection of the 13 chromatic steps. 
However, their choices are important because they 
determine both the harmonic "structure" and the 
modulation properties of the scale. 

With the particular choices we have made, the 
intervals in the scale are alternately one-step and 
two-steps throughout the scale except for the tonic 
(I) which is surrounded by two one-step intervals. 
The position of these two single steps identifies the 
tonic and hence the key. The thirteen possible keys 
correspond to the thirteen different positions of the 
tonic. 

In the diatonic scale, the 2: 1 octave is related to 
the 2: 1 ratio between the frequencies of the funda- 
mental and the first partial of most periodic tones. 
Many of the perceptible properties of the diatonic 
scale depend on this 2:l ratio. The Pierce scale is 
intended to be played with timbres which have only 
odd partials--1% 3rd, Sth, etc. Thus the ratio of the 
frequency of the first two nonzero partials is 3: 1, the 
same as the 3:l ratio of the tritave. 

What kind of instruments could play the Pierce 
scale? Although one might design acoustic instru- 
ments with appropriate timbres and pitches, such 
tasks would require a great deal of work. On the 
other hand, computers and electronic synthesizers 
can easily be programmed for these purposes, and 
they are the obvious first choice to play this music. 
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Fig. 5.  Diagram of Pierce scale and the "major" and "minor" chords falling within one kcy of ~ h c  
scale. 

Triads 
The Pierce scale has three special triads, the first 

being a major chord having a lower interval of 6 
steps and an upper interval of 4 steps. This triad 
approximates the 3:5:7 chord. The minor triad 
reverses the intervals in the major chard and has a 
lower interval of 4 steps and an upper interval of 6 
steps. The third triad, which approximates the 5:7:9 

chord, is the first inversion of the 3 5 7  chord. 
The positions of the major and minor triads 

which fall inside a given key are indicated on Figure 
5. There are 6 major chords and 6 minor chords in a 
key. All scale steps are in both a major chord and a 
minor chord; hence any scale step can be harmo- 
nized by either a major or a minor chord, suitably 
inverted. 



Modulation 
The tonic can be positioned at any one of the 

thirteen steps which span the tritave, thus allowing 
thirteen possible keys. Different keys share various 
numbers of notes. In particular, each key can 
modulate to two adjacent keys by changing only one 
note. 

Following the notation on Figure 5, moving the 
I1 note up by one step will cause the new tonic to 
rise to the 111 note of the original scale (3rd position 
of the chromatic scale). We will call this third 
position the dominant and the corresponding modu- 
lation a movement into the dominant key, Moving 
the D( tone down by one step will cause the tonic to 
fall to the V111 note of the original scale (10th 
position of the chromatic scale). We will call this 
V111 position the subdominant and call the cone- 
sponding modulation a change into the subdominant 
key. A major chord begins on both the dominant and 
subdominant notes of the scde. 

Validation of the Pierce scale 
After creating a new scale, how can one quickly 

find out what it is good for? Are there listening tests 
and laboratory studies that can precede the long slow 
process of trying to compose significant music with 
the the new scale? Can the laboratory results aid the 
composer in comng to terms with the new medium? 

Attempting to answer questions like these has led 
us into new and uncharted waters where much 
remains to be learned. We will describe the results 
of two sorts of test here, The first: consonance 
judgments of all possible triads, seem to us to be 
musically interesting and encouraging. The second: 
similarity judgments of chords and their inversions, 
show some of the difficulties which appear to arise 
from long-term learning effects. These two kinds of 
studies are obviously far from sufficient to under- 
stand new musical materials. Finding other good 
paradigms is one of the most interesting questions 
we presently face. 

Consonance judgments of 78 triads 
One of the simplest and best defined properties 

of chords is consonance and dissonance. Conse- 
quently, we collected consonance ratings for chords 
in the Pierce scale from musically trained and 
untrained listeners. In addition to chords that lie 

within one key, one can play chromatic chords 
which have arbitrary combinations of the 13 tones in 
the tritave. Exactly 78 triads can be formed which 
span no more than one tritave. 

Twelve musicians and twelve untrained listeners 
participated in the tests. Musicians were graduate 
and undergraduate music students at the Juilliard 
School in New York; untrained subjects were 
selected from the subject pool at AT&T Bell 
Laboratories in Murray Hill, N.J. All of the 
musicians had at least 10 years of private instruction 
on an instrument, and subjects in the untrained 
group had little or no formal musical training. 

Subjects listened to a triad and rated its 
consonance on a 7-point scale, where 7 was 
designated as very consonant and l was very 
dissonant. All subjects listened to three repetitions of 
the 78 triads. There were three blocks of trials. Each 
block had different random orderings of the 78 
triads. A triad was heard for a duration of 1 second 
and subjects had 5 seconds in which to record their 
responses on the provided answer sheets. 

The triads were generated on a computer, using 
the CMUSIC sound synthesis program. Each tone 
of a triad consisted of odd-numbered partials 
(1,3,5,7,and 9) with amplitudes respectively of l ,  - 
-35, -.19, .125, and -.089. The negative amplitudes 
corresponding to 180 degree phase shifts were 
chosen to reduce the peak factor of the waveform. 
The tones began with a linear attack lasting 15 msec. 
and ended with a linear decay of 18 msec. The root 
of each triad was always 175 Hz. 
The principal results from the study are as follows: 
a) A wide range of perceived consonance and 
dissonance is observed between the most consonant 
and the most dissonant chords. Thus, consonance 
can be a major property of a chord. 
b) The strongest factor explaining the dissonance of 
a chord is the presence of one scale-step interval(s) 
in the chord. 
c) Major and minor chords are relatively consonant 
compared to the average chords. 
d) A "critical band dissonance" model gives a good 
fit to much of the data. 

Table 3 gives the mean consonant ratings for the 
8 most consonant and the 8 most dissonant chords 
for each group of listeners. Each chord is indicated 
by the position of its tones along the Pierce 



Table 3. Mean consonance ratings for the 8 most consonant and the 
8 most dissonant chords for the two groups of listeners. 

Most Consonant Most Dissonant 
Musicians Untrained Musicians Untrained 

Chord Mean Chord Mean Chord Mean Chord Mean 
\ 

chromatic scale. For example, the 0,1,2, chord 
comprises the first 3 three tones of the scale. For 
both groups, mean judgments encompassed a fairly 
wide range, which indicates that listeners were able 
to differentiate these chords. For the musicians, 
mean judgments ranged from 1.61 to 5.31 and for 
the untrained group, judgments ranged from 2.47 to 
4.97. It is not surprising that musicians had a wider 
range of scores; their training may have resulted in 
more consistent ratings of these chords. 

All of the 8 most dissonant chords have intervals 
of one scale-step. The most dissonant chord, as 
judged by both groups, has two one-step intervals, 
and there is considerable agreement between the two 
groups on what are the most dissonant chords. 

For the most consonant chords, agreement 
between groups is not as good and neither the major 
(0,6,10) chord and nor the minor (0,4,10) chord is 
rated as outstandingly consonant. However, as 
shown in table 4, these two chords and the first 
inversion of the major chord are ranked as relatively 
consonant among all possible chords. Although we 
would have been happy to see greater uniqueness 
for the major and minor chords, we feel that their 
consonance is musically useful. Also, we hope that 
learning effects will enhance theu distinctiveness. 

Table 4 compares the consonance ratings of the 
special chords with that of adjacent chords in the 
chromatic scale. These tables do not show maxima 

corresponding to the peaks of intonational sensitivity 
which these chords exhibited (see Fig 4). We feel 
that this lack may be explained by the different 
experimental methods used in the two studies. In 
particular, the paired comparisons made in the 
intonational sensitivity studies are more sensitive 
than the consonance judgments of individual chords 
made here. However, it was necessary to use a 
faster method to judge 78 chords; paired com- 
parisons of this many stimuli would have been 
impossibly long. 

