PAPER 5.

Beskow, J., Edlund, J., and Nordstrand, M. (submitted1). A Model for Generalised Multi-
Modal Dialogue System Output Applied to an Animated Talking Head. To appear in
Minker, W., Biibler, D. and Dybkjer, 1. (Eds) Spoken Multimodal Human-Computer Dialogue in
Mobile Envirnonments. Dotdrech, The Netherlands: Kluwer Academic Publishers.

Paper 5 1

A MODEL FOR GENERALISED MULTI-MODAL
DIALOGUE SYSTEM OUTPUT APPLIED TO
AN ANIMATED TALKING HEAD

Jonas Beskow, Jens Edlund and Magnus Nordstrand*

Centre for Speech Technology
Royal Institute of Technology
Stockholm, Sweden

ABSTRACT

We present a high level formalism for specifying verbal and non-verbal output from a multi-
modal dialogue system. The output specification is XMIL-based and provides information
about communicative functions of the output, without detailing the realisation of these
functions. The aim is to let dialogue systems generate the same output for a wide variety of
output devices and modalities. We give examples from an implementation in the multi-
modal spoken dialogue system AdApt, and describe how facial gestures are implemented in
the 3D animated talking head used within this system.

Keywords: gesom, dialogue system, multi-modal output, talking head

1. INTRODUCTION

Speech is a useful modality, especially if one considers mobile devices, where e.g. a keyboard
is not available. Using other modalities together with speech may alleviate some of the
problems associated with spoken human-computer dialogue. Spoken dialogue systems
incorporating some form of animated characters are becoming increasingly popular. There
are many compelling reasons to include an animated agent in the interface. Since people
have life-long experience at interpreting facial expressions and gestures (McNeill, 1992), it is
one of the most intuitive and non-intrusive interfaces imaginable. Using gestures, an agent
can continuously provide the user with feedback about the progress of the dialogue. This is
an elegant way to handle problems with turn taking, potentially resulting in a smoother
dialogue flow, while at the same time making the system appear mote responsive. Given
proper speech-synchronised articulatory movements and emphatic gestures, the agent will
boost the intelligibility of the spoken output (Agelfors et al., 1998).

When considering dialogue systems in mobile environments, it is clear that coding
output separately for each conceivable output device and modality is a complicated and
time-consuming task. The task gets manageable if one leaves the output device to choose to
present the output in a manner suitable for its capacity. Text, for example, may be presented
as written text ot speech, and emphasis signalled with either boldface, prosody and/or facial
gestures. This chapter presents GESOM (GEneric System Output Model), a high level
abstraction layer for specifying verbal and non-verbal output in a way that frees the dialogue
system’s output generation from the need to know details about the capabilities of the
output device (see fig. 1) The aim is to allow the same dialogue system to work with a
variety of output devices and modalities with a minimum of adaptation. A beneficial side

! Names in alphabetic order

2 Paper 5

Dialogue System

Figure 1. GESOM - a layer between the dialogue system and an output device.

effect is that output devices implementing GESOM may be used with any dialogue system
conforming to GESOM.

1.1 Related work

Several models for automatic generation of gestures for animated characters in
conversational systems have been proposed. Nagao and Takeuchi, 1994 present static facial
displays for signalling communicative functions in a dialogue system. Pelachaud and
Prevost, 1994 present a model for generating facial expressions and intonation from a
common representation. Poggi and Pelachaud, 2000 present an agent capable of signalling
its communicative goal, e.g. by showing emotions in the face. Thorisson (1999) and Cassell
et al. (2000) both describe complete frameworks for conversational dialogue systems that
incorporate animated agents capable of generating deictic gestures, turn-taking signals, and
emblematic gestures, relying on input from several sources. In contrast, our more limited
model aims at separating the dialogue system from the realisation of output in order to
facilitate rapid development and portability, which is a goal perhaps more closely related to
that of proposed mark-up languages such as SSML (Burnett et al, 2002) and VHML
(Gustavsson et al., 2001). Thorough discussions of these mark-up languages and others are
found in Pitker and Krenn, 2002 and Gustavsson et al., 2002. In their present state, these
languages tend to specify the output on a low level, with considerable detail, which makes
them less well suited for our purposes. The work in this paper also builds on experiences
gained from previous efforts at integrating animated characters into dialogue systems
developed at CTT (Bertenstam et al., 1995, Beskow et al., 1997, Gustafson et al., 1999 and
Granstrom et al., 2002).

