Eigenmodes, inadmittance, and the function of the violin

Alonso Moral, J. and Jansson, E. V.

journal: STL-QPSR
volume: 22
number: 1
year: 1981
pages: 058-086

http://www.speech.kth.se/qpsr
III. MUSIC ACOUSTICS

A. EIGENMODES, INADMITTANCE, AND THE FUNCTION OF THE VIOLIN*

J. Alonso Moral and E.V. Jansson

Abstract

Four violins were investigated with a TV speckle interferometer (150-2000 Hz) and inadmittance measurements (50-10000 Hz). Thus obtained vibration patterns showed different kinds of eigenmodes, five body modes below 800 Hz (i.e., one-dimensional longitudinal and two-dimensional modes with the complete body vibrating in phase) and plate modes between 800 and 2000 Hz limited either to the top or to the back plate. In addition, the Helmholtz' air mode and the first top plate mode are found in the lower frequency range. The inadmittance curves show that the vibration properties are set by single resonances below 1 kHz. Above 2 kHz, the bandwidths of the different plate resonances overlap, and the violin body properties are determined by the density of resonances and their damping. The bridge introduces a broad peak, about 3 kHz. The experiments showed that all modes but the lowest three body modes can radiate sound and can be driven via the bridge. Measurements of vibration levels indicate that the energy losses in the violin are considerable, and that the bridge region vibrations are smaller than those of the upper and lower halves between 900 and 3000 Hz but larger for higher frequencies. At the bridge below 900 Hz, the sound post introduces a large asymmetry favoring the left side vibrations but for higher frequencies the right side vibrations are tended to be larger. The magnitude of the different recorded measures seems to be related to playing qualities, but more experimental evidence is needed to settle these relations.

* submitted for publication in Acustica.
I. Introduction

The vibration properties of a violin are described by its eigenmodes. Therefore, many investigators have tried to map the eigenmodes of violins. The early trials were made with simple Chladni patterns (see Hutchins\(^1\)). Later, different kinds of electrical, optical, and electroacoustical methods have been used. With these methods the amplitudes and the phases of vibrations have been mapped point by point. A new optical technique, hologram interferometry, made it possible to obtain a complete mapping of a vibration mode in one recording. Furthermore, this technique made the vibrations visible for the human eye. Hologram interferometry made it thus possible to adjust the driving conditions and obtain vibration patterns that could be interpreted in terms of eigenmodes. Two series of such interferometric mappings of the violin have been published. In the first series, the vibration patterns were recorded with the violin clamped in a jig, at the chinrest position, the neck, and two corners\(^2\). It was later proved that the clamping influenced on the vibration patterns\(^3\). In the second series the mapping of the vibration patterns was obtained by Stetson & Taylor with the violin loosely held by rubberbands, i.e., approximately free edges\(^4\). The vibration patterns from the two series are quite different.

Still more recently, a so-called TV speckle interferometer has been developed at the Institute of Optical Research, Royal Institute of Technology, Stockholm\(^5\). With this interferometer the mapping of vibration patterns has been made still simpler - the stability demands on the holding of the investigation object are less severe and the vibration patterns are conveniently displayed on a television screen. By means of this interferometer it was decided to
make a more complete recording of the eigenmodes of violins and thereby try to settle the differences between the two previous experimental series. Furthermore, inadmittances were measured with a method developed by Jansson. Thereby the optical measurements were complemented with independent ones, and the range of measurements could be extended to the full audio-frequency range. In addition, resonance frequencies and Q-factors of the different eigenmodes could easily be obtained. A complete record of the experiments can be found in a preliminary report by Alonso Moral\(^{(6)}\).

In this paper we shall present mapped eigenmodes and analyze their importance in terms of excitation and radiation. Furthermore, we shall study vibration properties at higher frequencies as mapped by inadmittance plots. Finally, we shall discuss the function of the violin in terms of the presented experimental findings. Our paper is a report of an investigation of fundamental physical properties of the violin. We are planning to investigate the properties relevant for the function more in detail.

2. Experimental Violins

In this investigation we have used four violins of different origins: (1) a cheap Chinese violin, (2) a Czech violin, made in a non-traditional way, (3) the violin previously used in the Jansson, Molin & Sundin\(^{(2)}\) investigations, and (4) an old violin of unknown origin.