Model to explain consonance judgments 
In an attempt to explain the dissonance 

judgments more completely, we have proposed a 
model similar to that of Plomp and Levelt (1965). In 
this model, the dissonance of two sinusoids is 
maximum if they are separated by a particular 
number of cycles per second, usually thought to be 
about 20, and the dissonance diminishes if the 
separation is either less than or greater than the 
maximum. Specifically, our model proposes the 
dissonance measure as 

where fl,  f2, and f3 are the fundamental frequencies 
of the three tones in the chord and F is the function 
shown in Figure 6. In Figure 6, q is the separation 



Tab le  4 .  Mean consonance r a t i n g s  f o r  b o t h  groups  of 
l i s t e n e r s  f o r  t h e  "Major" and "Minorn chords  and  f o r  t h e  
chords  t h a t  a r e  i n  t h e  r eg ion  of t h e s e  chords  

Chord 

0 1 5 , 1 1  
01 5 1  9  
O t  61 9  
0 , 5 , 1 0  
0 , 6 , 1 0  (major)  
0 , 7 , 1 0  
0 , 6 , 1 1  
O r 7 1  9  
0 , 7 , 1 1  

0 1 3 1  8 
01 3 1 6  
O r  4 1 6  
O r  3 , 7  
0 , 4 , 7  (major i n v )  
O t  5,7 
0 , 4 1 8  
Ot 5 r 6  
O r  5 1  8  

0 1 3 1 1 1  
0 1 3 1 9  
01 4 r 9  
0 , 3 , 1 0  
0 , 4 , 1 0  (minor) 
0 , 5 , 1 0  
0 1 4 , 1 1  
O t  5 r 9  
0 , 5 , 1 1  

Mean f o r  
Musicians 

frequency for the maximum dissonance, s is the 
maximum separation for which components produce 
dissonance. The model makes the following 
assumptions: 1) Dissonance of separate pairs of 
components is additive (Eq. 1); 2) Only interactions 
between the fundamentals in the tones are significant 
(since the tones had only odd harmonics, none of 
the audible overtones are less than a critical 
bandwidth apart); 3) The function F is piecewise 
linear as shown. 

Mean f o r  
Un t ra ined  

Figures 7 a ~ d  8 show the correlation between the 
Eq 1 model and the subjects' dissonance ratings for 
various values of q and S, for trained and untrained 
subjects respectively. The magnitudes of peak 
correlations, .89 for the untrained subjects and .75 
for the trained subjects, are surprisingly high. The 
lower correlation for the musicians may be attributed 
to their expertise with diatonic chords which may 
confuse their judgments of the Pierce scale chords. 

The high correlations give us confidence in the 
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Fig. 6. Hypothesized function with two parameters, q and S, which relates dissonance to thc 
frequency separation of two components, fi and fj. 
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Fig. 7. Correlation between the consonance ratings of 78 chords by musicians and the dissonance 
model in Eq. (1) as a function of the model parameters q and S. 
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Fig. 8. Correlation between the ~(nsonance W g s  of 78 chords by untrained subjects and the 
dissonance model in Eq. (1) as a function of the model parameters q and S. 

usefulness of the model for predicting subjects' 
reactions to the various chords. However, some 
peculiarities in the results diminish the attractiveness 
of the model. Maximum correlations occur for q = 
10, S = 10 for the trained subjects and for q = 10,s = 
20 for the untrained subjects. For these small values 
of q and S, only a few one scale-step intervals make 
a nonzero contribution to the sum in Eq 1. It seems 
to us that intervals other than one scale-step intervals 
must also be important but we have not yet 
appropriately modeled their contributions. 

Similarity of chords and their inversions 
In order to harmonize any note of the Rierce 

scale with a major or a minor chord, i t  may be 
necessary to invert the chord. The use of invertefl 
chords is only justified if listeners perceive a chord 
and its inversion as similar. There is no guarantee 

that this similarity holds for Pierce scale chords, 
which are inverted around the tritave rather than the 
octave. Consequently, we decided to study these 
similarity perceptions. For comparison we have 
collected similar data for traditional major and minor 
chords. Again, we used both tiained and untrained 
listeners as subjects. Ten musicians and ten un- 
trained listeners listened to pairs of triads and judged 
their similarity on a 9-point rating scale, where 9 
was designated as very dissimilar and l was very 
similar. 

All subjects listened to major and minor triads 
from the Pierce scale as well as to traditional major 
and minor triads. For both types of stimuli, triads 
were in root position, first inversion and second 
inversion. In addition, for both the Pierce and the 
traditional chords, three different root notes were 
chosen. Table 5 shows the specific stimuli that were 



T a b l e  5 .  T h e  s t i m u l i  used f o r  t h e  s i m i l a r i t y  e x p e r i m e n t .  

I .  P i e r c e  C h o r d  S e t  

C h o r d  N o t e s  of t h e  C h o r d  C h o r d  N o t e s  of t h e  C h o r d  

I M a j  0 , 6 , 1 0  
I M a j  1 6 , 1 0 , 1 3  
I M a j  2  1 0 , 1 3 , 1 9  

V 1 1 1  M a j  - 3 , 3 , 7  
V 1 1 1  M a j  3 , 7 , 1 0  
V 1 1 1  M a j  2 7 , 1 0 , 1 6  

V I I I #  M a j  - 2 , 4 , 8  
V I I I #  M a j  1 4 , 8 , 1 1  
V I I I #  M a j  2  8 , 1 1 , 1 7  

I m i n  0 , 4 , 1 0  
I m i n  1 4 , 1 0 , 1 3  
I m i n  2  1 0 , 1 3 , 1 7  

V 1 1 1  m i n  - 3 , 1 , 7  
V 1 1 1  m i n  1 1 , 7 , 1 0  
V 1 1 1  m i n  2  7 , 1 0 , 1 4  

V I I I #  m i n  - 2 , 2 , 8  
V I I I #  m i n  1 2 , 8 , 1 1  
V I I I #  r n i n  2 8,11,15 

N o t e :  0 = 2 6 2  Hz, l = f i rs t  i n v e r s i o n ,  2  = second 
i n v e r s i o n .  T h e  r o o t s  of t h e  chords are depicted i n  t e r m s  of 
t h e  r o m a n  n u m e r a l s  i n  t h e  o u t s i d e  of t h e  c i rc le  s h o w n  i n  
F i g u r e  l; t h e  notes  of t h e  chords are i n d i c a t e d  by t h e i r  
p o s i t i o n  i n  t h e  i n n e r  c i r c le  s h o w n  i n  F i g u r e  1. 

11. T r a d i t i o n a l  C h o r d  S e t  

C h o r d  N o t e s  of t h e  C h o r d  C h o r d  N o t e s  of t h e  C h o r d  

C  M a j  C I E I G  
C M a j  1 E , G , C 1  
C  M a j  2  G , C ' , E V  

G  M a j  G - 1 , B - 1 , D  
G  M a j  1 B - 1 , D , G  
G  M a j  2  D, G, B  

A  M a j  A - l , C # , E  
A  M a j  1 C # , E , A  
A  M a j  2 E , A , C #  

C  m i n  C, E b ,  G  
C  m i n  1 E b ,  G, C '  
C  m i n  2  G , C 1 , E b  

G  m i n  G - 1 , B b - l , D  
G m i n  1 B b - l , D , G  
G  m i n  2 D , G , B b  

A  m i n  A - 1 , C , E  
A  m i n  1 C ,  E, A  
A  m i n  2 E , A , C 1  

N o t e :  C  = 2 6 2  Hz, 1 = f i r s t  i n v e r s i o n ,  2  = s e c o n d  i n v e r s i o n .  

used. Given the set of 18 triads for each stimulus 
type, there were 153 pairs of chords for both the 
Pierce and the traditional chord set. Stimulus pairs 
were randomly ordered and they were presented in 
four blocks of 40 trials per block. Half of the 

subjects rated the Pierce triads first and half rated the 
traditional triads first. 

I-lierarchical clustering analyses (Becker & 
Chambers, 1984) were carried out on two stimulus 
sets for both groups of listeners. The clustering 
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Fig. 9. Similarity judgements of Pierce chords and their inversions by musically trained (9a) and 
untrained (9b) subjects. 
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Fig. 10. Similarity judgements of diatonic chords and their inversions by musically trained (10a) 
and untrained (lob) subjects. 



solutions are given in Figures 9 (results for the 
Pierce chord set) and 10 (results for the traditional 
chord set). 

For both groups of listeners, the clustering 
solution for the Pierce chord set depends primarily 
on pitch height or average pitch of the chord. There 
is little indication that similarity judgments were de- 
pendent on chord type, inversion, or key relation- 
ships. 

