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ABSTRACT

Spontaneous speech has many affective and pragmatic func-
tions that are interesting and challenging to model in TTS.
However, the presence of reduced articulation, fillers, repeti-
tions, and other disfluencies in spontaneous speech make the
text and acoustics less aligned than in read speech, which is
problematic for attention-based TTS. We propose a TTS ar-
chitecture that can rapidly learn to speak from small and ir-
regular datasets, while also reproducing the diversity of ex-
pressive phenomena present in spontaneous speech. Specif-
ically, we add utterance-level prosody control to an existing
neural HMM-based TTS system which is capable of stable,
monotonic alignments for spontaneous speech. We objec-
tively evaluate control accuracy and perform perceptual tests
that demonstrate that prosody control does not degrade syn-
thesis quality. To exemplify the power of combining prosody
control and ecologically valid data for reproducing intricate
spontaneous speech phenomena, we evaluate the system’s ca-
pability of synthesizing two types of creaky voice.
Index Terms: Speech Synthesis, Prosodic Control, Neural-
HMM, Spontaneous speech, Creaky voice

1. INTRODUCTION

In recent years, the quality of end-to-end deep neural-
network-based text-to-speech (TTS) architectures have im-
proved to rival human speech [1]. Two issues faced by
state-of-the-art TTS are a lack of ecological validity [2], how
well the speech data reflects the context of the use-case, and
expressivity in the learned prosody. Most architectures are
trained on read-speech corpora, e.g., [3, 4] that have limited
prosodic coverage, and generate “average” prosody. More-
over, the prosody is generated solely from text, which allows
no control over the generated style [5]. Concurrently, sponta-
neous speech is increasingly used in TTS [6, 7]. Spontaneous
speech data is challenging to model, due to disfluencies and
large variability [8]; offers high ecological validity for ever-
more commonplace conversational AI systems, and the varied
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prosody offered by spontaneous data positively impacts fac-
tors such as word recall and attention [9]. For conversational
systems it would also be useful to be able to synthesize creaky
voice, as this have been found to be a strong turn-yielding cue
[10, 11].

Several approaches exist for prosody-controlled TTS. In
[12], the authors use a Tacotron 2 architecture for which
the decoder is conditioned on a prosodic reference encoder.
During training, the prosodic reference encoder generates
prosody embeddings from spectrogram slices in an unsuper-
vised manner. At inference, the prosody of a reference audio
file is transferred to the target audio. In [13] a quantized fine-
grained VAE with an autoregressive prosody prior is used
which learns a latent representation of the prosody from the
aligned spectrogram.

The approaches closest to this paper appear in [14] and
[15], a modified version of [16]. In [14] the authors introduce
a hierarchical model based on Tacotron 2 that uses a sepa-
rate prosody encoder to predict sentence-wise pitch, phone
duration, speech energy, and spectral tilt. This allows for the
control of these features and the production of a variety of
styles, while achieving similar mean opinion scores to a base-
line Tacotron 2 model. This hierarchical model requires a
large amount of data, for which sufficient-length spontaneous
speech corpora do not exist, and requires enormous amount of
resources to train. In [15] Tacotron 2 is modified by append-
ing embedding values for the pitch, loudness, and duration to
the output of the encoder before being passed to an augmented
attention mechanism.