Paper 5 3

n Dﬂ D'I‘ Parser Database
e
Speech Dialogue

Manager

Response
Generator

Figure 2a. Figure 2b. Overview of the AdApt architecture

1.2 Background

The GESOM specification was created to cope with needs that arose during the
development of the AdApt system (see fig. 2a), which was built at CTT, with Telia Research
as an industrial partner (Gustafson et al., 2000). The system allows users to browse the real-
estate market in downtown Stockholm, and features multi-modal input (speech, clicks) and
a 3D-animated talking head producing lip synchronised synthetic speech (Beskow, 1997). It
is used as a research platform for development and user testing, e.g. of multi-modal input
and output. The system is modular (fig. 2b), in order to facilitate rapid implementation and
integration of new functionality. When the output side of the AdApt architecture was
developed, it was important to allow for rapid testing of different types of non-verbal
output in the animated talking head. One of the goals of the system was to implement
meaningful facial gestures, inspired by results in e.g. Cassell et al., 2000. In this process
problems arose with issues such as backwards compatibility (the introduction of new
entities in the output generated by the dialogue system would cause output modules to
malfunction). Inter-modular communication in AdApt is encoded in XML, which is good
for backwards and forwards compatibility, but the original specification for output
generation clearly needed some work. In order to make the output robust and general, the
following had to be addressed:

* The dialogue system should preferably not have to know too much about the
output device and its capabilities.

* Some of the events one would want the dialogue system to signal are of
unpredictable length, e.g. listening to or waiting for speech input, processing
speech, or waiting for a database search to complete. The dialogue system does
not know when these tasks will end until they in fact have. A method for handling
this was needed.

* An animated talking head, which uses exactly the same gesture every time a
particular event occurs, makes the dialogue system very repetitive. By specifying
nothing more than the general pragmatic function to be signalled, the animated
talking head could be allowed to choose any means available to realise the signal.
This would not work if the dialogue system generates specific instructions for non-
verbal output.

Whilst an XML specification that catered to these needs was written and tested for the
animated talking head, other user interfaces were used in the development of the other parts
of the dialogue system. Text input and output were used for regression tests, and for
debugging purposes there were GUIs with coloured indicators signalling what the system

4 Paper 5

<I ATTLI ST out put

bl ocki ng (0] 1) "o

cal | back (0] 1) "o

backgr ound CDATA # MPLIED >
<l ELEMENT state

EMPTY >
<I ATTLI ST state

type CDATA "defaul t"

name CDATA #REQUI RED

backgr ound CDATA # MPLIED >
<! ELEMENT event

(#PCDATA) >
<I ATTLI ST event

type CDATA "defaul t"

nane CDATA #REQUI RED

backgr ound CDATA # MPLIED >

Fignre 3. GESOM 1.0 DTD.

<?xm version="1.0" encodi ng="i so- 8859-1"7?>

<! DOCTYPE gesom PUBLIC "-//CTT// DTD GESOM 1. 0/ / EN'
"http://ww. speech. kt h. se/ gesoni v1/ dt d/ gesom dt d" >
<gesom xm ns: ges="http://ww. speech. kt h. se/ gesom " >
<head/ >

<body>

<output>this is as sinple as it gets</output>

</ body>

</ geson®

Figure 4. GESOM message: nothing but text.

was occupied with at any given time. Although the data sent to each of these interfaces was
generated separately at the time, it became clear that most of the information could be
unobtrusively built into a general XML specification, so that the same dialogue system
output could be used as input for a variety of user interfaces. These considerations led to
the GESOM specification.

1.3 Overview

In order for a formalism such as GESOM to work, a few requirements must be met. Firstly,
the dialogue system must generate system output following the specification, which is
proposed and explained next. Secondly, the dialogue system must be able to send the
GESOM message to the output device. This is straightforward and can be done through
any means available to both modules, e.g. TCP/IP sockets ot pipes. Thirdly, the output
device must know how to decode, interpret and realise, or render, the mark-up. Section 3
describes how to interpret the mark-up using standard XML techniques. Next, some
examples of how GESOM messages might be realised in different output devices are given,
and finally in section 4 we give a detailed description of how GESOM is interpreted and
realised in the animated talking head used in the AdApt system. A brief summary and a
listing pointing to future work conclude the chapter.

Paper 5 5

I/0 MANAGER

Frow orF ONE TURN

¥ ¥

DIALOGUE
MANAGER

SYSTEM

UsEeRr INPUT PARSER
OuTPUT

Figure 5. Occasions to send feedback in an AdApt dialogue turn.