Results for the traditional chord set are also 
dependent on pitch height for the untrained group, 
as shown in Figure lob. There is a configuration of 
the lower pitched chords in the right-hand side and a 
configuration of higher pitched chords in the left- 
hand side. Within these larger clusters, there are five 
pairs of clusters in which the bass notes are 
identical. 

Results differ markedly for the traditional chord 
set for the musicians. The strongest result is that 
chords were clustered by inversion. Root positions, 
fist inversions, and second inversions are clustered 
together for the A major, A minor, C major and C 
minor chords. In the case of the G chords, the G 
minor root-position chord is clustered with its fist 
inversion and the first and second inversions of the 
G major chord are clustered together. 

Similar findings for traditional chords were 
reported in previous research (Roberts & Shaw, 
1984). In that study, highly-trained and less-trained 
listeners judged the similarity of root positions and 
first inversions of major, minor, diminished, and 
augmented chords. As was observed in the present 
solution for the musicians, the clustering solution 
for the highly-trained group was dependent on chord 
type and inversion, but results for the less-trained 
group appeared to be based on pitch height only. 

Together, these results suggest that, when 
listeners are not taught what to listen for, they ab- 
stract information mainly about pitch height. But, as 
a result of a great deal of training and experience 
with particular scale systems, they are able to ab- 
stract information about interval structure, key 
relationships, the relationship between chords and 
their inversions, etc. Therefore, it is not surprising 
that in the present study, highly-trained musicians 
judged the Pierce chord set in the same way as the 
untrained group. And we may hope that with 
sufficient experience and training that people could 

learn to perceive similarities between root position 
and inverted Pierce chords, as they do for diatonic 
chords. 

Conclusions from the Pierce study 
We have explored a new set of scales based on 

the frequency ratios 3:5:7:9, the ratio 3:9 = 1:3 being 
the tritave, which replaces the octave of the diatonic 
scale. Although one can construct just versions of 
these scales, we have been mostly concerned with 9 
tone tempered scales which are subsets of a 13 tone 
chromatic scale having steps whose frequency ratios 
are the 13th root of 3. The tempered scale allows 13 
keys, reached successively by moving one note of a 
scale by one step. 

In the chromatic scale, exactly 78 triads can be 
formed which span no more than one tritave. These 
were rated by both untrained subjects and by music 
students at Juilliard. A wide range of perceived 
consonance and dissonance was observed. The 
strongest factor explaining dissonance is the 
presence of one scale-step interval(s). A "critical 
band dissonance" model fits the data well. Major 
and minor chords are relatively consonant. 

Trained and untrained subjects rated the similari- 
ties among chords and their two inversions on three 
roots, both for the diatonic scale and the new scale 
Trained subjects rated the inversions of chords as 
similar to the root position chord in the diatonic scale 
but not in the new scale; untrained subjects did  no^ 

find the inversions similar to the chord in root posi- 
tion in either scale. This seems to indicate that the 
similarity of inversions might be learned in the nt: W 

scale. 

STRETCHED DIATONIC SCALE 

The last study discussed in this paper deals with 
a stretched diatonic scale in which both the intervals 
between the notes of the scale and the intervals 
between the partials of the timbres that are used to 
play the scale have been stretched or increased by 
the same factor. In this way the relative sizes of the 
intervals between panials of the various notes in a 
chord are the same in the stretched and the 
unstretched material. In particular, partials that are 
coincident in frequency in a diatonic chord will also 



be coincident in the stretched version of that chord. 
Thus harmonic effects that depend on coincident 
partials should be preserved in the stretched music. 

Originally we had hoped that many harmonic 
properties of the diatonic scale would be present in 
the stretched scale and therefore that stretching 
would provide a way to generate new scales with 
rich harmonic properties. Our expectations so far 
have been fulfilled only to a limited extent. 

Theories of harmony 
In a book first published in 1863, Helrnholtz 

(1954) proposed that dissonance arises from 
unpleasant beats between partials whose frequencies 
are too close together; for example, partials sepa- 
rated by 10 - 50 Hz. The octave is the most conso- 
nant of intervals because all of the harmonic partials 
of the upper tone coincide in frequency with partials 
of the lower tone. The fifth is consonant because the 
frequencies of the fundamentals (first partials) of the 
two tones have a simple ratio, 312, and because of 
this the lower partials of the two tones either 
coincide, or they are considerably separated in fre- 
quency and do not beat together objectionably. 

Helmholtz's work has been added to by that of 
others. Particularly, Plomp and Levelt (1965) found 
in 1965 that two (or more) partials that lie within 
what is called a critical bandwidth produce an un- 
pleasant sensation (unless they differ very, very little 
in frequency). For frequencies above, say, 500 Hz, 
a critical bandwidth is about 114 octave (a minor 
third). However, Plomp and Levelt were careful to 
call the consonance of tones whose partials are 
separated by more than a critical band a "tonal con- 
sonance," and not to imply that this consonance is 
all there is to musical harmony. 

Rameau (1971) had another view of harmony. 
He observed that in a major triad all frequencies 
present are integer multiples of a basse fundamentale 
or fundamental bass which, in the root position of 
the chord (C,E,G) lies two octaves below the root of 
the chord (C). Thus, if the frequency of the funda- 
mental bass is F, the frequency of the root (C) is 4F, 
the frequency of the third (E) is 5F, and the fre- 
quency of the fifth (G) is 6F. Because Rameau 
regarded the octave as essentially an equality, he 
could identify the fundamental bass of the chord 
with its root. 

Neither Rarneau nor Helmholtz knew of the 
phenomenon of residue pitch or periodicity pitch, 
which Schouten (1938) described. When we are 
presented with harmonic partials in the absence of 
the fundamental, we perceive the pitch as the least 
common denominator of the frequencies present, 
that is, as the frequency of the missing fundamental. 
Thus, when we listen to a major mad we might well 
hear Rameau's fundamental bass. Terhardt has 
discussed this (1974) and has demonstrated the 
effect (1977). 

The experiments we shall describe are relevant to 
the two views of harmony described above. But, 
one might hold that musical harmony is merely a 
matter of brainwashing; that we accept combi- 
nations of tones we have been taught are correct, 
and reject those that we have been taught are in- 
correct. We have some experimental evidence that 
bears on this. 

Tones used and intent of experiments 
In our experiments, we have used tones with 

stretched partials, as Slaymaker (1970) did. The 
frequencies f(i,j) of the partials of such a tone are 
given by 

Here i is the scale step (i = 12 for an octave), j is the 
number of the partial and A is the frequency ratio of 
the pseudo octave. For a true octave, A = 2 and 

we see that f(i,j) gives the frequencies of harmonics 
of the notes of an equally-tempered scale. 

Within the accuracy of the equally-tempered 
scale, major triads made up of notes of the true 
octave scale satisfy the criterion of Rameau; the 
frequencies of partials are all integer multiples of a 
fundamental bass. They also satisfy the criterion of 
Helmholtz. All lower partials either coincide or are 
well separated. If all the frequencies present in the 
triad are stretched according to Eq.2, all the lower 
partials still coincide or are well separated. So, 
Helmholtz's criterion will be satisfied in the 
stretched triad. But, in the stretched triad the partial 



frequencies are no longer multiples of a fundamental 
bass frequency. There will no longer be a basis for a 
periodicity pitch. Rameau's criterion will not be 
satisfied. 
To summarize our conjectures about stretched tones: 
1) Harmonic effects which exist in stretched mate- 
rials are produced by interactions of stretched parti- 
a l ~ .  
2) Harmonic effects which disappear in stretched 
materials are produced either by periodicity pitch or 
by brainwashing. 
3) It is hard to separate brainwashing effects from 
other effects. 

Besides the tones mentioned above, one experi- 
ment was made with tones in which partials are 
separated by a fixed fraction of an octave, as 
described by Pierce (1966) and used by him in an 
eight-tone canon (phonogram). 

The experiments 
Our experiments with stretched partials involved: 

1) The generations of stretched and unstretched 
materials. 
2) Test subjects' ability to identify the key of 
stretched and unstretched material. 
3) Test subjects' perception of "finality" of cadences 
for stretched and unstretched materials. 