The first two represent samples of violins made in factories in large numbers, the third one was carefully made for the previous investigation by H. Sundin. The fourth violin is an old violin owned by Alonso Moral. It is much repaired. All violins investigated are owned by the authors or put at their disposal for investigations. No formal tonal quality test has been made with the violins.
but we rank the violins in the order 4, 2, and 3, and 1, starting from the best one. Although no real high-quality violin was included in the experiments, we believe that our results are representative for the violin in general and recorded magnitudes of differences are representative for differences between instruments.

3. Eigenmodes

3.1 The recording of the eigenmodes

At the Institute of Optical Research a special TV speckle interferometer has been developed\(^{(5)}\). The interferometer displays the vibration patterns of the investigated object on a television screen. Thus, the vibrations can be photographed, recorded on videotape, or simply plotted on a paper with a pencil. This last method suffices for our purpose and was therefore used. As large series of experiments could be made with a moderate amount of work; we could investigate the four violins in a fairly complete way.

The mapping of the eigenmodes were made under the following conditions. In order to obtain a maximum of reflecting light from the violins, these were covered with especially prepared reflexion tape applied along the grains. During the experiments, the violins were placed on their right sides on two rubber supports. The violins were set into vibration by the electrodynamical system. The reflexive tape, the driver, and the supports perturbed the resonance frequencies slightly. The tape and the driver lowered the frequencies max. 4%. The supportings increased the frequencies max. 4%. Thus, the measured resonance frequencies should differ less than 4% from those for the violin in a "free" condition. By trying different ways and positions of supporting the violins, it was found that the vibration patterns, and thus the eigenmodes, were little influenced...
by the supports. With the interferometer, eigenmodes could be mapped up to approximately 2 kHz.

3.2 Experimental Results

The experiments revealed three main kinds of eigenmodes. The first type, longitudinal one-dimensional eigenmodes, are displayed in Fig. III-A-1. The eigenmodes are of one-dimensional character, as they have approximately parallel nodal lines. Furthermore, the two nodal lines are in the same position for the top and back plates and the antinodal areas of the top plate vibrate in phase with corresponding areas of the back plate. This means that the violin vibrates approximately as the first mode of a free bar.

Different eigenmodes should have different vibration patterns, not as similar as in Fig. III-A-1. Therefore, three simple follow-up experiments were made. First the free end of the fingerboard was massloaded, secondly the same massload was moved to the top plate under the fingerboard, and thirdly, two wedges were pushed in-between the fingerboard and the top plate. In the first experiment, the 285 Hz mode was considerably lowered in frequency, in the second little, and in the last experiment this mode vanished. The 185 Hz was moderately influenced in the three cases. Thus, all three experiments imply that the 285 Hz mode derives mainly from the neck with fingerboard. A complication is that the 285 Hz one-dimensional mode may vibrate in combination with the wall vibrations of the "Helmholtz air mode".

The same two eigenmodes can be traced in the vibration patterns at 201 and 303 Hz in the Stetson & Taylor records\(^4\). In our experiments we could find effects of higher longitudinal one-dimensional
Fig. III-A-1. One-dimensional body modes at (a) 185 Hz and (b) 285 Hz (average frequencies of the four violins). Driving point is marked with a triangle, the nodal lines with broken-dotted curves, and the phases of vibration relative to the driving with a plus sign for in phase and a minus sign for vibrations in opposite phase. The violin is shown as seen from the top and back sides, respectively.
body modes, but they were weak compared to the other types of modes in these frequency ranges. For convenience we label the two modes found as C1 and N (Corpus and Neck).

In the next higher frequency range, a second type of eigenmodes was found: two-dimensional body modes, see Fig. III-A-2. This type of eigenmodes is prominent in the frequency range of 350-800 Hz. The nodal lines are similar for the top and the back plates and corresponding areas of the top and back plates are vibrating in phase. The vibrations are maximum at the edges, i.e., at the ribs. The eigenmodes are of a two-dimensional character and the whole body is vibrating similarly to a free plate. More specifically, these body modes correspond to the eigenmodes number three, two, and five of a free violin plate (7). (The eigenmode number five is often referred to as the ring mode and is regarded as the most important mode for plate tuning.) The two-dimensional body modes can be driven from both the top and the back plate. The same eigenmodes can be traced in the Stetson & Taylor interferograms at 382, 549, and 717 Hz (4). Furthermore, the 405 Hz eigenmode can be found at 340 Hz in the records by Jansson, Molin & Sundin (2), i.e., for violin 3 held with clamps. For convenience we label these eigenmodes C2, C3, and C4.