2. SPECIFICATION

GESOM is fully compliant with the XML 1.0 specification (Bray et al., 2000). Complying
with a standard has the advantage that there are many tools for viewing, editing, and, not
least, validating messages. The GESOM 1.0 DTD (Document Type Declaration, i.e. XML
grammar) is presented in simplified form in fig. 3. The actual DTD defines <head> and
<body> elements, which are forwards compatibility considerations, as well as a number of
formal XML entity definitions. These have been hidden here, but the semantics of the
actual DTD are virtually identical to fig. 3.

Any textual content is sent as CDATA, and XML tags are used to mark other aspects. A
minimal GESOM message, then, would look something like fig. 4. All GESOM examples in
this chapter have identical elements down to, and including, the <body> element. For
space and legibility reasons, the remaining GESOM examples will contain only the
<out put > part of the message. The example in fig. 4 contains nothing but the text to be
communicated to the user. The remainder of the specification is somewhat more
interesting. The next two sections describe the motivation and function of the <st at e>
and <event > elements, as well as the background attribute.

2.1 The event and state elements

We found reason to categorise non-textual (or non-verbal) output into two categories: states
and events. In addition, we use the attribute backgr ound to allow the dialogue system
to pass general information to the output device. This categorisation is simple (probably too
simple for certain applications), but as our goal was to allow a dialogue system to generate
output without much knowledge of the output device, and the output device to realise the
output without much knowledge of the dialogue system, a general, high-level abstraction
was needed. The specification is largely based on what output a distributed dialogue system
can be expected to produce, which seems necessary in order to keep the specification free
from strong demands on the capabilities of dialogue systems and output devices alike.

Most dialogue systems, and indeed most interactive systems in general, are based around
an event-driven model, i.e. actions that are carried out by the system are triggered by some
kind of event. The events occurring in a dialogue system can either be the direct result of a
user action (such as speaking) or internally generated during data processing. A dialogue
system has, at the bare minimum, one user event, which we can call “input done”: the user
has finished speaking and the utterance is available to the system. The system will process

6 Paper 5

Busy STATES_ IpoLe \
UL 206)
T E T AN /

Figure 6. Timeline: a state lasts until another state is entered, whilst events are transient.

<out put >

<event nane="enphasi s">t hi s</ event >
is an enphasi sed word and this
<event nane="break" val ue="1000"/>
was followed by a 1 second pause

</ out put >

Figure 7. GESOM snippet: an emphasis and a break event.

the utterance and respond in some way, after which it will wait for the next “input done”
event. This one-event-per-turn model is sufficient for simple systems, but in more complex
systems we may want to give feedback during several stages in a dialogue turn, not just
during the system’s speech output. In the AdApt system, the following events at which the
system may produce feedback occur during a dialogue turn (see fig. 5):

1. Start of speech - the speech recogniser has detected that the user is speaking.

2. End of speech - the speech recogniser has detected that the user has stopped
speaking.

3. Recognition done - the speech recogniser has processed the utterance and passed the
result on to the parser.

4. Semantics done - the parser has processed the recogniser output. The parser will
categorise an utterance as either closing (the utterance can be interpreted in its own
right) or non-closing (more input is needed to make sense of the utterance) (Bell et
al., 2001). Closing utterances will be passed on to the dialogue manager. Non-
closing utterances cause the system to go back to listening.

5. Planning done - the dialogue manager has decided what to do next, and a response is
generated.

6. Response done - the system has presented its response.

A dialogue system may want to send non-textual transient output at times. By transient we
mean that the duration of the output is finite, and predictable. This type of output is
encoded in the <event > element. Examples from the AdApt system include emphasis
and pauses (see fig. 7). Some of the things one would want the agent to communicate are
pootly modelled by transient gestures, though. If we want to signal that the agent is
performing an action, e.g. is listening, searching a database (“thinking”) or just being idle,
we need signals that are visible for an arbitrary amount of time, i.e. until the system stops
doing whatever it is doing. This type of output is encoded in the <St at €> element.
However, if the system is waiting for a database search to finish or for someone to pick up

Paper 5 7

<out put >

<state type="turn-taking" name="present-text"/>

the present text state is used when outputting text, and the
idle state when the systemis idle

<state type="turn-taking" name="idle"/>

</ out put >

Figure 8. GESOM snippet: the present-text and idle turn-taking states.