Acoustical description of the materials 
All the sounds used in the experiments were 

synthesized on the PDP-10 computer at the Institute 
for Research and Coordination of Acoustics and 
Music (IRCAM), Paris, France, by use of the Music 
V program. Each sound had seven partials whose 
frequencies were specified by Eq 2. For A = 2, 
these were in the approximate frequency ratios 1,2, 
3, 4, 5, 6,  8 (note the 7th partial is omitted). The 
exact partial frequencies as specified by Eq 2 are 
equal-tempered. That is, the partial frequencies 
coincide exactly with the fundamental of some note 
in the equal-tempered scale. 

The amplitudes of the partials relative to the 
fundamental diminished at 9 dB per factor of 2 in 
frequency ratio between the partial and the funda- 
mental. The value 9 dB per factor of 2 was selected 
to approximate normal musical instruments which 
tend to produce a spectrum which decreases faster 

than 6 dB per octave, but not as fast as 12 dB per 
octave. 

The envelope of the notes was chosen to give a 
sustained sound with a moderately fast, but not per- 
cussive, attack, a slight dirninuation (6 dB) over the 
duration of the note, and a smooth decay. The attack 
and decay times were each 10% of the duration of 
the note. Typical note durations ranged from 0.5 - 
2s. 

The overall timbre can be described as a 
pleasant, bland, musical sound. 

Key-sensing experiments 
Judging the tonality of a short passage was 

chosen as an experimental test. Previous experi- 
ments (Corso, 1957) show that keys can be 
successfully identified but with difficulty. 

Three short passages designated X, M, and T 
were synthesized. The scores of X and M are shown 
in Fig 11. Both X and M are long enough to clearly 
establish a key. Both end in a clear cadence. T con- 
sists of M transposed to a different key. X was 
synthesized either in the key of M or T. 

The key of T differed from that of M by either 
being a minor third away from M, or being a minor 
second from M, or simply being the minor of the 
key of M. 

A test was prepared containing 24 test 
sequences. Each test sequence consists of the 
sequence XMXT. This sequence was selected o v e ~  
the more traditional MXT test in order to make the 
test slightly harder. In the MXT order, the cadence 
at the end of M is very close to the cadence at the 
end of X because X is a very short passage. 

After listening to a test, the subject was asked 
whether X was in the key of M or T. The test was 
taken by ten subjects. Five subjects (the non- 
musicians) had almost no experience as performers 
and described themselves as having little interest in 
music. The other five (the musicians) had extensive 
experience as amateur or semi- professional musi- 
cians. 

The results of the experiment are shown in Table 
6. We draw the following conclusions: 
1) Everyone, musicians and nonmusicians alike, 
performed at better than chance (50%) for both 
stretched and unstretched materials. Thus stretching 



M- KEY SETTING PASSING 

X - TEST PASSAGE 

Fig. 11. Scores of passages used for key-sensing tests. 

Table 6. Percentage of correct sensing of key in XMXT 
tests, by use of musicians and nonmusicians as subjects. 
50% is chance performance. 

Musicians 
Normal 
Streched 

Nonmusicians 
Normal 
Streched 

Everyone 
Normal 
Streched 

Minor 2nd 
transposition 

Minor 3rd 
transposition 



I 
ANTI CADENCE 

Fig. 12. Cadence (dominant to tonic) and anticadence (tonic to dominant). 

did not completely destroy the ability to sense key in 
this test. 
2) In general the larger the key change, the better 
was the performance. 
3) Normal materials were easier to judge than 
stretched materials. 
4) Musicians performed better than nonmusicians. 

In general, this experiment supports Helmholtz 
more than Rarneau, because the stretching removed 
periodicity pitch and the fundamental bass, but left a 
substantial key sensing ability. 

Cadence studies 
In the cadence studies we ask subjects to rate the 

feeling of finality imparted by a two-note chord 
sequence. Two sequences were used which we call 
a cadence and an anticadence as shown on Fig 12. 
The cadence is a normal dominant to tonic cadence. 
The anticadence starts with the tonic and ends with 
the dominant. Both stretched (A = 2.4) and 
unstretched forms of the cadence and the anticadence 
were synthesized. The use of chord pairs as 
cadences implies that the subjects already know the 
tonic chord. The same key was used throughout the 
tests and the results indicate that subjects clearly 
knew the tonic. 

Thirteen "musicians" and seventeen "non- 
musicians" rated the finality of the four conditions. 
There were no apparent patterns of differences 
between the responses of the musicians and the non- 
musicians, so the results of these two groups were 
averaged together. 

Results are shown in Fig 13. It is clear that the 
unstretched cadence gave a strong sense of finality 
and the stretched cadence did not. The normal anti- 
cadence and the stretched anticadence were equally 
nonfinal. Thus, stretching seems to destroy the 
impression of finality in cadences. This suppo~ 
Rameau rather than Helmholtz. 

Cadence with equally-spaced partials 
In an experiment not described here involving a 

dominant seventh chord we noted that, even in this 
strongly dissonant chord, relatively few partials lie 
close together. Perhaps Helmholtz' effects are weak 
simply because too few partials interact closely. To 
study this hypothesis we generated a chord pair as 
shown in Fig 14 using notes with partials equally 
spaced along a musical scale. The partials are 
separated by a major fourth in this specific example. 
As a result of this spacing the first chord of the pair 
is very dissonant, almost all partials being one half- 
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STRETCHED 
A.2.4 

ANTI CADENCE 
CADENCE 

Fig. 13. Finality ratings of stretched and normal cadences and anticadences. With normal 
unstretched partials, the cadence is judged as having a great deal of finality and the anticadence as 
having little finality. With stretched partials, the finalities are essentially equal. 

Fig. 14. A pseudo-cadence with uniformly spaced partials, going from a tonally dissonant to a 
tonally consonant chord. The clef sign X was used to indicate that the staff is not normal musical 
notation. The plot of the partials is the basic description of the sound. 



Fig. 15. Judgements of finality of the cadcnce from Fig. 14. It i s  judged as final with or withoul 
stretching. 

step apart and the second chord is very consonant, 
almost all partials being coincident. 

Figure 15 shows that this chord pair is given a 
relatively high finality rating. Furthermore, this 
rating, as we would expect, is not diminished by 
stretching (A = 2.3) the material. Thus, if one makes 
strong enough interactions between partials an 
impression of finality can be conveyed by a 
transition to an acoustically consonant situation. 
This would argue for Helmholtz' tonal consonance 
view of harmony. 

Supplementary observations 
Before concluding our discussion of stretched 

scales we will mention some informal observations. 
It is our observation that melodies are easily 
recognized despite stretching. A stretched (A=2.4) 
version of the round, "Are You Sleeping, Brother 
John," was instantly recognized by an audience. The 

melody of harmonized stretched (A=2.4) versions of 
"The Coventry Carol" and "Old Hundred" hymns 
were recognized by an audience, but these had also 
just been played unstretched. 

In the harmonized stretched "Old Hundred" it 
seemed difficult to distinguish the inner voices. In 
fact, in single tones stretched (A=2.4), one tended to 
hear the partials as separated sounds rather than as 
fused into a tone of a single pitch. We believe that 
such fusion depends in part on the phenomenon of 
residue or periodicity pitch (Schouten, 1938). This 
has been noted by Cohen (1970). She has observed 
further that the degree of fusion of a stretched tone 
depends on the envelope of the tone, and is greatest 
(Cohen, 1980) for an exponentially decreasing 
amplitude which gives a "struck" quality. 

We observe that stretched tones sounded singly 
tend to fall apart into a group of partials, but when a 
sequence of such tones is played as a known melody 



the tones are heard as the individual notes of the 
melody. 

It appears that whether or not a collection of 
stretched partials is heard as a single tone can 
depend on both the time evolution of the partial 
amplitudes and on the context (melodic or other- 
wise) in which the tones are heard. 

Conclusions f rom the  stretched scale 
experiment 

One purpose of the experiments performed was 
to try to decide among three explanations of 
harmonic effects: (1) Rameau's fundamental bass, 
which can be related to Schouten's residue pitch or 
periodicity pitch; (2) the tonal consonance of 
Helmholtz and Plomp, which depends on the 
spacings of the partials that are present; (3) brain- 
washing, that is, learned expectations and reactions. 
The experiments did not distinguish clearly among 
these views. 
We found: 
1) Subjects can identify keys of both stretched and 
unstretched materials in an XMXT test. 
2) Stretching destroys the perception of finality of 
cadences. 