In this paper we study the effect of using spontaneous
speech data for TTS with prosodic feature control: We use
a method based on neural hidden Markov models (HMM)
TTS [17], equivalent to a kind of transducer TTS [18]. Im-
portant for spontaneous speech applications, neural HMMs
[19] force monotonic alignments between input symbols and
output frames, which helps to train rapidly and on smaller,
more disorderly datasets than neural TTS based on conven-
tional neural attention [17]. The statewise nature of the neu-
ral HMM is also appealing for modelling disfluencies and
other speech irregularities that have been transcribed with dis-
crete tokens. Here, there is a possibility to represent speech
phenomena such as disfluencies, partial repetitions, under-
articulated speech segments, etc., that cause the alignment
between speech and transcription to be lower in a sponta-
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neous speech corpus than in a read speech corpus [20]. We
extend neural HMM TTS to learn a control space for the
mean and variation of the fundamental frequency (f0) and
speech rate (syllables per second). By using spontaneous
data and with the control of the f0, we can implicitly ma-
nipulate voice quality through the synthesis of creaky voice,
a type of phonation where the vocal cords are relaxed to cre-
ate a low, irregular pitch with a low harmonics to noise ra-
tio [21]. Creaky voice has not been synthesized using neu-
ral TTS, as its non-periodicity makes it complex to measure.
Opting for low mean and variation in f0 synthesis enables us
to produce stylistic and end-of-turn creaky voice. We perform
a data analysis, an objective evaluation of the control of the
feature modification space, an expert analysis of the creaky
voice quality produced by the system, and a subjective evalu-
ation of the synthesized speech of our system. Audio samples
are provided at www.speech.kth.se/tts-demos/prosodic-hmm.

2. METHOD

2.1. Data

We used three datasets to train systems. For our base-model
we used a scripted conversational corpus, RyanSpeech corpus
[22]. This corpus contains 10 hours (11,279 utterances) of a
male speaker of US English reading textual materials from
conversational settings. The spontaneous model was trained
on a corpus created from the audio of the Trinity Speech-
Gesture dataset [23], which consists of 25 impromptu mono-
logues by a male voice actor speaking Hiberno-English, using
an impromptu, colloquial style. For one of the evaluations, we
also used the industry standard LJSpeech1.

We pre-processed the spontaneous corpus by segment-
ing the monologues into breath groups, i.e., single stretches
of speech between two breath events, as was performed in
[6, 24]. We opted for breath groups as a unit since we hypoth-
esize that minimal style changes occur within a single breath
group. Using breath groups also enables the possibility to
change style within a given utterance by inserting a breath.
The breath groups were combined into bigrams to create au-
dio files of up to 11 seconds [25]. We extracted the mean
and standard deviation of the fundamental frequency and
mean speech rate per breath group using the Wavelet Prosody
Toolkit (WPT) [26] to create three prosodic features: f0 vari-
ability (per-utterance standard deviation of f0), pitch (mean
f0), and speech rate (syllables per second). Other prosodic
features like energy and spectral tilt could also be included.
The feature values were z-standardized before training.

2.2. Model architecture

A modified version of neural HMM TTS [17] was used,
which is an auto-regressive TTS architecture that synthesises

1https://keithito.com/LJ-Speech-Dataset/
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Fig. 1: Model architecture

mel-spectrograms conditioned on input text. It follows an
encoder-decoder architecture similar to [3] but instead of a
cumulative attention, it uses a left-to-right no-skip HMM
(defined by a neural network) to force monotonic alignments
between text inputs and mel spectrogram frames. In addition
to the already present CNN + Bi-LSTM based encoder in
neural HMM we added a feature encoder which contains a
single feed-forward layer (Fig. 1) to project features into a
512-dimensional space. This modification is used to project
the audio features into a more expressive control space. Af-
ter standardizing the features, we use a two-step conditioning
method to incorporate the prosodic features. The output of the
feature encoder is first projected into the same dimensionality
as the phone embeddings, and the two are concatenated to
define the final states of the HMM. Additionally, we append a
skip connection that adds the standardized prosodic features
to the outputs of the encoder. The skip connection provides
more robust control over the synthesis, as both encoder and
decoder are conditioned on the prosodic features.

3. EXPERIMENTS

3.1. Experimental setup

To investigate the level of prosodic variation, we first per-
formed a data analysis comparing the per-utterance mean nat-
ural logarithm of the f0 (log f0), as well as the per-utterance
speech rate for each dataset. We then trained two spontaneous
TTS voice models, one baseline model trained on standard
Neural HMM TTS, and our proposed model with prosody
control, by pre-training on RyanSpeech [22] for 24,000 it-
erations with batch size 32, and then finetuning the models on
spontaneous speech audio from the Trinity Speech and Ges-
ture Dataset [23] for 9,500 iterations with batch size 20.