<out put >
<state type="turn-taking" name="busy"/>
</ out put >

[dat abase search conpl eting]

<out put >

<state type="turn-taking" name="present-text"/>
the apartment has three roons

<state type="turn-taking" name="listening"/>

</ out put >

Figure 9. GESOM snippet: the busy, present-text and listening turn-taking states.

the phone, it has no way of predicting when this state will end. A state, then, has the
following properties:

1. The output device must always be in one and only one state at any given time
2. A particular state lasts until another state is entered

Figure 6 shows a timeline where we pass through the states busy, present -t ext and
i dl e. During present-text two transient enphasis events are marked.
Synthesised text is represented as a speech waveform in the figure. The two properties of
states listed above are valid within one state tier. In the present implementations, we have

only used one tier at a time. The specification, however, allows for an arbitrary number of
tiers. The states in one tier are separate from the states in another. Tiers are encoded in the
type attribute of the <St at €> element. If no type attribute is given, a default, single
tier should be assumed. The tier used in the AdApt system is concerned with feedback for
improving dialogue flow, and is called t ur n- t aki ng. Figure 8 shows a GESOM message
encoding two turn-taking states, pr esent -t ext andi dl e, and fig. 9 demonstrates the
busy and | i St eni ng states. The latter example occurs when the AdApt system makes
a database search or prepares a reply. The busy state ends when the reply is presented, since
the present text state is triggered.

2.2 The background attribute

Finally, the specification defines an attribute backgr ound, which may be attached to any
element. If the states and events are to be manageable and useful, they need to be limited in
number. In some cases, however, the same state or event would best be realised in different
ways depending on some other parameter. An example would be emphasis gestures (events)
in an animated talking head: a small nod works well in most cases, but not if the sentence
with the emphasised word is a negative reply, as in fig. 10. Defining the events negative
emphasis, positive emphasis, and neutral emphasis would solve the problem. However, this

8 Paper 5

<out put background="attitude: negative">

<state type="turn-taking" nane="present-text"/>
the apartnent does

<event nane="enphasi s" val ue="5">not </ event >
have three roons

<state type="turn-taking" nane="listening"/>

</ out put >

Figure 10. GESOM snippet: the background attribute.

<out put background="cal | synthesi s(gesture(shake), no, I,
shall, not, conform gesture(smrk))">
</ out put >

Fignre 11. GESOM abused: some foteign code snuck into a background attribute. The message is
otherwise empty.

kind of solution would cause the set of events to grow rapidly, thus defeating the purpose
of this specification. Instead, the specification allows the dialogue system to send
background attributes, which work much like global variables.

2.3 Permissible attribute values

The specification does not attempt strict control over what states and events are used.
GESOM is designed to give as many output devices as possible a fair chance at doing
something useful with any message. For the formalism to work well, however, some degree
of agreement about what the available states, events and background attributes is necessary.
To reach such an agreement, an ongoing discussion amongst dialogue system developers is
necessary, and at this stage, we merely describe what we found useful in the AdApt system.
Table 1 lists the states, events and background attributes that are used in the AdApt system.
Note that all the states are on the tier t Ur n-t aki ng.

It should be noted that the background attributes should be used with care, since they
permit any kind of content to be sent, and no particular restrictions are placed on their
interpretation. They could easily be misused and thoroughly undermine the purpose of
GESOM. Figure 11 gives an example of this.

3. INTERPRETATION

An obvious inspiration in developing GESOM has been the development of the Web
protocols: HTML encoding in general, and browser, or user agent, compliancy guidelines in
particular. An output device interpreting a GESOM message is analogous to a Web browser
interpreting an HTML document. Thus, the output device should meet the criteria listed in
e.g. the XHTML 1.0 recommendation, 3.2 User Agent Conformance (W3C HTML
Working Group 3.2, 2002). In summary, the output device should:

Paper 5 9

Table 1. States and events that are implemented in the AdApt system.

St ates
Nane Descri ption
idle Systemis inactive
attentive Systemis ready for input

System has received input that is not sufficient to

cont _attentive
- prepare a response

busy Systemis busy preparing a response
text_presentation | Systemis presenting a response
sl eep Systemis off-1line
Event s

Nane Descri ption
br eak System shoul d pause the presentation at this event
enphasi s Mar ked text shoul d be enphasi sed

Background attributes
Namne Descri ption

attitude: negative
attitude: positive
attitude: neutral

attitude: question

Rel ates to type of response

1. be able to parse GESOM messages for XML well-formedness and, preferably, to
validate the message against the referenced DTD

2. disregard unrecognised elements, but process their content
3. ignore any unrecognised attributes
4. substitute any unrecognised attribute values for the attribute’s default

These criteria serve to safeguard backwards and forwards compatibility, and make it
possible for output devices with sparse capabilities to still do their best to interpret and
render the content.

