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Abstract
This paper proposes a novel method to develop gender-
ambiguous TTS, which can be used to investigate hidden gender
bias in speech perception. Our aim is to provide a tool for re-
searchers to conduct experiments on language use associated
with specific genders. Ambiguous voices can also be bene-
ficial for virtual assistants, to help reduce stereotypes and in-
crease acceptance. Our approach uses a multi-speaker embed-
ding in a neural TTS engine, combining two corpora recorded
by a male and a female speaker to achieve a gender-ambiguous
timbre. We also propose speaker-disentangled prosody control
to ensure that the timbre is robust across a range of prosodies
and enable more expressive speech. We optimised the output
using an SSL-based network trained on hundreds of speakers.
We conducted perceptual evaluations on the settings that were
judged most ambiguous by the network, which showed that lis-
teners perceived the speech samples as gender-ambiguous, also
in prosody-controlled conditions.
Index Terms: speech synthesis, human-computer interaction,
gender bias

1. Introduction
Despite decades of research and calls for action, gender biases
are still prevalent in today’s digital society [1]. These range
from male candidates having higher success rates at interviews,
to the gender pay gap, to men being considered more persuasive
and less “moody” [2, 3]. These stereotypes have been shown
to be transferred to artificial agents, including virtual avatars
[4], computers [2], and robots [5]. For example, “male” robots
were perceived as more suitable for stereotypically male tasks
(e.g., repairing technical devices, guarding a house), while “fe-
male” robots were perceived as more suitable for stereotypi-
cally female tasks (e.g., tasks related to household and care ser-
vices) [5]. Technology has, at times, made matters worse: for
example, image recognition systems perform more poorly for
female subjects [6], and gender stereotypes tend to be magni-
fied whenever contextual cues are taken into account for gen-
der prediction [7, 8]. Additionally, the majority of these sys-
tems reduce the expression of gender to the traditional view of
it being binary and physiological, thus failing to capture the
complexities of gender identities [9], and there are clear con-
cerns of the societal and ethical impacts of automatic gender
recognition [10]. Also, UNESCO recently published a worry-
ing report suggesting that new technologies such as voice assis-
tants are spreading gender biases [11]. Indeed, gender stereo-
types are maintained even when people only hear the voice of
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a newly met individual [12]. As voice is sometimes the only
identifying feature of an artificial agent – or, in the case of
robots, the only easily adaptable feature – this raises the ques-
tion: can gender biases be investigated and reduced with the aid
of speech synthesis? Recently, there have been a few calls to-
wards generating “gender-neutral” artificial voices, which could
on the one hand give a voice to individuals who are not rep-
resented by the existing male/female artificial voices and, on
the other hand, reduce voice-induced stereotyping towards the
speaking agents [11, 13, 14, 15, 16]. However, there are also
concerns that, despite these good intentions, “gender-neutral”
voices might still be placed within binary categories by most
listeners [17]. Additionally, many “gender-neutral” voice as-
sistants are created only by pitch-shifting [18]; however, only
modifying pitch is not enough to achieve a “gender-neutral”
voice quality [19, 20]. In this work, we present a method for de-
veloping gender-ambiguous TTS that can be used in virtual as-
sistant applications, as well as a tool to investigate implicit gen-
der bias in perceptual experiments. Our approach uses a neural
TTS engine with multi-speaker embeddings and utterance-level
prosody control to achieve gender-ambiguous timbre. Note
that we use the term “gender-ambiguous” (instead of “gender-
neutral”) to indicate a voice that does not clearly belong to any
gender category, and can be perceived as male, female, neutral,
or combinations of the above [13, 21].