From 700 Hz to at least 2000 Hz (the upper limit of the experiments), a third type of modes dominates. These eigenmodes we shall call plate eigenmodes, as the vibrations are limited either to the top or to the back plate, i.e., they have nodal lines at the ribs. Similar patterns can be found in both the top and the back plates.
Fig. III-A-2. Two-dimensional body modes at (a) 405 Hz, (b) 530 Hz, and (c) 700 Hz. The curved lines mark lines of equal amplitude; frequencies, triangles, broken-dotted lines, and plus and minus signs as in Fig. III-A-1.
at different frequencies. The examples in the upper row of Fig. III-A-3 show eigenmodes with vibrations in the lower part only - the upper part vibrations of the 775 Hz mode derive from another eigenmode. The same vibration patterns can generally be found in the upper part too. All these presented eigenmodes have small vibration amplitudes in the bridge region. There are plate eigenmodes, however, with large vibration amplitudes in the bridge region. Examples of such are shown in the lower row of Fig. III-A-3. The plate eigenmodes are of the same type of modes as those recorded for violin 3 held with clamps, i.e., a boundary condition approaching clamped edges (Jansson, Molin & Sundin\(^{(2)}\)).

So far we have neglected the two best known resonances of the violin, i.e., the "Helmholtz' air resonance" and "the main wall resonance". The Helmholtz' air mode (hereafter labelled AO) generates plate vibrations, as shown in Fig. III-A-4a. The vibrations are limited within the ribs and the main vibrations are in the left half of the body. They are of the same magnitudes in the top and back plates but opposite in phase. This means that the top and the back plate vibrations work together to shrink or to increase the volume of the body. As stated earlier, the plate vibrations at the air resonance can be noticeably influenced by the one-dimensional 285 Hz eigenmode, which is mainly determined by the neck and fingerboard.

At approximately 460 Hz the so-called "main wall resonance"\(^{(8)}\) and the first top plate resonance (labelled T1)\(^{(2)}\) are found, Fig. III-A-4b. At this frequency a complicated vibration pattern can be seen. The major vibrations are on the top plate side and on the left side along the bass bar. Furthermore, there are vibrations at the edges and two nodal lines at considerable distances from the edges.
Fig. III-A-3. Examples of plate modes: the back plate at
(a) 775 Hz, (b) 1160 Hz, (c) 1490 Hz, (d) 1030 Hz, and (e) 1360 Hz. Frequencies, line
markings and symbols as in Figs. III-A-1 and
Fig. III-A-4. Vibration modes at (a) the "Helmholtz' air mode" at 275 Hz and (b) the first top plate at 460 Hz. Frequencies, line markings and symbols as in Figs. III-A-1 and III-A-2.
Finally, the left part of the back plate is vibrating. The vibrations were earlier shown to be dependent on the holding (3) and they can be traced in the records by Stetson & Taylor (4). The vibration pattern seems to be a combination of the first top plate eigenmode with clamped edges (2) and the two-dimensional body mode at 530 Hz. Note the similarity with the "vibration patterns at the Helmholtz' air resonance", i.e., main vibrations in the left halves and opposite in phase.

The frequency ranges of eigenmodes recorded with the speckle interferometer are given in Fig. III-A-5 together with the previously recorded air modes (9). It is easily seen that the number of top and back plate resonances starts to dominate with increasing frequencies and that the frequency ranges of the plate modes are overlapping for higher frequencies. The different frequency ranges indicate, furthermore, that some modes can be tuned within wide ranges, while others are fairly frequency fixed, thus suggesting that the former ones are set by the maker while the later are set by the general construction.

3.3 Radiation

The radiation efficiency of the different modes is, in general, difficult to measure and to summarize in a simple way. The radiation efficiency can be estimated by means of a simple reciprocal measure, i.e., how efficient a loudspeaker in the room drives the different eigenmodes.