Results (1) above may be a melodic rather than a 
harmonic effect, and, as we have noted, melody 
seems more robust under stretching than harmony 
does. 
Result (2) argues for either Rameau or 
brainwashing. 

Nonetheless, by using tones with equally spaced 
partials, we can get a sense of finality by going from 
a tonally dissonant chord, to a tonally consonant 
chord. This argues for Helmholtz-Plomp. 

The acoustic nucleus 
Where do the diverse results we have discussed 

leave us with regard to the question of new music 
materials? Is it now possible to manufacture new 
scales and harmonies by systematic techniques or is 
the diatonic scale unique? We would like to end by 
proposing an unproved, but interesting hypothesis, 
that of the acoustic nucleus. 

So far our results are compatible with two 
conditions. First, present psychoacoustic tech- 
niques are effective in studying the peripheral 

hearing process and many important low level 
perceptions such as the acoustic dissonance of 
sounds with arbitrary patterns of partials can be 
understood and taken advantage of by suitable 
listening tests. Second, many musically important 
perceptions are higher level mental processes, which 
are much harder to study in the laboratory. In parti- 
cular effects which depend on long term learning of 
new materials are especially intractable. Similarity of 
Pierce chords and their inversions is an example. 
With traditional diatonic materials, effects that 
depend on long term learning seem more powerful 
than low level acoustic effects. 

The acoustic nucleus hypothesis maintains that 
with new materials, it is necessary to have an 
acoustic nucleus on which to grow powerful musical 
connotations via long term learning. The acoustic 
nucleus consists of sound qualities that are per- 
ceivable at a low peripheral level, such as the relative 
dissonance of various Pierce chords. 

We believe that our present results show that we 
can usefully deal with the acoustic nucleus in the 
laboratory. What we have not shown is how to 
predict or control the subsequent learning process 
that leads from sounds to music. This is an impor- 
tant direction for future research. 
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Abstract 
This paper reviews some selected experiments 

on sensitivity to modulation, or key change, within 
short musical passages excerpted from Bach cho- 
rales. Following presentation of each excerpt, musi- 
cally trained listeners were asked to identify the 
distance and the direction of key change with refer- 
ence to the circle of fifths. Presentations consisted of 
either the full four voices of the excerpt (harmonic 
sequences) or one of the individual voices (single- 
voice sequences). 

Overall accuracy of identifying key change was 
not significantly different for the two types of 
presentation. However, judgements of key change 
in harmonic sequences were affected by three 
musical factors whose influence was not predictable 
from judgements of key change in individual voices. 
These factors were: 1. construction of the final 
chord of sequences; 2. the harmonic progression, 
and; 3. the direction of modulation around the circle 
of fifths. The influence of the latter factor in 
harmonic sequences was supported in a subsequent 
experiment in which listeners untrained in formal 

music theory rated the perceived extent of key 
change. The data are addressed to questions and 
issues surrounding the hierarchical representation of 
musical pitch organization. 

Introduction 
Listening to tonal music includes attending to 

individual voices (e.g., a melody), a progression of 
chords, and an overall key structure. It has been 
suggested, both in theory and in research, that these 
aspects of music are not independent: a melody is 
heard and understood in terms of an underlying 
chord progression, and chords, in turn, are under- 
stood in terms of the prevailing key. Thus, the 
perception of tonal music may involve a hierarchical 
organization of musical elements, with individual 
voices, chords, and keys represented at progres- 
sively ascending levels of a cognitive organization 
of musical pitch structure. 

A typical music-theoretic account of the hier- 
archy of levels describes individual tones according 
to the chord in which they belong; if they belong to 
no chord, they are considered "ornamental" or 



"unstable". Each chord is then described with refer- 
ence to the overall key (Piston, 1978). Schenker's 
approach to musical analysis relies heavily on the 
notion that each level of musical abstraction is 
determined by removing the less stable elements 
from the previous level (Schenker, 190611954, 
193511979). However, as pointed out by Deutsch 
and Feroe (1981), there has been considerable 
disagreement among theorists about the relation 
between melodic and harmonic structures. In a 
recent discussion of theoretical problems, Clarke 
(1986) comments that, "If we consider pitch 
structures at a number of a different levels, we are 
forced to recognize that notes, chords, keys and 
tonal areas are all entities of different types, with 
different properties, and more importantly different 
principles governing the way they may be structured 
together" (p. 11). Krumhansl (1983), while ack- 
nowledging the unique features that characterize 
melody, harmony, and key, nevertheless empha- 
sizes the similarity of structural principles at differ- 
ent levels. Each level characteristically displays a 
hierarchy of tonal stability, and at each level, 
representation in memory is determined by tonal 
function. Krumhansl further argues that strong 
interlevel influences in musical pitch organization are 
active, and reflect an overall knowledge system 
consistent with the regularities of music of our 
culture. 

Empirical investigations have verified that the 
different levels of musical (pitch) elements are 
structured and inter-related. For example, Cuddy, 
Cohen and Mewhort (1981) demonstrated that the 
harmonic organization of a melodic sequence (the 
implied chord progression) affected its perceived 
form. Listeners heard short 7-tone melodic 
sequences and were asked, in different experiments, 
to rate structural "goodness" of the sequences or to 
recognize an alteration in a transposition of the 
sequence. Both ratings of structure and accuracy of 
recognition decreased as cues implying a simple 
underlying chord progression (I-V-I) were removed. 
For another example, findings obtained by Bharucha 
and Krumhansl (1983) suggest that chords are 
encoded with respect to an overall key. Listeners 
were asked to identify a changed chord in a short 
tonal sequence. If a diatonic chord (i.e., a chord in 
the key) was changed to a nondiatonic chord (i.e., a 

chord not in the key), the alteration was easier to 
detect than if a nondiatonic chord was changed to a 
diatonic chord. This asymmetry supports the notion 
that diatonic chords act as anchors in the perception 
of harmonic sequences. Chords that are consistent 
with the established key are perceptually anchored. 
Thus, removing a diatonic chord removes an anchor 
to which nondiatonic chords are heard in relation, 
and the removal is highly noticeable. 

Although empirical work has identified 
principles of organization within and between levels, 
there has been little work addressed to questions 
concerning the overall hierarchical structure of the 
levels. In particular, there is the question of how key 
structure and key movement (modulation) are 
abstracted. Key relationships between two melodic 
sequences has been shown to affect the ease with 
which the melodies are compared (Bartlett & 
Dowling, 1980; Cuddy et al, 1981). Modulation of 
key within a melodic sequence may affect perceived 
structure even when all the notes of the sequence are 
members of the scale of the initial key (Cuddy & 
Lyons, 1981). However, these studies did not ask 
listeners to identify key structure or modulation 
directly; the effect of key was inferred indirectly 
from recognition scores or from ratings of overall 
perceived structure. In addition, the studies did not 
compare sensitivity to key structure in melodic 
sequences with sensitivity to similar key structure in 
harmonic sequences. 

In the experimental work reported here, a dirt-cl 
comparison was made between identification of hey 
modulation within melodic (single-voice) sequences 
and identification of key modulation within har- 
monic sequences. The basic expectations of a 
simple hierarchical model of musical organization 
were examined. In this model, a single voice is 
perceived with reference to an underlying harmonic 
structure, or chord progression. Chords, in turn, are 
understood with reference to the overall key. No 
direct links are assumed between the individual 
tones of a single voice and the key. Rather, a set of 
tones relates to the key through the level of chards. 
The process of infening chord progression from 
melodic lines may be susceptible to ambiguity or 
misinterpretation. The model predicts, therefore, that 
the abstraction of key and key change will be more 
accurate for full harmonic sequences than for any of 



Figure l, Chorale excerpts used in the presentations. 

Table l. Sequence types used in the presentations. The sequences shown 
in Figure 1, which aorrespond to each sequence type, are listed in 
brackets. 