2. Method
2.1. Synthesis Method

The neural TTS engine Tacotron 2 [22] is modified following
[23] by extending the model with an 8-dimensional speaker em-
bedding which is appended to each utterance’s encoded text,
and passed to the attention and decoder blocks of the model. We
use a PyTorch implementation of the system1. A two-speaker
model is trained on two large publicly available single speaker
corpora, LJSpeech [24] containing 16 hours of speech by a fe-
male speaker and RyanSpeech [25], containing 9.8 hours of
speech by a male speaker. To balance the training data only
9.8 hours of data from LJSpeech is used in training; filenames
with last three digits > 115 were removed. To ensure a uniform
recording quality between the corpora the samples were joined
and cleaned using the Adobe Podcast enhance function2. The
model was trained for 100k iterations on 4GPUs (batch size 32).
The speech signal is decoded from the output using the neural
vocoder HiFi-GAN [26], the published model of which is fine-
tuned on these corpora for 190k iterations. Any combination of
a weighted average of the two speaker embeddings can be used

1https://github.com/NVIDIA/tacotron2
2https://podcast.adobe.com/enhance
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at inference, the weights do not need to add up to 100%. One
drawback of this initial method is that the timbre may be sub-
ject to change based on pitch variation, for example resulting
in more male-attributable voice qualities at phrase-final falling
intonation. In our method we resolve this issue with the intro-
duction of a utterance-level prosody control in Sec. 2.3.

2.2. Speaker Gender Recognition model

We employ a Speech Gender Recognition (SGR) network,
trained on Self-Supervised Learning (SSL) representations ex-
tracted from a large multi-speaker corpus, as a tool for verifying
whether the output of the TTS system can be easily identified
as belonging to a male or a female speaker. Since the TTS is
trained on a limited number of speakers (in our experiment, only
two), an SGR can be helpful to see how the method may gener-
alise to other speakers. However, such a system has limitations
in that it is trained on speech that is not ambiguous and hence
has only seen negative examples in this context. It also cannot
distinguish between cases where timbre is truly ambiguous and
where it is inconsistent throughout an utterance. Due to these
limitations, we employ it as a development and tuning tool, the
results of which should be accompanied by a human listening
test. We implemented a similar architecture to the SGR net-
work proposed by [27]. Input is generated from a pretrained
wav2vec representation, the row average values of which are
used as input to a multilayer perceptron classifier with two fully
connected layers of size 512 and ReLu activation. We made the
following modifications to this to make it more suitable for the
task at hand: (1) As speech representation we use the newer and
larger wav2vec2.0 representation, which shows strong gener-
alization to unseen data [28] and adjust size of the input layer
accordingly to 768. (2) Because it has been reported in liter-
ature that using the output of earlier layers of wav2vec2.0 is
beneficial to downstream tasks [29], we evaluate model perfor-
mance for representations extracted from the 3rd, 6th, 9th and
final layer. (3) We used the LibriTTS [30] dataset for training,
specifically, the train-clean-100 (125 female, 126 male IDs) and
train-clean-360 (439 female, 482 male IDs) subsets, for vali-
dation and testing we use dev-clean (20 female, 20 male IDs)
and test-clean (20 female, 20 male IDs) sets, respectively. The
same speaker IDs do not appear in more than one set. To bal-
ance the gender distribution in all sets, we only included the
first 125 and 439 male speaker IDs in the train-clean-100 and
train-clean-360 sets, respectively. Based on the accuracy on the
held out test sample (seeTable 1), the third layer representation
from wav2vec2.0 was selected as the input for the SGR model.

2.3. Prosody Control

We extend the base synthesis model with an mid-level prosody
control method, similar to [31] and [32], in order to stabilise the
timbre within a speaker embedding setting, and to add control-
lable expressivity to the TTS, which can be helpful in experi-
ment designs addressing implicit bias. As additional inputs to
the model, mean f0 values over each utterance are normalised,
aligning the 1st and the 99th percentile point to -1 and 1 respec-
tively, and appended to the model training input in parallel with

Table 1: SGR test accuracy of different wav2vec2.0 layers

3rd layer 6th layer 9th layer final layer

acc. 99.1% 98.2% 94.9% 72.9%
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Figure 1: Corpus distribution of f0 values averaged over each
utterance. For prosodic control over the synthesis these can be
normalised jointly (upper plot) or separately (lower plot).

the speaker embedding. Normalisation is performed either the
whole combined corpus, (Fig. 5 top) or for each speaker indi-
vidually. This second method aims to disentangle the average
f0 from the speaker embedding (Fig. 5 bottom). At inference,
pitch can be controlled at utterance- or word-level. The model
will sample a natural prosody to match the target that is set,
which enables a more fine-grained control without having to
specify the exact intonation contour.