In our case we used a loudspeaker at approximately 1.5 m distance from the violin, and watched the plate vibrations by means of the speckle interferometer. By doing so it was found that eigenmodes
Fig. III-A-5. Resonance frequency ranges (thick horizontal bars) for different eigenmodes. Air modes (the top line, the higher modes from Janson (9)), body modes (C1, N, C2-C4 the second line), the top plate modes (the third line), and back plate modes (the bottom line).
C1, N, and C2 are weakly driven. The last one can, however, be driven when the loudspeaker is moved closer to the violin in an asymmetric way. The A0 and T1 are strongly driven. The C3- and C4-modes, as well as the top and back plate modes, are clearly driven, at least those up to 2 kHz.

4. Inadmittance - Driving - Vibration Levels

The tone characteristics of a violin are determined by how the vibrational forces from the strings are transformed into bridge vibrations. A measure of this transformation is the inadmittance, i.e., the driving point velocity for driving force of constant amplitude. Furthermore, it has been shown that the inadmittance is closely related to radiated sound power for frequencies below 1 kHz, Beldie (10, 11). Thus, it gives a direct measure of driving conditions and, at least for low frequencies, a measure of radiated sound.

The inadmittance is simple to measure with the technique developed at our laboratory. In 1975 Jansson utilized the recently developed strong magnets (of Cobalt and rare earth metals) to construct a very simple driving system possessing ideal properties (low weight and no internal losses), see Firth (12). Firth developed this construction further and made a complete "impedance head" (13). We have adopted this "impedance head" in a simplified version employing only the accelerometer. Thus, we are feeding an electrical coil with "constant" current. The coil acts over a small air gap with the magnet and gives a "constant" driving force. The magnet is fastened to a B&K miniature accelerometer (8307), which is fastened to the measurement object. This magnet-accelerometer-transducer is easily adopted to a large variety of measurements.
Inadmittance curves were recorded of the four violins to supplement the vibration pattern measurements. Furthermore, the investigation by means of the inadmittance measurement range was increased to 10 kHz, i.e., including the whole frequency range of importance according to Jansson \(^{14}\).

Inadmittance curves for violin 4 without and with the reflexive tape are shown in Fig. III-A-6. The curves were recorded with driving on top of the bridge "outside" the G-string and in perpendicular to the top plate. In the two curves shown it can be seen that a total mass of the tape (20 g) mainly has reduced the magnitude and the sharpness of peaks and dips. It also indicates the probable influence of the varnish, which thus mainly should be a moderate adjustment of the violin properties. The inadmittance for another violin (no 3) with the same driving conditions and a silent room is shown in Fig. III-A-7.

The admittance curves of the two violins show two regions of similar features. In the lower frequency region, and, especially, in the range of 300 to 1000 Hz, there are several pronounced peaks. These peaks derive from the eigenmodes presented in the previous paragraph as labelled. If an eigenmode shows up as a peak at its resonance frequency, it means that it is driven. Thus, we can see that the driving varied somewhat between the two violins, but in general the following was found for all four violins. The eigenmodes C1 and N are weakly driven via the bridge. The AO-and T1-modes are clearly driven via the bridge. The C2-mode is weakly driven, but C3 and C4 are strongly driven. In the experiments it was furthermore found that the higher top plate and back plate modes in general were driven via the bridge, both those with small and those with large vibrations in the bridge region. For completeness, resonance frequencies and Q-factors are measured after the experiments had been
Fig. III-A-6. Inadmittance measured on the bridge to the left of the G-string and perpendicularly to the top plate for violin 4 with (upper curve) and without reflexive tape (lower curve) shifted -13 dB relative the upper curve. Identified resonance peaks are labelled.
Fig. III-A-7. Inadmittance measured on violin 3 as in Fig. III-A-6 (lower curve).
completed. The results are given in Table III-A-I.

In the higher frequency range there is a broad peak containing several minor peaks. The maximum of this broad peak falls at approximately 3 kHz, i.e., in the range of the first major resonance of the bridge, Reinicke (15, 16). Two simple follow-up experiments were performed, one with massloading of the bridge and the second by pushing wedges in the bridge "cuttings". The frequency of this broad peak maximum decreased to 2.5 kHz and increased to 3.8 kHz in the two experiments, cf. Fig. III-A-8. Furthermore, the 3 kHz peak does not show up in the admittance recorded at the top plate close to the left bridge foot. These results support the interpretation that the broad peak derives from the first major bridge mode.