3.1 Existing tools and standards for XML rendering

Using XML encoded messages lets one take advantage of many existing tools and standards.
The remainder of this section shows how to interpret GESOM messages with very little
coding effort. With simple Extensible Style Sheet Language (XSL, W3C) transformations
(XSLT, W3C) and/or Cascading Style Sheets (CSS, W3C), which can be used with any
available XSLT and CSS processors, GESOM messages can be interpreted, transformed
and/or realised. Note that the non-transient signals represented by state elements are not

[* gesomRbrowser.css */
[background="response-type: negative"]:before color: red; content:

[backg}ound:"response-type:positive"]:before col or: green;

content: ":-) ";
event [name="enphasi s"] font-weight: bold; font-style: italic;

F@0

-(the apartment does not have three rooms

Figure 12. Example of CSS.

10 Paper 5

<! -- gesonRbrowser.xsl -->

<xsl:tenplate match="text ()"> <xsl:val ue-of select="."/>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch=" @ackgr ound" >

<xsl : choose>

<xsl:when test="_.="attitude:positive’'>

</xsl:when>

<xsl:when test="_=’attitude:negative’'>

</xsl:when>

</xsl:choose>

</xsl:template>

<xsl:template match="event''>

<xsl:choose>

<xsl:when test="@name="emphasis”'>

<xsl:apply-templates/>
</xsl:when>

</xsl:choose>

</xsl:template>

|

& the apartment does not have three rooms
H
&) oone [| [wtenet Y

Figure 13. Example of gesom XSL.

likely to be represented well in a static message, which is in itself transient. In the following
web browser examples, the state elements are simply ignored. We start with a simple
example using CSS to render the message in fig. 10 as a static message in a web browser.
The CSS and the result of applying the style sheet on the GESOM message in a CSS
compliant web browser are shown in fig. 12. Using a slightly more complex XSL
transformation, we can get more interesting results. The essential bits of the XSL and the
result in an XSL compliant web browser are shown in fig. 13.

The code in these examples can be changed to produce e.g. plain text, complete and
highly formatted HTML messages, instructions for voice browsers, or the equivalent
message in some other voice or speech mark-up language.CSS Mobile Profile (Wugofski et
al., 2002) and similar technologies can be used to interpret the messages in PDAs. However,
the range of output devices is not limited to XML based standard user agents. Any output
device able to interpret the messages may be used.

In the next section we will show how the GESOM messages are interpreted and realised
in the animated talking head, which is the AdApt system output module originally targeted
by GESOM.

4. REALISATION IN AN ANIMATED TALKING HEAD

The AdApt system uses a 3D parameterised talking head that can be controlled by a TTS
system to provide accurate lip-synchronised audio-visual synthetic speech (Beskow, 1997).
The facial model includes control parameters for articulatory gestures as well as facial
expressions. Parameters in the former category include jaw opening, lip closure, labiodental
occlusion, tongue tip elevation, lip rounding and lip protrusion while the latter category
includes controls for raising and shaping of eyebrows, smile, eyelid opening, gaze and head

Paper 5 11

-, Busy
5 ExIT
% ~ SfiESusTaIn
EVENTS

GesTURE [

EVENT LIBRARY!
EMPHASIS

Figure 14. The structure of the gesture library. Gestures are picked from the library (bottom) and
scheduled for realisation in the timeline (top).

movement. Gestures can be developed using an interactive parameter editor based on the
WaveSutfer platform (Beskow and Sj6lander, 2000).

4.1 Gesture library

The events, states and background attributes provide all the semantic information the
animated agent needs in order to produce meaningful gestures, and the set of defined events
and states constitute all the information that needs to be encoded both on the agent side
and in the dialogue system. How the gestures should actually look is up to the agent. In our
implementation, this information is encoded in a gesture library.

At the lowest level of the library are descriptions of the actual gesture realisations. For most
states and events there are multiple realisations with subtle differences. For our
parametrically controlled animated agent, the descriptions are coded in terms of parameter
tracks. For other types of agents, they would be coded in other ways, for example as 2D-
animation sequences. Our gesture realisation descriptions include the time offset to the
stroke phase of the gesture, i.e. the core part that carries the meaning of the gesture. This
information is used to synchronise the timing of gestures with other events such as stressed
syllables of emphasised words.

The gesture library contains a separate entry for each event and state. For events, a set
of alternative gesture realisations is defined. Gestures defined for a particular event will
typically have similar semantic meaning - some gestures might only have subtle differences
(e.g. in duration) whereas others may differ in style (such as a head nod vs. an eye widening
gesture to signal emphasis).