3. Objective evaluation
For the experiments, 30 utterances were selected from the Timit
corpus [33] – which consists of emotionally neutral utterances
[34] – and were passed through a gender bias detection tool
to ensure they were free of textual bias3. Each sentence was
synthesised on each of the three models with speaker embed-
ding weights varying between 0 and 100% in 5% increments on
each speaker and pitch settings (for the two models with pitch
control) varying between -0.4 (-20%) to +0.4 (+20%) in 0.2 in-
crements. The synthesised utterances were evaluated using the
SGR model; Fig. 5 displays the average probability assigned
that the speech is from a female speaker. A first objective com-
parison is made between the systems by fitting a linear regres-
sion on the settings that are deemed ambiguous by SGR. For
this we follow the definition set in [27] that if neither gender
is assigned a probability greater than 0.6 this can be deemed
ambiguous. From all ambiguous settings, we estimate the op-
timal setting for the male embedding as a linear relation with
first only the female embedding setting, and second, based on
both the female embedding setting and on the pitch input control
setting. The two methods of pitch control are compared using

3https://www.appcast.io/gender-bias-decoder
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Figure 2: Evaluation results with distractors (d1-4) and three
proposed embedding settings (s1-3) without pitch control. Five
point likert scale (1:female, 2:probably female, 3:ambiguous,
4:probably male, 5:male). Category averages are in brackets.

linear regression models in- and excluding the pitch input set-
tings. For the joint normalisation model, inclusion of the pitch
input factor explains a significant amount of variance among the
ambiguous SGR results (∆R20.21, p < 0.01). For the separate
normalisation model, the pitch input factor explains a smaller
amount of variance (∆R20.10, p < 0.01), while the contribu-
tion of the embedding weight has greater explanatory power (in
both relative and absolute terms of R2) based on which we con-
clude that this model provides the most stable outcomes both
with and without f0 modification (see Fig. 5).

4. Perceptual evaluation
4.1. Evaluation setup

We carried out a perceptual evaluation with the separately nor-
malised controllable model. Three different f/m settings (cho-
sen to be relatively far apart from each other) were selected
from those determined as ambiguous by the SGR model to
be evaluated through a perceptual experiment. Specifically,
the settings (s1) f:30/m:32, (s2) f:50/m:46 and (s3) f:65/m:57
were selected, where the value of m is based on regression
results excluding the impact of possible f0 input shifts. For
the perceptual evaluation, 8 sentences out of the original 30
were synthesised at each setting. To evaluate the stability of
the model when prompting for a change in pitch, the sentences
were also synthesised with pitch input settings of +0.2 and -
0.2, resulting in a total of 72 stimuli. A set of 26 distractors
were created for the evaluation, using the same 8 utterances
in the following conditions: (d1) 7 utterances with only fe-
male embedding f:100/m:0, (d2) 7 utterances with only male
embedding f:0/m:100, (d3) 6 utterances with predominant fe-
male embedding f:70/m:30 and (d4) 6 utterances with predom-
inant male embedding f:30/m:70. For distractors d3 and d4
two utterances were created with pitch settings -0.2, 0 and
+0.2, respectively. All samples were presented to each partic-
ipant and evaluated on a 5-point scale: 1-female, 2-probably

1 2 3 4 5

d3

s1

s2

s3

d4

ca
te

go
ry

pitch control +10%

1 2 3 4 5
answer

d3

s1

s2

s3

d4

ca
te

go
ry

pitch control -10%

Figure 3: Evaluation results when pitch input feature is shifted
by 10% upwards or downwards.

female, 3-ambiguous, 4-probably male, 5-male. The evaluation
samples can be listened to under https://www.speech.kth.se/tts-
demos/gender-ambiguous.

4.2. Perceptual evaluation results

Native English speakers were recruited using Prolific [35]. 18
participants identified as female and 17 identified as male. Two
participants were removed for failing attention checks. The re-
sults (see Fig. 2), show that each of the three settings resulted
in ambiguous speech whether evaluated on the mean or median
rating, while the distractors are also consistently rated accord-
ing to the setting. There was no significant difference between
the ratings given by the male or female participants (p = 0.23).
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Figure 4: Range of average f0 in each corpus and within the
ambiguous range for the new model with f0 control up to 10%.
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Figure 5: Heatmap for SGR evaluation on synthesis of 30 utterances; probability assigned that speaker is female is displayed: evaluated
as female in green, evaluated as male in purple. Top is system without f0 control, mid is system with f0 input features jointly normalised,
bottom with f0 input normalisation per speaker.

