Gotland workshop: Summary of session "Analysis of vowels"

Fujimura, O.

journal: STL-QPSR
volume: 21
number: 1
year: 1980
pages: 005-007

http://www.speech.kth.se/qpsr
Summary of the session on "Analysis of vowels" at the Gotland workshop, August 16, 1979; Part (a) Data for production models
Chairmen: Osamu Fujimura and Hiroya Fujisaki

Available methodological approaches for studying speech production processes may be summarized as in Table I. Among the models, we shall concentrate on physical models for the present discussion. The three-dimensional tongue model is a typical example, where we specify muscular forces as inputs and compute the tongue shape, the vocal tract area function, and the F-pattern.

As the means for obtaining data about production processes in connection with model construction and interpretation of observed phenomena, we may list a variety of techniques as in Table II. Some examples of such techniques and the classes of topics were discussed: the computer-controlled x-ray microbeam system and the derivation of component gestures of tongue articulations for vowels, a new stereofiberscope with a magnetic bridge for joining the optical cables within the pharynx, a topic of laryngeal conditions, in particular larynx height, in relation to accent patterns and vowel devoicing, an example of electromyographic data of the laryngeal gestures in relation to accentual control where physiologic signals reflects the linguistic control better than acoustic (fundamental frequency) signals, and dynamic palatography (electropalatography).

It was emphasized that speech phenomena are inherently variable both within a speaker and among different speakers, and this makes it necessary to obtain and process a large amount of data. At the same time, none of the available techniques for deriving data at different levels of the hierarchy of speech production levels is complete in supplying us relevant information. Consequently, the best we can do is to combine all sets of fragmentary data obtained at different levels preferably simultaneously, and relate them to each other via models that map one level to another, in the effort to arrive at a good understanding of a comprehensive picture of the dynamic process of speech. It was pointed out that vowels as syllable nuclei play essential roles in determining the inherently dynamic and continuously moving process of speech production, which has to be described as a multidimensional system with complex temporal characteristics.
Comments were contributed concerning electric measurements of the glottal and labial conditions, magnetic and optical measurements of the tongue gestures, CT-scanning measurements of the vocal tract cross-sections, acoustic impedance measurement (its proposal, attempts, technical difficulties and future prospect) for deriving area functions, vocal cord models and their implications.

Osamu Fujimura

Methodologies

1. Physical/Physiological Measurements
 histochemical, mechanical, electric, magnetic, optical, ultrasonic, acoustic, radiographic

2. Statistical Induction
 principal component analysis
 multidimensional analysis (INDSCAL, PARAFAC)

3. Deductive Interpretation
 analysis-by-synthesis
 linear- or nonlinear-multiple regression

4. Model Construction
 physical (computational) models
 - finite element method, etc.
 psychological models
 - motor programming/execution
 phenomenological models
 - target/locus, lookahead, coarticulation

5. Linguistic Theory -- Phonetic Code
 phonemes, distinctive features, syllables
 core-affix, demisyllables, metric structure

6. Control Theory -- Feedback Loops

TABLE I
Measurement Techniques

2. Supralaryngeal
 a) Dynamic Palatography
 (electric; optical distance measurement)
 computer data analysis/acquisition
 b) X-rays
 cinefluorography
 computer-controlled microbeam
 (automatic pellet tracking)
 interactive analyses
 automatic annotation/retrieval
 data base
 c) Others - Physical
 mechanical
 ultrasonic
 magnetic
 optical
 electric
 d) EMG
 e) Others - Physiologic
 EEG
 magnetic (cerebral)
 radiographic (cerebral)

TABLE II