1. Nonmodulating and ending on the tonic chord (sequences l & 2 ) .  
2. Nonmodulating and ending on the dominant chord (sequences 3 & 4). 
3. Modulating to the key of the dominant (sequences 5 & 6). 
4. Modulating to the key of the subdominant (sequences 7 & 8). 
5. Modulating to the key of the supertonic (sequences 9 & 10). 
6 .  Modulating to the key of the flattened seventh (sequences 11 & 12). 



the individual voices that make up the harmony. 

Musical materials used 
Sequences were phrases excerpted from the 

complete set of Bach Chorales (Leuchter, 1968). 
The chorales provide a wide selection of various 
types of key modulation within short chord 
progressions. Moreover, the chorales provide melo- 
dically continuous single voices with implied 
harmonic structures comparable to the realized 
structures of the chord progressions. For each of the 
following five types of modulation two repre- 
sentative examples were selected: no modulation; 
modulation to the key of the dominant (V); 
modulation to the key of the subdominant (IV); 
modulation to the key of the supertonic (11); 
modulation to the key of the flattened seventh 
(VIIb). With respect to the circle of fifths the types 
of modulation are respectively: no change of key on 
the circle of fifths; modulation one step clockwise; 
modulation one step counterclockwise; modulation 
two steps clockwise; modulation two steps 
counterclockwise. 

The last two chords of these sequences formed a 
perfect cadence (V-I) in the final key of the 
sequence. Two additional sequences were selected: 
these sequences were classified as nonmodulating 
ending with an imperfect (I-V) cadence. They were 
included to emphasize to the listener that the task of 
identifying key change could not be solved by 
merely attending to the first and last event of the 
sequence. These sequences, however, are not 
included in the data analyses discussed below. 

Sequences were equated for length and surface 
complexity; all ornamental and passing notes were 
removed so that all sequences contained a progres- 
sion of exactly eight four-note chords. The final 
selection and classification was verified in consul- 
tation with a music theorist. 

The sequences are shown in musical notation in 
Figure 1. The type of modulation for each sequence 
is listed in Table 1. 

The two examples of each type of modulation 
differ not only in the harmonic progression leading 
from the first to the final key of the sequence, but 
also in the construction of the final chord. For se- 

quences ending with a perfect cadence, (the experi- 
mental sequences), the fifth of the final triad was 
omitted in example 1, and retained in example 2. 
The final chord fifth in example 2 was always 
carried by an inner voice. This systematic mani- 
pulation of the presence or absence of the fifth in the 
final chord was stimulated by the observation that 
whenever there was a perfect cadence in the original 
chorales, the fifth was invariably present even if its 
omission was harmonically acceptable. We were 
curious to find out whether inclusion of the fifth in 
the final chord affected judgements of modulation, 
perhaps by influencing the establishment of the final 
key. 

Immediately before each presentation, the initial 
key of the sequence was established by presenting 
an arpeggiated tonic triad. (Previous work in our 
laboratory had determined that a broken tonic triad is 
as effective in establishing a tonal center as is the 
tonic chord and chord cadences (Cuddy, 1986).) 
Sequences were realized by a DMX- 1000 signal 
processor under control of a host computer PDP 
11/23. All tones were complex, containing the first 
five partials of the overtone series with the 
amplitudes of each partial inversely proportional :o 
the partial number. All tones were 350 msec in 
duration and had rise and decay times of 22 msec 
each. 

Experimental studies 

A. Identification of key changes 
In two main studies, highly trained listeners 

were asked to identify the type of key changr 
implied by the sequences. In one study, listeners 
heard each of the four voices of each sequence in 
isolation and attempted to identify the key change 
from the information provided by a single voice. In 
the second study, listeners heard the full harmonic 
sequence before recording a judgement. The order 
of presentation of the sequences in both studies was 
random. Identification proceeded in two steps. First, 
the distance of the modulation was judged, and 
second, the direction of the modulation was judged. 
For judgements of distance of modulation, listeners 
were allowed four categories of choice: non- 
modulating and ending on the tonic chord; non- 



modulating and ending on the dominant chord; 
modulating one step on the circle of fifths; and 
modulating two steps on the circle of fifths. For 
judgements of direction of modulation, listeners 
were allowed three categories of choice: non- 
modulating; modulating in the clockwise direction 
on the circle of fifths; and modulating in the 
counterclockwise direction on the circle of fifths. 

In the description of the results that follows, all 
differences reported are statistically significant. The 
statistical analyses, however, will not be discussed; 
details are available in Thompson (1986) and 
Thompson & Cuddy (in preparation). 

B. Overall identification accuracy 
A comparison of the accuracy of distance and 

direction judgements for the first and second study 
revealed that judgements following single voices, in 
most cases, were as accurate as those following the 
full chorale sequence. The one exception to this 
finding concerned the single voice in the second 
example that ended on the fifth of the final chord: 
here, correct identification appeared to be quite 
difficult. All other voices, however, were judged as 
accurately as the full harmonic sequences. Table 2 
reports the average accuracy scores for these voices 
and for the full chorale sequences. The data suggest 
that a single voice is able to establish a sense of key 

and key change that is as strong as that produced 
when four voices combine to form harmony. 

C. Influences on judgements of key change 
Although single voices usually produced 

identification scores comparable to those obtained 
with full harmonic sequences, similar scores need 
not reflect identical psychological operations. This 
possibility was considered by examining the effect 
of musical factors on judgements in the two 
conditions. 

1. Construction of the final chord. 
The mean accuracy of distance and direction 

judgements for the first and the second example of 
the sequence types are shown in Table 2. 
Identification accuracy for harmonic sequences was 
consistently and significantly higher for the first of 
the two examples. In the first example of each 
sequence type under harmonic presentation, the fifth 
of the final chord was omitted, while in the second 
example it was retained. The difference in identi- 
fication accuracy between the two examples may 
suggest an important role for the construction of the 
final chord. 

We considered the possibility that the difference 
in identification accuracy between the two examples 

Table 2. Mean percent accuracy of identifying modulation distance and 
modulation direction for harmonic and single voice presentations. 

Judgements of modulation distance 

example 1 example 2 X 
Harmonic sequences 73.34 42.00 57.67 

Single voice sequences* 59.00 59.60 59.30 

Judgements of modulation direction 

example 1 example 2 X 
Harmonic sequences 68'. 66 53.32 60.99 

Single voice sequences* 62.20 62.00 62.10 



of each sequence type reflected consistent differ- 
ences in the harmonic progression. Initially, this 
explanation seemed unlikely. If harmonic pro- 
gression were important to this effect, one would 
expect a similar effect to emerge for judgements of 
melody or bass voices presented in isolation: these 
voices should imply the harmonic progression. 
However, no difference between the two examples 
was found in the single voice data. 

Another possibility is that the reduced identi- 
fication accuracy in harmonic sequences ending with 
a triadic chord is comparable to the reduced identi- 
fication accuracy for individual voices ending on the 
final chord fifth. This possibility was examined 
through an analysis of errors. It was found that 
single voices ending on the fifth tended to be judged 
as though the final note were the tonic of the final 

key, Thus, very low accuracy was found for voices 
from all sequence types except those modulating to 
the key of the supertonic. In the latter case, there 
were no choice categories that would satisfy the 
fifth being mistaken as final tonic: listeners were not 
given the option of judging the sequence to be 
modulating to the submediant (i.e., the fifth of 11). 

In harmonic sequences, errors of judgement also 
showed a systematic bias, but of a different kind. 
For all types of modulation, including modulations 
to the key on the supertonic, listeners tended to 
underestimate the distance of modulation when the 
final chord included the fifth. This effect suggests 
that when a new key is established with a triadic 
chord, as compared to a chord in which the fifth has 
been omitted, the perceived tonal change may be 
reduced. Thus, the precise effect of the final chord 
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Fiyrc 2. Mean accuracy of identifying modulation distance for two ~ypcs of final chord conslrucuoll: 
either with the fifth of the triad omitted or with the fifth of the triad included. 



fifth in harmonic sequences was not predictable 
from judgements of the individual voices of those 
sequences. 

The &ta strongly suggest that the construction of 
the final chord may have a significant influence on 
judgements of key change in harmonic sequences. 
Although we had reasoned it unlikely that 
differences in chord progression could account for 
the data, this possibility was examined in a 
supplementary experiment. A new group of musi- 
cally trained listeners tried to identify key changes in 
the chorale sequences. In this experiment, sequences 
in which the fifth had previously been omitted from 
the final chord were written with the fifth included, 
and vice versa. Combining the supplementary 
experiment with the main experiment permitted an 
examination of the influence of chord construction 
across sequences that were otherwise identical (i.e., 
contained the same harmonic progression). 