To examine how the control space for the prosodic fea-
tures was learned, we performed an objective analysis of the
synthesized utterances from the proposed model and the base-
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Fig. 2: The mean per-utterance log f0 and mean
per-utterance speech rate for the spontaneous and scripted
conversational corpora

line, in which we investigate the distribution of the features
that were compared in the data analysis using gradual incre-
ments of the prosodic feature control. We synthesized 280 ut-
terances per prosodic feature, corresponding to 40 utterances
for each feature setting, modifying each standardized input
feature between [-3, 3] standard deviations from the mean,
while keeping the other features constant. We also conducted
two subjective listening tests in which we compared the pro-
posed system to the baseline, and tested for quality degrada-
tion of the modified utterances by comparing them to a refer-
ence of the mean features in a MUSHRA-like CMOS.

To exemplify the system’s capability to synthesize char-
acteristic spontaneous speech with a range of voice qualities,
we conducted an additional perceptual evaluation focusing
on two different types of creaky voice which are implicitly
achievable by adjusting the prosodic features.

3.2. Data analysis

To compare the distribution of the fundamental frequency
and speech rate, we randomly selected 4009 audiofiles from
the scripted conversational corpus Ryanspeech [22] to com-
pare to the spontaneous speech corpus TSGD [23]. Figure 2
shows the distribution of the mean of the per-utterance log f0,
as well as the speech rate per utterance for the spontaneous
and scripted conversational corpora. The values are centred
around the corpus mean f0 and speech rate. In the figure,
one can see that especially the speech rate is much more
variable in the spontaneous speech corpus than in the scripted
conversational corpus, with the speech rate for the scripted

System MOS Confidence Interval
NHMM 3.60 [3.51,3.69]
Proposed 3.48 [3.40,3.57]

Table 1: The results of the subjective MOS evaluation

conversational corpus being closely centred around the mean,
while the spontaneous corpus is a widely clustered around its
mean. This is reflected in the peakier shape of the distribution
for the scripted corpus. The mean log f0 also displays more
diversity and a larger range of values in the spontaneous cor-
pus, especially for the higher-pitched datapoints. The log f0
is similarly distributed for both corpora, although it covers a
larger range of values for the spontaneous corpus.

3.3. Objective analysis

For the objective evaluation we generated 50 utterances from
a held out set for various points in the feature space ranging
from [-3, 3] per feature. From these utterances we computed
f0 and speech rate again with WPT. The results of this eval-
uation are shown in Figure 3. As can be seen in 3a, control
over the f0 variability is especially predictable in the [-2, 3]
standard deviations from the mean range. The smaller dif-
ferences for the [-3, -2] range can be explained by the low
concentration of data present (2.14%).

For the mean f0, figure 3b shows there is predictable con-
trol across the [-1, 3] st.d. from the mean range. After listen-
ing to the utterances between [-3, -1] st.d. and examining the
output from WPT, the cause of this is the creaky voice qual-
ity of both the actor’s and synthesized speech in this range.
Creaky voice does not produce accurate f0 readings due to its
lack of periodicity. We perceived -3 st.d. from the mean as
having a more intense creak than -2 st.d. from the mean, sug-
gesting that instead of lower pitch, this modification changes
the level of creakiness. Figure 3c indicates the control over
the speech rate, and shows predictable control throughout the
[-3, 3] st.d. from the mean range. Informal evaluation also
highlighted an absence of interaction between these features,
indicating the ability to vary the feature space individually for
each feature.