Table 2. Example of how gesture weights can be modified in the presence of background attributes.

Event: enphasis

Gesture Wei ght Modi fi er Modi fi er
(defaul t) attitude: negative
attitude: positive

Nod 2.0 1 0

Eyebrow widening | 1.0 1 1

Eyebrow lowering [1.0 0 1

12 Paper 5

Each gesture has an associated weight that determines how likely it is to occur. By
allowing alternative realisations, the agent will be less predictable and more natural in its
behaviour.

In order to deal with the arbitrary length of states, they are divided into three phases:
enter, sustain and exit. For each of the phases, as of the events, one out of a set of
alternative gestures will be chosen. Gestures in the enter and exit phases are performed
once per state (on state entrance and exit respectively), while the sustain gestures are
executed at random intervals throughout the duration of the sustain phase. Enter and exit
gestures are paired in such a way that, if a particular enter gesture is picked, the
corresponding exit gesture will be chosen. This makes it possible for the exit gesture to
restore the parameters that have been changed by the enter gesture. Figure 14 illustrates the
layout of the gesture library.

4.2 Choosing between multiple realisations

Selection of a particular gesture is done in a weighted random fashion, based on the weights
specified for each entry in the library. Although the gestures in each group are supposed to
be semantically equivalent, there might be external factors making a particular gesture more
or less appropriate at some given point. To reflect this in the library, the gesture weights
could be dynamically updated, based on background attributes, or as a function of time.
Table 2 shows how this can be represented. To begin with, each gesture within a category
has a weight as seen in column two in the figure. The remaining columns are weight
modifiers for different background attributes. The gesture weights are multiplied by the
modifiers of the present background attributes. Note that several background attributes can
be present at the same time. It is possible to specify a default modifier, that will be used if
no modifiers match the present background attributes. This is needed when certain gestures
should not be part of the default behaviour. In this case, the default modifier can be used to
mask away the unwanted gestures by multiplying them with zero.

For example, when choosing a realisation for an emphasis event, an emphatic nod or an
eye widening works well in the default case. If the utterance is of a negative nature (“there
are 7o such apartments...”), the nod is less appropriate, but an eyebrow lowering would fit.
Lets see what happens when the agent receives an emphasis event, given the gesture library
representation in table 2. The agent needs to compute the probability p(gesture) for each of
the three candidate gestures. If thete ate no background attributes, or if backgr ound is
attitude: positi ve, the weights will be multiplied by the modifiers in the default (i.e.
attitude: positive) column and then normalised, resulting in the probabilities
p(nod)=2/3, pleye widening) =1/3 and p(eyebrow lowering = 0. If background is
attitude: negati ve, the result will instead be p(nod) = 0, p(eye widening) =1/2 and
Pleyebrow lowering)=1/2.

We can even let the weights be functions of time, by specifying them as an expression of
t, where t is the time that has passed since the current state was entered. This makes it
possible to model a gradual change of the agents behaviour during the sustain phase of a
state, for example to simulate boredom or tiredness by increasing the probability of yawning
as time passes. An example if this is shown in table 3.

Table 3. Example of gesture weights that change as a function of time (t).

State: idle, sustain gestures

Gesture Wei ght

Bl i nk 5.0

Bl i nk doubl e 1.0

Yawn t <30?20.0: 1.0

Paper 5 13

4.3 Gesture co-articulation

Up until now we have considered each gesture realisation as being independent of
preceding and following gestures. This is however an oversimplification - just as with
speech, there is co-articulation among gestures. If a head nod is followed by a look-right-
gesture, it may be unnatural if the agent returned to the neutral pose (straight ahead, which
is the ending pose of the nodding gesture) before starting to turn the head sideways to the
right. The natural thing would be to go more or less directly from the low point of the nod
to the looking-right pose. To achieve this behaviour we have implemented a co-articulation
algorithm that merges gestures that are overlapping or adjacent in time. The algorithm will
always preserve the area around the stroke of each gesture, but segments before and after
this area are subject to reduction. Reduced patts of the track are interpolated with a smooth
spline cutve.

5. DISCUSSION AND FUTURE WORK

The GESOM specification has only been tested extensively in the real estate browsing
domain within the AdApt system. The only other output devices used have been computer
emulated. Testing the system with real mobile phones, PDAs, Braille displays, as well as in
other domains, would surely unearth shortcomings in the specification. Some known
shortcomings:

* It would be useful to specify, or rather suggest, a number of fruitful sets of states,
especially if states are to be used in more than one tier. Even though the
specification in itself would allow any set, coding output with mark-up that is not
implemented in any output devices would be a waste of time.

e The background attributes bear great similarity to the HIML/ XHTML style
attribute, but are not as well thought through. An elegant solution is to use style
sheets of some sott to control varieties in execution of gestures. Work along these
lines has started, but could use more exploration.