We compare the ratings for the three settings with the paired
ratings where the utterance received a shift in the pitch input
factor of 0.2 (+ and -10% respectively, Fig. 3). Based on a
Wilcoxon signed-rank test we do not reject the null hypothe-
sis that the evaluation is the same for the lower pitch controlled
condition (p = 0.24). For the condition with the higher pitch
control, the hypothesis is rejected (p < 0.01). However, as the
score stays within the ambiguous range, we can conclude that
up to 10% change of pitch control does not affect the perception
of the voice as ambiguous. We evaluate the range of pitch val-
ues the voice can generate while maintaining ambiguous voice
characteristics. We compare the average pitch values attained
on the synthesised samples from the subset of original 30 ut-
terances with a input shift of maximum 10%, where these are
evaluated as ambiguous based on SGR to the distribution of ut-
terance average pitch values of the original corpora. Measured
on the 90 percent IPR, the new voice has a range of 35.1 Hz on
average utterance pitch while maintaining ambiguity, while the
corpora have a total range of 50.4 Hz (f) and 49.9 Hz (m) on
average utterance pitch (see Fig. 4).

5. Discussion
We demonstrated good results using 10-hour long sections of
two TTS corpora. The use of the SGR network trained on
hundreds of speakers ensures that the method itself will gen-
eralise to other corpora, but it is possible that the timbre and
voice quality of the particular speakers affects how ambiguous
a TTS voice created with this method can be. The method itself
can be easily adapted for multiple speaker embeddings in the
TTS model, however ,with multiple speakers, the relationship
between timbre, f0 range and perceived gender-ambiguity can
become more complex and harder to disentangle. This expres-

sive ambiguous TTS voice can be applied to a variety of per-
ceptual and human-computer interaction domains. For exam-
ple, it could be used to synthesise utterances containing phrases
that are considered “gendered language”, in different interactive
contexts, and examine how they impact listeners’ judgements
or behavior. It could also be presented on female- or male-
appearing robots to see whether the ambiguous voice moder-
ates any stereotypes induced by the robot’s appearance. Using
the prosody control in the TTS, bias related to prosodic charac-
teristics of speech such as uptalk [36] could be investigated. Fu-
ture work involves extending this method to spontaneous speech
corpora [37], to allow for investigating effects of disfluencies
and discourse markers [38] on bias, and adding control of voice
quality features such as creak [39] and spectral tilt.

6. Conclusions
Our study presents a prosody-controllable method for generat-
ing gender-ambiguous neural TTS that is capable of produc-
ing expressive speech with a diverse pitch range. The method
includes employing the improved version of a previously pro-
posed SSL-based SGR network that was trained on hundreds
of speakers, to find speaker embedding settings that are poten-
tially ambiguous. Our perceptual evaluation showed that lis-
teners rated the speech samples synthesised with these settings
as gender-ambiguous, including those with upward and down-
ward pitch control. The code is available open source 4, and we
hope that TTS voices created with our method will become a
valuable tool for researchers to examine gender bias in speech
perception, and to investigate how social interaction is affected
by stereotypes and implicit bias.

4https://github.com/evaszekely/ambiguous
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ative study of self-supervised speech representations in read and
spontaneous TTS,” in Proc. ICASSP SASB, 2023.

[30] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “LibriTTS: A corpus derived from LibriSpeech for
Text-to-Speech,” 2019.

[31] T. Raitio, R. Rasipuram, and D. Castellani, “Controllable neural
text-to-speech synthesis using intuitive prosodic features,” Proc.
Interspeech, pp. 4432–4436, 2020.

[32] A. Kirkland, M. Włodarczak, J. Gustafson, and É. Székely, “Per-
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based filler insertion with spontaneous tts,” in Proc. LREC, 2022,
pp. 1960–1969.

[39] H. Lameris, M. Włodarczak, J. Gustafson, and Székely, “Neural
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