Figure 2 shows mean accuracy of distance 
judgements for the combined data. For each 
modulation type, there are two bars--one repre- 
senting mean accuracy of distance identification 
when there was no fifth in the final chord, the other 
representing mean accuracy of distance identification 
when the fifth was included in the final chord. 
Differences in accuracy for the two types of final 
chord construction therefore reflect differences that 
remain after data for the two examples of each types 
of modulation were averaged. For nonmodulating 
sequences, there was no overall effect of final chord 
construction. However, for all modulating se- 
quences, identification accuracy for distance of 
modulation was lower when the fifth was included 
in the final chord than when it was omitted. The 
findings suggest that chord construction may 
become important in harmonic sequences when the 
chord is used in the establishment of a key change. 

2. Chord progression 
Although judgements of modulation distance in 

harmonic sequences were clearly influenced by the 
construction of the final chord, judgements of 
modulation direction were not affected by this 
factor. An analysis similar to that conducted for 
distance judgements reported in Figure 2 showed no 
effect of chord construction. In both experiments 

accuracy of direction judgement favored example 1 
over example 2--by 15.3% in the main experiment 
and by 14.0% in the supplementary experiment. It 
may be suspected that the specific nature of the 
chord progressions was primarily responsible for 
the differences between examples. This effect of 
chord progression on direction judgements, how- 
ever, was evident for harmonic sequences only. 
There was no evidence that the implied chord 
progression or any melodic factor affected the two 
examples differentially in the single-voice data, 
either in the average data (as can be seen in Table 2) 
or for any isolated instance of a single voice 
condition. 

3. Direction of modulation. 
In addition to the specialized effects of chord 

construction and chord progression found for 
harmonic sequences, our data suggest that perceived 
key relationships for harmonic sequences are 
asymmetric with respect to the circle of fifths. In 
Figure 2, it can be seen that key changes in the 
clockwise direction on the circle of fifths (modula- 
tion to V and 11) tended to be judged less accurately 
than corresponding key changes in the counter- 
clockwise direction (modulation to IV and VIIb). An 
analysis of errors revealed that distance judgements 
for clockwise modulations tended to be under- 
estimated. 

A difficulty arises with the interpretation of the 
difference in accuracy for modulations one step 
around the circle of fifths. The lowered performance 
for modulations one step clockwise could be 
attributable to confusion of this modulation with the 
control condition - no modulation ending on the 
dominant chord. However, a supplementary experi- 
ment reported below renders this interpretation 
unlikely. Moreover, the larger asymmetry between 
modulations two steps around the circle of fifths 
cannot be attributed to confusions with control se- 
quences. This asymmetry was not found in single- 
voice judgements. 

The asymmetry for modulation judgments was 
confirmed for harmonic sequences in a final 
supplementary experiment in which listeners without 
formal training in music theory rated the perceived 
distance between the first and final keys of each 
sequence. (No formal reference was made to the 
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Figure 3. Mean ratings of perceived modulation dic I BIIC~.  

circle of fifths with this sample of listeners.) In this 
investigation, the control sequences were excluded 
from the presentations. 

Figure 3 shows mean ratings of perceived 
distance between the first and final keys of modu- 
lating sequences. When key changes suggested 
movement in the clockwise direction on the circle of 
fifths, the judged distance between the two keys of 
the sequence was less than when the key change 
suggested movement in the counterclockwise direc- 
tion. These results suggest that while the circle of 
fifths may be a valid representation of the way 
listeners understand key relationships, there are 
clearly other factors that affect the assessment of key 
relationships in a harmonic sequence. 

We considered two explanations of the asymme- 

try of perceived modulation distance. First, i~ I \  

possible that in these experiments the level of key 
relationships was accessed through the hierarchy of 
scale tones as represented by the tonality profile t c l r  
major keys (Krumhansl & Kessler, 1982). Within 
the hierarchy of scale tones, the dominant is more 
stable than the subdominant, and the supertonic is 
more stable than the flattened seventh. The 
asymmetry may thus be a consequence of the fact 
that for modulations equivalent in distance on the 
circle of fifths, the tonic note of a key in the 
clockwise direction is more stable with respect to the 
initial key than is the tonic note of a key in the 
counterclockwise direction. Thus, perceived key 
distance may be explicitly encoded as the extent to 
which the tonic of the second key is assimilated into 
the scale of the first key. Although this explanation 



may be reasonable, it is strained by the fact that 
sequences modulating to the subdominant and 
sequences modulating to the supertonic were given 
similar average ratings (mean ratings of 3.75 and 
3.83, respectively) even though the supertonic is a 
less stable scale tone than the subdominant. 

A second explanation is that the level of key 
relationships is engaged by a sensitivity to the 
structure of the overtone series. According to Roscn 
(197 l), the circle of fifths has a basis in the overtone 
series, each key implicating its clockwise neighbor 
by its second overtone. Since the overtone series 
projects immediate neighbors in the clockwise direc- 
tion only, the structure is asymmetric. Thus, key 
changes in the clockwise direction may be heard as 
conveying less tonal movement because they are 
consistent with the natural structure of the overtone 
series. 

Neither explanation can readily explain the 
finding that asymmetry was evident for harmonic 
sequences but not for single-voice sequences. 
Clearly, greater elaboration of the possible reasons 
for an asymmetry of perceived distance is n e w  
What is particularly important about the possible 
explanations advanced here, however, is that both 
imply that structural relationships suggested by the 
initial key provide an abstract framework within 
which the tonic of the second key is evaluated. 

The asymmetry of perceived key relationships 
may play a significant role in the performancq of 
music. According to Sundberg, Fryddn & Askenfelt 
(1983), an important factor affecting the accepte- 
bility of musical performance is the variation in 
loudness that marks the musical distance of tones 
from the tonal center. In their model of musical 
performance, the distance from the tonic along thp 
circle of fifths is determined for each note by 
considering the chord to which the note belongs and 
its musical relation to the root of that chord. The 
amplitude given to a note is increased in proportion 
to its distance from the tonic. However, the authors 
also assume that the tonic distance of tones and 
chords on the counterclockwise side of the circle of 
fifths is greater than the tonic distance of tones and 
chords on the clockwise side of the circle of fifths. 
Thus, their model of musical performance assumes 
an asymmetry similar to the one reported in the 
present paper. 

It is interesting to note that the model proposed 
by Sundberg h al. concerns rules applied in the 
performance of melodies, whereas we found evi- 
dence for an asymmetry in harmonic sequences 
only. Perhaps by introducing an asymmetry in the 
p e r f o m c e  of a melodic sequence, the performer is 
more strongly able to convey the underlying 
harmony. 

Discussion 
The simple hierarchical model proposed earlier 

predicted that a single voice would convey less 
information about key and key change than would a 
harmonic sequence. An analysis of mean identi- 
fication accuracy did not support this prediction. 
Judgement accuracy was usually as high following 
single-voice sequences as it was following harmonic 
sequences. 

Several of the findings suggest that harmony and 
melody operate somewhat differently in their 
implications for perceived key structure. First, in- 
clusion of a final chord fifth in harmonic sequences 
ad the distinct effect of reducing the perceived 1 stance of modulation. However, single voices 

ending on the fifth of the final chord were merely 
misleading, probably because the final note was 
taken to be the tonic of the final key. Second, 
judgements of harmonic sequences were influenced 
by the precise chord progression, which contri- 
buted to a large difference in identification accuracy 
between the two examples of each sequence type. In 
Contrast, there was no overall difference in identi- 
fication accuracy between examples when indivi- 
dual soprano and bass voices were presented. Evi- 
dently, the harmonic progression implied in indivi- 
dual melodic lines does not have the same impact on 
perceived key relationships as does the explicit 
harmonic progression conveyed in a harmonic se- 
quence. Third, the perceived distance between keys 
as they occur in harmonic sequences is asymmetric 
with respect to direction of modulation. This 
asymmetry was not evident when the single lines of 
those harmonic sequences were presented. 