* Although GESOM was developed within a system that, in addition to the
animated talking head, uses a clickable map on which apartments are plotted, and
visualises search constraints as icons Boye et al., 2002, the specification does not
include this type of output. We would thus like to extend the specification so that
it can handle the presentation of objects in a general manner.

* There is no good supportt for generating deictic non-verbal output. This seems
straightforward to solve with respect to some output devices - nods, pointing and
arrows could be used, but generalisation of the targets is troublesome.

* In most cases, the output device would be the same as the input device. The
AdApt system uses the same input format for text whether it is typed, comes from
a speech recogniser or from a stored dialogue log file. This format is, however, not
particularly generalised or formalised. Extending the specification to cover (at least
textual) input as well as output would make it a more useful tool. The
representation of objects mentioned above might then extend to mouse clicks.

The system presented here is a first attempt at a generalised description formalism for
multimodal output from a dialogue system. Our experiences from the implementation in the
AdApt system indicate that it is successful in its pursuit, namely to form an abstraction layer

14 Paper 5

between the dialogue manager and the output module, so that the dialogue manager does
not need to know about the capabilities of the output module. The output module, e.g. an
animated talking head, is responsible for suitable realisation of the communicative functions
requested by the dialogue manager. Since the output description does not assume anything
about the capabilities of the output device, it is fully possible to realise the output in some
other way than through the gestures in an animated talking head. An alternative is to use
familiar GUI metaphors, such as an hourglass for the busy state or a blinking red lamp for
listening (recording) (Edlund and Nordstrand, 2002). This allows output to be generated on
hardware incapable of rendering the animated agent, such as present day cell phones or
PDAs.

Our current implementation of the animated agent uses a library of handcrafted gesture
descriptions, grouped by communicative function. This is a very flexible model, since it
allows us to model different attitudes, manners, personalities, moods or the socio-cultural
identity of the agent simply by defining a new set of gesture descriptions (at least
theoretically, assuming that the communicative functions are invariant). However, creating
gesture realisations is a laborious process, and to convincingly model e.g. attitudes and
emotions would require extensive studies of real-life subjects. A faster and more accurate
way of obtaining the gesture realisations would be to record facial movement of an actor
using a motion capture system such as Qualisys, 2002. Work towards this end is in progress
at CTT.

ACKNOWLEDGMENTS

This research was carried out at the Centre for Speech Technology, a competence center at
KTH, supported by VINNOVA (The Swedish Agency for Innovation Systems), KTH and
participating Swedish companies and organisations.

REFERENCES

Agelfors, E., Beskow, J., Dahlquist, M., Granstrom, B., Lundeberg, M., Spens, K.-E., and Ohman, T.
(1998). Synthetic Faces as a Lipreading Support. In Proceedings of ICSLP, Sydney, Australia.

Bell, L., Boye, J., and Gustafson, J. (2001). Real-ttme Handling of Fragmented Utterances. In
Proceedings of the NAACL Workshop on Adaption in Dialogne Systems, Pittsburgh, PA. Bertenstam, J.,
Beskow, J., Blomberg, M., Cartlsson, R., Elenius, K., Granstrém, B., Gustafson, J., Hunnicut, S.,
Hogberg, J., Lindell, R., Neovius, L., de Serpa-Leitao, A., Nord, L., and Strém, N. (1995).
TheWaxholm system - a progress report. In Proceedings of Spoken Dialogue Systems, Vigso, Denmark.

Beskow, J. (1997). Animation of Talking Agents. In Proceedings of AVSP’97, pages 149—152, Rhodes,
Greece.

Beskow, J., Elenius, K., and McGlashan, S. (1997). Olga - a dialogue system with an animated talking
agent. In Proceedings of Eurospeech’d7, Rhodes, Greece.

Beskow, J. and Sjolander, K. (2000). Wavesurfer - an Open Source Speech Tool. In Proceedings of
ICSLP 2000, volume 4, pages 464—467, Beijing, China.

Boye, J., Gustafson, J., Bell, L., and Wirén, M. (2002). Constraint Manipulation in a Multimodal
Dialogue System. Proceedings of the 1SCA workshop on Multimodal Dialogue in Mobile Environments,
Kloster Irsee, Germany.