The peakiness of an admittance curve depends on the internal losses in the violin (cf. Fig. III-A-6) and the frequency difference between adjacent peaks. For low internal friction and large differences in resonance frequencies, a short peak is obtained for every resonance and a sharp dip between every pair of peaks. When the internal friction is large and the frequency differences are small, i.e., the widths of the peaks are of the same magnitude as the frequency differences, we should expect a smoother frequency response (adjacent poles and the zeros of the polynomial describing the admittance function "neutralize" each other). The number of resonances in the violin top plate can be estimated. We assume the top plate to be flat with a size of 0.15x0.35x0.003 m³ (width (w) x length (l) x thickness (h)) and calculate a width to give the same resonance frequencies with the longitudinal velocity (c) (typical values for spruce, c_long = 5460 m/sec, c_cross = 1260 m/sec). This gives an effective width: w_e ≈ 4 x w.
Table 111-A-I. Resonance frequencies and \(Q \)-factors of the four violins, recorded with optimum conditions, and their corresponding centre and deviation measures.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency Hz</th>
<th>(Q)-factor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 1</td>
<td>No. 2</td>
</tr>
<tr>
<td>C1</td>
<td>184</td>
<td>168</td>
</tr>
<tr>
<td>N</td>
<td>282</td>
<td>287</td>
</tr>
<tr>
<td>A0</td>
<td>284</td>
<td>255</td>
</tr>
<tr>
<td>C2</td>
<td>401</td>
<td>369</td>
</tr>
<tr>
<td>T1</td>
<td>476</td>
<td>421</td>
</tr>
<tr>
<td>C3</td>
<td>598</td>
<td>489</td>
</tr>
<tr>
<td>C4</td>
<td>774</td>
<td>603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>No 1</th>
<th>No 2</th>
<th>No 3</th>
<th>No 4</th>
<th>centre & deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>122</td>
<td>80</td>
<td>67</td>
<td>56</td>
<td>89±33</td>
</tr>
<tr>
<td>N</td>
<td>51</td>
<td>46</td>
<td>61</td>
<td>41</td>
<td>51±10</td>
</tr>
<tr>
<td>A0</td>
<td>12</td>
<td>18</td>
<td>26</td>
<td>28</td>
<td>20±8</td>
</tr>
<tr>
<td>C2</td>
<td>48</td>
<td>74</td>
<td>69</td>
<td>35</td>
<td>55±20</td>
</tr>
<tr>
<td>T1</td>
<td>29</td>
<td>41</td>
<td>27</td>
<td>46</td>
<td>36±10</td>
</tr>
<tr>
<td>C3</td>
<td>33</td>
<td>49</td>
<td>41</td>
<td>34</td>
<td>41±8</td>
</tr>
<tr>
<td>C4</td>
<td>45</td>
<td>42</td>
<td>61</td>
<td>27</td>
<td>44±17</td>
</tr>
</tbody>
</table>
Fig. III-A-8. Perturbations of the first main bridge resonance. Inadmittance measured as in Fig. III-A-7 for the bridge in normal condition (upper curve), two 0.5 g masses attached at each of the upper two corners of the bridge (second curve), and wedges in the cuts at the bridge waist (third curve). Inadmittance perpendicularly to the top plate at the left bridge foot (bottom curve). The thin horizontal lines correspond to the same level.
Within the frequency band Δf we should obtain for one plate
the number of resonances

$$\Delta N = \frac{w}{3.6 \cdot c - h} \cdot 2\pi \Delta f$$

see ref. (17).

For the values given we obtain approximately one resonance
per 50 Hz. The back plate should add approximately the same number
of resonances. For the (arched) violin one resonance per 100 Hz was
recorded in the present report, cf. Fig. III-A-5 and (2). Thus, we
are justified in expecting to find one to four resonances every 100 Hz.

The inadmittance plots, Figs. III-A-5 and 7 contain approx. 40
peaks from 50-10000 Hz, i.e., one peak every 250 Hz. This number
is smaller than expected. Furthermore, it can be seen that the
peak-to-dip ratio diminishes considerably with increasing frequency.