3.4. Perceptual evaluation

In the subjective evaluation, 44 native English speakers re-
cruited through Prolific were presented with 40 samples of
spontaneous synthesized speech, to be rated on a 5-point
MOS scale. The stimuli consisted of 20 samples created
with the baseline system without prosodic control, and 20
samples where the proposed system’s feature values match
the mean and variation of f0 and the speech rate of the non-
modified stimulus, as extracted by WPT. Table 1 shows the
participants’ ratings. The confidence intervals on the results
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Fig. 3: The effect of input feature modification on the corresponding speech property in the output speech

show that the addition of prosodic control did not result in a
degradation of quality.

We conducted an additional experiment to further test the
hypothesis that prosody modification did not decrease audio
quality. For this evaluation, we recruited 30 participants for
a MUSHRA-like 7-point CMOS of the quality of the indi-
vidual feature modifications on utterances. In the evaluation,
participants were asked to rate the quality of 4×10 sentences
synthesized at [-1.5, -0.5, 0.5, 1.5] st.d. from the mean to a
reference which was synthesized at the mean for each feature.
Wilcoxon signed-rank tests found only significant differences
in favour of the modified utterances, indicating that prosodic
changes did not harm synthesis quality.

3.5. Evaluation of synthesis of creaky voice

To evaluate the presence and naturalness of creaky voice, we
synthesized 10 utterances for our spontaneous voice, as well
as for an LJSpeech voice finetuned for 9k iterations over the
spontaneous model in 3 intended styles: modal voice qual-
ity, creaky voice as a stylistic expression (throughout an ut-
terance), and end-of-turn creak by adjusting the features until
the intended style was produced. To verify the presence of
creaky voice in the samples, we performed an analysis of the
creakiness with COVAREP [27]. In addition, we conducted
an expert listening evaluation asking 15 people with training
in linguistics or speech technology to rate what percentage of
the utterances is creaky using a sliding scale with the range of
0-100 (Table 2).

Participants were also asked to rate the naturalness of the
creak and supply general comments. Nearly all participants

Creak Type Expert mean score Measured creak
Dataset LJSpeech TSGD LJSpeech TSGD
none 22.6±6.6 33.6±4.9 5.7 0.4
stylistic 72.3±4.4 59.7±5.0 23.2 8.1
end-of-turn 45.0±3.8 53.8±5.0 18.2 7.5

Table 2: The mean reported creakiness with confidence in-
tervals and avg. creaky segments % measured in Covarep.

rated the creakiness as natural. The experts commented on
the influence of creakiness on the perception of the speaker’s
mood, and mentioned the ability to distinguish the strength as
well as the extent of the creak.

A one-way ANOVA with post-hoc Tukey showed a signif-
icant difference between no creak and the two styles of creak
(p<0.001) and no significant difference between the two
styles of creak for the spontaneous voice, whereas all cate-
gories were significantly different for LJSpeech (all p<0.01).
Some utterances designed as non-creaky were still perceived
as containing some creak, possibly due to the vocal charac-
teristics of the speaker or vocoder artefacts, although these
were always rated as less creaky than the creaky styles.

4. CONCLUSIONS

We present an architecture for the prosodic modification of
spontaneous speech, which is difficult to model with data-
hungry attention-based architectures due to the highly com-
plex and varied nature of spontaneous speech. We demon-
strate that spontaneous speech is more varied than scripted
conversational speech for per-utterance mean f0 and speech
rate. Our objective analysis shows that the modelling of
prosodic features provides control over the variation and
mean of f0 and the speech rate of synthesized speech. To
show that the prosody-modifiable feature of the synthesizer
does not degrade quality, we carried out two perceptual eval-
uations, in which the modified synthesized speech was rated
similarly or better than non-modified speech. Finally, we
conducted an additional experiment to showcase the system’s
ability to exhaust the possibilities in varied speech data by
synthesizing natural sounding creaky voice: both as a stylistic
feature, as well as in utterance-final position.

This work provides a framework for future research to uti-
lize more spontaneous speech corpora, which most closely
correspond to real conversational speech. The demonstrated
capability of synthesizing naturalistic and varied creaky voice
lends itself to the investigation of more explicit control for
voice quality dimensions.
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