Bray, T., Paoli, J. Spetberg-McQueen, C. M., and Maler, E. (2000). Extensible Markup Language
(XML) 1.0 (Second edition). W3C Recommendation, last updated 2000-10-06, accessed 2002-10-
15. http://ww. wW3. or g/ TR/ 2000/ REC- xni - 20001006.

Burnett, D. C., Walker, M. R., and Hunt, A. (2002). Speech Synthesis Markup Language Specification.
W3CWorking Draft, updated 2002-04-04, accessed 2002-10-15.
http://ww. w3. or g/ TR/ 2002/ WD- speech- synt hesi s- 20020405/ .

Cassell et al, J. (2000). Human Conversation as a System Framework: Designing Embodied
Conversational Agents. In Cassell, J., Sullivan, J., Prevost, S., and Churchill, E., editors, Ewbodied
Conversational Agents, pages 29—63. MIT Press, Cambridge, MA.

Paper 5 15

Edlund, J. and Notdstrand, M. (2002). Turn-taking Gestutes and Hour-glasses in a Multi-modal
Dialogue System. Proceedings of the 1SCA workshop on Multimodal Dialogne in Mobile Environments,
Kloster Irsee, Germany.

Granstrtém, B., House, D., and Swerts, M. (2002). Multimodal feedback cues in human-machine
interactions. Prosody 2002, Aix-en Provence, France.

Gustafson, J., Bell, L., Beskow, J., Boye, J., Cartlson, R., Edlund, J., Granstrtém, B., House, D., and
Wirén, M. (2000). Adapt - a Multimodal Conversational Dialogue System in an Apartment
Domain. In Proceedings of ICSLP 2000, pages 134-137, Beijing, China.

Gustafson, J., Lindberg, N., and Lundeberg, M. (1999). The August dialogue system. In Proceedings of
Eurospeech’?9, Budapest, Hungary.

Gustavsson, C., Strindlund, L., and Wiknetrz, E. (2002). Verification, Validation and Evaluation of the
Virtual Human Markup Language (VHML)
http://ww. ep.|iu.sel/exjobb/isy/ 2002/ 3188/ exj obb. pdf.

Gustavsson, C., Strindlund, L., Wiknetrz, E., Beard, S., Huynh, Q., Marriot, A., and Stallo, J. (2001).
Vhml. W3C Working Draft, updated 2001-10-01, accessed 2002-10-15.

http://ww. interface. conmputing. edu. au/ docunent s/ VHWML/ 2001/ WD- VHY%VL -
20011021/ vhm . htmi .

McNeill, D. (1992). Hand and Mind: What gestures reveal about thought. University of Chicago Press,
Chicago.

Nagao, K. and Takeuchi, A. (1994). Speech dialogue with facial displays: Multimodal human computer
conversation. In Proceedings of the 32nd ACIL.’94, pages 102—109.

Pelachaud, C. and Prevost, S. (1994). Sight and sound: Generating facial expressions and spoken
intonation from context. In Proceedings of the 214 ESCA/ AAAI/IEEEW orkshop on Speech Synthesis,
pages 216219, New Paltz, NY.

Pirker, H. and Krenn, B. (2002). D9c: Report on the Outcome of the Markup Assessment Task.
http://wwmv ai . uni vie. ac. at/ NECA/ publ i cati ons/ publicati on_docs/ d¥%®c. pdf.

Poggt, 1. and Pelachaud, C. (2000). Performative Facial Expressions in Animated Faces. In Cassell, J.,
Sullivan, J., Prevost, S., and Churchill, E., editors, Ewbodied Conversational Agents, pages 155-188.
MIT Press, Cambridge, MA.

Qualisys (2002). ht t p: / / www. qual i sys. se.

Thorisson, K. R. (1999). A Mind Model for Multimodal Communicative Creatures and Humanoids.
International Journal of Applied Artificial Intelligence, 13(4-5):449—486.

W3C HTML Working Group 3.2 (2002). User Agent Conformance,
http://ww. w3. or g/ TR/ xht ml #uaconf, in XHTML 1.0 The Extensible HyperText
Markup Language (Second Edition). W3C Recommendation, last updated 2002-08-01, accessed
2002-10-16.
http:// wa. wa. or g/ TR/ 2002/ REC- xht 1 1- 20020801/ .

Whugofski, T., Dominiak, D., Stark, P., and Roy, T. (2002). CSS Mobile Profile 1.0. W3C Candidate
Recommendation, last updated 2002-07-25, accessed 2002-10-16.
http://ww. w3. or g/ TR/ 2002/ CR- css- npbbi | e- 20020725.