By means of a special filter bank, MARS, Till (18), it was
investigated what resonance properties are likely to be hidden in
the details of the inadmittance curve. The investigation was lim-
ited to the frequency range 2-2.8 kHz. Inadmittance curves, cor-
responding to different combinations of resonances and ξ-factors
together with inadmittance plots of the four violins, are given in Fig.
III-A-9. The curve corresponding to one resonance per 200 Hz ($N = 5$
and thus closest to one per 250 Hz) gives either reasonable level
variations but too rounded peaks or reasonably sharp peaks but
much too large level variations compared to measured inadmittance
curves. Doubling the number of peaks, $N = 9$, gives a better fit,
while a second doubling, $N = 17$, with a ξ-factor of 50 gives a good
Fig. III-A-9. Modelled (first three boxes) and recorded inadmittances (the right box) curves between 2 and 3 kHz. The left box corresponds to $Q \approx 17$, the second to $Q \approx 35$, and the third to $Q \approx 50$. The upper curves contain 17 resonances, the middle curves nine resonances, and the bottom curve five resonances. The full line bottom curves are shifted -10 dB, their correct position is marked by the broken lines in the left box. The right box contains inadmittance curves measured for the four violins (shifted along the vertical axis to make the detailed structure show up).
approximation of the detailed structure of the inadmittance curve,
i.e., after subtracting effects of one or two prominent peaks and
the up-hill slope from the first bridge resonance, cf. Fig. III-A-8.
Thus, it seems safe to conclude that we have 10-20 resonances (i.e.,
close to the theoretical predictions) with Q-factors of 30-50 giv-
ning the detailed structure of the inadmittance curve, at least at
2-3 kHz. This means that the violin in this range should be regard-
ed as a multiresonator system with the spacing of the resonance of
the same magnitude as the bandwidths of the resonances. In this
system the inadmittance level is better described by the density of
resonances and their Q-factors than the properties of the closest
two resonances.

Two more factors related to the driving should be discussed:
the sound post and the vibrations around the driving region. The
inadmittances recorded at the left and at the right foot of the bridge
are rather different, see Fig. III-A-10a. At the T1-eigenmode we
have already shown that the vibrations are large at the left foot
and small at the right foot (i.e., at the sound post). Measure-
ments on violins 1 and 2 show that the differences are 20 dB in the
inadmittance level at the T1-resonance. This difference holds, not
only for the T1-eigenmode, but for the low frequency range up to
approximately the C3 resonance (cf. Fig. III-A-10a). For higher frequen-
cies there is a tendency for the opposite relation. A more care-
ful analysis for the higher frequency range for all four violins
gives that the driving point vibrations are on the average 2.6±1.7
dB lower (averaged in critical bands of hearing) on the left side
from 0.9 to 10 kHz. Thus, it was found that the G-string side of
the bridge drives most efficiently for low frequencies and the E-
string side for high frequencies. The two bridge sides drive
approximately even in-between, i.e., in the frequency range of the C3-resonance. With the sound post taken out, the levels of the in-admittances at the left and the right sides are approximately the same, and the same as at the left bridge foot with soundpost in, see Fig. III-A-10b.

Furthermore, the driving point vibrations at the left bridge foot were compared with the vibrations of four other points around the bridge (at approximately 1 cm from the bridge). In the higher frequency range (above 900 Hz) the vibration level is 3.1±1.9 dB higher at the driving point than the other four points (averaged in critical bands of hearing) for all four violins. The result implies an energy loss in the driving.

Finally, the vibration levels were measured at the driving point, the other four points close to the bridge, two points within the upper bouts, and two points within the lower bouts. The measures were averaged in critical bands of hearing for all four violins. In the region 900 to 3000 Hz, it was thus found that the vibrations close to the bridge tend to be smaller than those within the bouts (-2±2 dB) but larger for 3 to 10 kHz (+2±3 dB). This means that the bridge (the driving) is in an area of smaller vibrations than those of the upper and lower parts for frequencies up to approximately 3 kHz. The average level drop close to the driving (of 3 dB from the previous paragraph) implies that the relation driving point vibrations are smaller than those in the upper and lower bouts up to 10 kHz.
Fig. III-A-10. Inadmittance curves for violin 2 (with reflexive tape) recorded at the left bridge foot (full line), and at the right bridge foot with soundpost in (broken line, upper box), and at the left bridge foot with soundpost (full line) and without soundpost (broken line). The five lowest identified peaks labelled.
Conclusions on the function

The vibration patterns of eigenmodes of the four violins were mapped with a TV-speckle interferometer for the frequency range 150-2000 Hz. For higher frequencies it was difficult to separate different eigenmodes.