Although the findings present difficulties for a 
simple hierarchical model of musical organization, 
one cannot reject a hierarchical model on the basis of 
the present evidence alone. One problem is that the 
apparent similarity between scores for melodic and 



harmonic sequences may be more a result of the 
presence of the three musical factors that influenced 
judgements in the harmonic conditions rather than 
the result of two identical processes of key 
abstraction. An alternative worth considering, 
however, is a partially hierarchical model in which 
key information is encoded explicitly at both the 
level of notes and the level of chords. Listeners may 
represent single voices, chords, and keys hier- 
archically, but some kinds of information may bk 
stored in a redundant manner throughout the 
hierarchy. At a given level of abstraction, relations 
that can be derived from other levels in the hierarchy 
may be stored explicitly at that level as well (e.g., 
see McNamara, 1986). This type of model would 
allow key relationships to be abstracted at both the 
levels of chords and of single voices. It would also 
allow for structural differences at different levels of 
the hierarchy so that judgements of key change in a 
harmonic sequence are not always predictable from 
judgements of key change in a single voice of that 
harmonic sequence. 

Finally, the general finding that several musical 
factors may influence judgements of key change in 
harmonic sequences raises an important issue 
regarding the relationship between key structure and 
musical aesthetics. It is likely that each of the 
harmonic effects reported here contribute to the 
quality and richness of harmonic music. Nonethe- 
less, our data suggest that these factors need not 
improve the clarity of the precise key change as 
defined by the circle of fifths. Lerdahl (personal 
communication, February, 1986) has supplied us 
with revisions of the harmonic sequences that we 
used in the studies. The revisions are intended to 
establish the modulation within specific sequences 
more explicitly, and should lead to greater identi- 
fication accuracy than that reported here. But it is far 
from clear that easily identified key changes are 
musically pleasing. The experiments that we have 
reported suggest that harmonic music may involve a 
wealth of cognitive and acoustical principles, not all 
of which may serve to facilitate an analytic 
judgement of key change. 
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SOUND EXAMPLES 

Example for Sundberg: Harmony and Harmonic Spectra. 

A tritone interval followed by a minor sixth. First these intervals are played with 
harmonic spectra, thereafter with inharmonic spectra in which neighbor partials are 
separated by a tritone interval, as shown in Fig. 3 of this article. 

List of Sound Examples for Krumhansl: Tonal and Harmonic Hierarchies 

Sound Example 1. Illustrates the probe tone method with a sampling of trials using 
C major and C minor contextg, 

G!xL€!ZL Probe Tones 
Ascending C major scale G, F#, C, D#, E, A, D 
IVVIinCminor Eb, E, G, D, C, F#, A 

Sound Example 2. Illustrates the methodology used in the scaling study on pairs of 
tones. 

Context 3iuaaks 
Descending C major scale GC, C#G#, FE, CC#, CE, AC# 

Sound Example 3. Illustrates the methodology used in the scaling study on pairs of 
chords. 

Context Chord Pairs 
Ascending C major scale G major (V) C major (I) 

E minor (IIl) A minor (VI) 
F major (IV) G major (V) 
A minor (VI) B diminished (VII) 

Sound Example 4. Illustrates the technique for tracing the developing and changing 
sense of key, 

Context chora  Probe tones 
F major C, F# 
F major G major G, D# 
F major G major A minor E, A# 



The following sequences are played twice: 
Sequence in C major: F major G major A minor F major C major 

A minor D minor G major C major (Figure 8) 
Sequence modulating from C major to G major: F major G major 

C major A minor E minor B minor E minor D major G major (Figure 9) 
Sequence modulating from C major to Bb major: F major G major 

C major A minor F major G minor Eb major F major Bb major (Figure 10) 
Sequence modulating from C minor to C# minor: D diminished G major 

C minor G major Ab major A major F# minor G# major C# minor (Figure l l) 

Sound Example 5. J. S. Bach C minor Prelude, Book I1 
Measures one through four (Figure 12) 
Measures five through nine (Figure 13) 
Measures nine through twelve (Figure 14) 
Measures thirteen through eighteen (Figure 15) 
Measures nineteen through twenty-two (Figure 16) 
Measures twenty-three through twenty-eight (Figure 17) 

List of Sound examples for Mathews, Pierce & Roberts: Harmony and 
New Scales 

Sound example 1. Intonational sensitivity of 3 5 7  triads and 4 5 6  (major) triads. tl 
3 5 7  chord is played three times first in just intonation, then with center note 15 cents 
sharp, then with center note 30 cents sharp. Next a 4 5 6  chord is played three tinies 
with the same intonation changes. The entire sequence of six chords is repeated. 

Sound example 2. A Pierce nine-tone scale is played twice including repeating the 
tritave. The two-step and one-step intervals in the scale are easy to hear. 
Sound exainple 3. A major (0 6 10) and a minor (0 4 10) Pierce triad are played. These 
two chords are repeated. The minor chord sounds "minor" relative to the major chorii. 

Sound example 4. A harmonized Pierce scale is played twice. The scale is the 
upper voice. The 5th and 7th steps are harmonized with minor triads. The 9th step is 
harmonized with the first inversion of a major triad. The rest of the steps are 
harmonized with major triads. 

Sound example 5. A Canon 2 by Alyson Reeves This is a short simple melodious 
canon. Except for the last measure, the second and third voices are repetitions of the 
first voice delayed respectively by two and four measures. The canon ends with a I V  V 
I cadence which arises naturally from the melodic structure of the first voice. Different 
timbres were used for each voice to aid in their perceptual separation. 



Sound example 6. Fugue 1 by Alyson Reeves The first fugue composed in the 
Pierce scale experiments with analogies of many traditional fugue elements. The subject 
is exposed in all three voices (measures 1 to 12) and the exposition ends with a V1 V I 
cadence (measures 12 and 13). A three measure episode follows (measures 13 to 15). 
The episode is translated downward one step in measures 16 to 18 and downward yet 
another step in measures 19 to 21, thus achieving a transition to a presentation of the 
subject in the subdominant key (starting at measure 22). The rest of the fugue includes 
an inverted subject, the subject in the tonic key, and finally the subject is augmented. 
For the most part these elements are audible. The fugue ends with another V1 V I 
cadence. 

Sound example 7. Min 2c by Alyson Reeves This minuet, written in the style of a 
Mozart minuet, is an exercise in establishing a key and in modulation. The first section 
ends in a half cadence with a V1 V I chord progression. The second section ends in a 
full cadence with another V1 V I cadence. 

The trio, which starts 24 seconds after the beginning, modulates to the subdominant 
key and makes heavy use of minor chords. The key change is clearly audible. It ends 
with a minor V11 chord in the subdominant key, which contrasts clearly with the tonic in 
the final repetition of the fust section. The recapitulation and return to the original key 
starts 49 seconds after the beginning. 

Sound example 8. Ragged Rag by Alyson Reeves This rag combines the very 
characteristic rhythms of the rag style with the Pierce scale. It is a fun piece. 

Sound example 9. Excerpt from "Duo for Oscar" by Jon Appleton This piece 
contains a short section in the Pierce scale played on the Synclavier, which is a 
commercial synthesizer that can be tuned to the Pierce scale. The excerpt consists of 90 
seco~ds from the beginning of the piece in the diatonic scale, a 60 second transition 
passage formed from glissandos, and the Pierce scale section which lasts 60 seconds. 
The Pierce scale section can be heard as a transformation of material from the opening 
section. 

Sound example 10. A well-known hymn played first in the diatonic scale and then 
in a stretched scale (A = 2.4). Some melodic lines are perceivable in the stretched 
version, but the harmony sounds very different. 

Sound example 11. An AXBX key sensing test. A and X are in the same key. 

Sound example 12. Cadences 
1) Four chord diatonic anticadence 
2) Four chord diatonic cadence 
3) Four chord stretched anticadence 
4) Four chord stretched cadence 
5) Four chord anticadence with timbres having equally spaced overtones 
6) Four chord cadence with timbres having equally spaced overtones. Note especially 
the strong contrast in dissonance between the last two chords. 

Sound example 13. A simple melody, "Are You Sleeping, Brother John", is played 
only in a stretched (A = 2.4) scale. Most listeners can identify the tune. 