Our major findings were that in the lowest frequency range, i.e., 150-300 Hz, there are two one-dimensional modes in which the violin vibrates similarly to a free bar. The higher mode derives mainly from the neck with fingerboard and is close in frequency to the Helmholtz' air mode. The range of resonance frequencies of these modes are given in Fig. III-A-5 by the left two short bars along the "body mode" line. The modes are not efficiently driven via the bridge, nor do they radiate sound efficiently. The modes are influenced by holding at the ribs.

In the frequency range 300-800 Hz there are three two-dimensional body modes marked by the right three bars along the "body mode" line in Fig. III-A-5. The two highest modes can be driven via the bridge and can radiate sound. All three modes are influenced by holding at the ribs.

The Helmholtz' resonance is the only air resonance, that clearly showed up in wall vibrations. Its resonance frequency range is given by the bar along the "air mode" line in Fig. III-A-5. A distorted first top plate mode, the first bar on the "top mode" line, shows up as a combination of the first top plate mode (obtained for a "clamped" violin) and the second two-dimensional body mode. The Helmholtz' air mode and the first top plate mode are efficiently driven via the bridge and they are efficient sound radiators. They are moderately influenced by clamping at the ribs.
From 700 Hz to 2000 Hz there are many eigenmodes, either in the top or in the back plate. c.f., the "top" and "back eigenmode" lines in Fig. III-A-5. These modes can be driven via the bridge and they can radiate sound. They are little influenced by clamping at the ribs.

The vibration patterns show that the normal holding of the violin for playing may affect the one- and two-dimensional modes considerably. The one-dimensional ones are influenced via the holding at the neck and at the chinrest. Moderate influence should be expected for the Helmholtz' air mode and the plate modes. Simple experiments verified these conclusions.

Inadmittance curves were recorded for frequencies from 50 to 10 000 Hz. A comparison of the measured curves with inadmittance curves modelled on an electrical filter bank shows that the detailed properties above 2 kHz are set by the resonance density and the damping rather than by single resonances. This result is in agreement with the difficulty to visually separate the eigenmodes in the interferometer above 2 kHz. Gross properties in the high frequency range are set by the bridge main resonance at approximately 3 kHz.

The inadmittance measurements have proved that the left bridge foot drives the violin more efficiently up to approximately 800 Hz (the third two-dimensional body mode). For higher frequencies, the right bridge foot tends to be the more efficient driving point. Thus, the low frequency driving is favored at the G-string side but the high frequency driving at the E-string side. The vibration amplitudes around the driving point imply that a measurable fraction is not distributed over the whole top plate.
The vibrations in the lower and upper parts are larger than those in the bridge region from low frequencies up to at least 3 kHz (except from at the resonance of modes T1 and C4), also with driving via the bridge. For higher frequencies the vibrations in the bridge region still tend to be smaller. Thus, at least for frequencies below 3 kHz, those results support the hypothetically suggested functional model that the driving is in a region of small vibrations compared with the upper and the lower parts of the top plate.

The investigations gave also some implications on quality criteria. In the low frequency range, say up to 1 kHz, the four violins have approximately the same resonance frequencies and the relations between the resonances are fairly fixed. At higher frequencies the different violins seem to be more different, thus implying that this frequency range offers more possibilities for quality adjustments. A comparison of tonal qualities with measured properties suggest that specific quantitative relations are favorable for the presented qualitative functional relations. The vibrations outside relative to those of the bridge region should be as large as possible at low frequencies but as small as possible above 3 kHz. The vibrations of the left side relative to those of the right side of the bridge should be as large as possible below 800 Hz but as small as possible for higher frequencies. More evenly distributed vibrations around the driving point as a function of frequency seem also to be favorable. The suggested quality criteria need, however, more evidence before they can be adapted as guide lines for construction.
References

(4) HUTCHINS, C.M.: "How the violin works". In Sound Generation in Winds, Strings, Computers, Royal Swe. Academy of Music, Stockholm (1980), Fig. 10.

(7) HUTCHINS, C.M.: "Tuning of violin plates". In Sound Generation in Winds, Strings, Computers, Royal Swe. Academy of Music, Stockholm (1980), Fig. 2.

