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TRAINABLE ARTICULATORY CONTROL
MODELS FOR VISUAL SPEECH SYNTHESIS

Jonas Beskow

KTH, Centre for Speech Technology, SE-10044 Stockholm, Sweden

ABSTRACT

This paper deals with the problem of modelling the dynamics of articulation for a
parameterised talking head based on phonetic input. Four different models are implemented
and trained to reproduce the articulatory patterns of a real speaker, based on a corpus of
optical measurements. Two of the models are based on coarticulation models from speech
production theory and two are based on artificial neural networks, one of which is specially
intended for streaming real-time applications. The different models are evaluated through
comparison between predicted and measured trajectories, as well as through a perceptual
intelligibility experiment. Results show that all models give significantly increased speech
intelligibility over the audio-alone case, but none of the models can be said to outperform
the others.

Keywords:  Speech synthesis, facial animation, coarticulation, artificial neural networks,
perceptual evaluation

1 INTRODUCTION

During the last decade, there has been an increasing interest in computer animated talking
heads. The applications for this technology include virtual language tutors (Cole et al.,
1998), communication aids for hard-of-hearing people (Agelfors et al., 1998), embodied
conversational agents in spoken dialogue systems (Gustafson et al. 2000) and talking
computer game characters, to name only a few. Proper visual speech movements are often a
crucial factor for the realism of such avatars, and in some applications, realistic speech
movement constitute the main motivation for the technology (Agelfors et al, 1998; Siciliano
et al., 2003). It is well established that a view of the speaker’s face leads to increased speech
intelligibility. This has been shown for natural speech (Sumby & Pollack, 1954) as well as for
synthetic visual speech in several languages (LeGoff et al., 1994; Massaro 1998; Siciliano et
al., 2003).

Visual speech synthesis can be accomplished either through manipulation of video
images (Bregler et al., 1997; Brooke and Scott, 1998; Ezzat et al., 2002) or based on two- or
three dimensional models of the human face and/or speech organs that are under control
of a set of deformation parameters (Beskow, 1997; Cohen & Massaro, 1993; Pelachaud et
al., 1996; Pelachaud, 2002; Reveret et al., 2000).

In most implementations we can make a distinction between the visual signal model and
the control model. The visual signal model is responsible for producing the image, given a
vector of control parameter values. The control model is responsible for driving the
animation by providing these vectors to the signal model at each point in time, given some
symbolic specification of the desired animation. In a general sense, the input to a control
model could contain information about speech articulation, emotional state, discourse
information, turntaking etc. In this study we will restrict ourselves to studying articulatory
control models. An articulatory control model can be described as a process that produces
control parameter trajectories to govern articulatory movements for a given phonetic target
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specification, typically a sequence of time labelled phonemes, optionally including stress and
phrasing markers. This is normally the kind of information that is available at the phonetic
stage of a text-to-speech system. One problem an articulatory control model has to deal
with is that of coarticulation.

1.1 Coarticulation in speech production theory

Coarticulation refers to the way in which the realisation of a phonetic segment is influenced
by neighbouring segments. It is the result of articulatory planning, inertia in the
biomechanical structures of the vocal tract, and economy of production. But coarticulation
also serves a communicative purpose in making the speech signal more robust to noise by
introducing redundancies, since the phonetic information is spread out over time. Two
types of coarticulation can be identified: backward and forward coarticulation.

Backward, or carry-over coarticulation, refers to the way in which articulation at some
point in time is affected by the articulation at some previous point in time. This effect has
sometimes been attributed to inertia in the motor system, but it has also been shown to be
under deliberate neurological control (MacNeilage & DeClerk, 1969).

Forward, or anticipatory coarticulation, on the other hand, is a term used to describe
how articulation at some point in time is affected by articulation of segments not yet
realised. This effect cannot be explained by biomechanical properties, but rather there must
be a higher level of articulatory planning involved.

Explaining the variation that occurs in human speech production as a result of
coarticulation is a fundamentally difficult problem that has been the subject of many studies
(Bladon and Al-Bamerni, 1976; Lofqvist, 1990; MacNeilage & DeCletk, 1969; Petkell, 1990;
Ohman, 1967). Following Perkell (1990), existing models of coarticulation can be divided
into look-ahead models and time-locked models. In look-ahead models an anticipatory
coarticulatory gesture begins at the earliest possible time allowed by the articulatory
constrains of other segments in the utterance. In a V,CV; utterance where Vi is unrounded
and V> is rounded, onset of the rounding gesture begins at the offset of Vi. In Ohman's
(1967) model, the time varying shape of the vocal tract is modelled as a vowel gesture where
the vocal tract gradually changes shape from Vi to Vs, onto which a consonant gesture is
superimposed. The consonant has an associated temporal blend function that dictates how
its shape should blend with the vowel gesture over time. It also has a spatial coarticulation
function that dictates to what degree different parts of the vocal tract should deviate from
the underlying vowel shape, i.e. how context-sensitive the realisation of that segment is for
the different articulators. Bladon and Al-Bamerni (1976) suggest the term coarticulation
resistance to indicate to what extent a particular segment is susceptible to coarticulation; a
segment with high coarticulation resistance will have more or less the same realisation
regardless of context, whereas a segment with low coarticulation resistance will realised in a
highly context-dependent way.

In a time-locked model the onset of a gesture occurs a fixed time before the onset of the
associated segment, regardless of the timing of other segments in the utterance. In
Lofquist's gestural model (Lofqvist, 1990), speech production is modelled as a seties of
overlapping articulatory gestures. Fach segment has a temporal dominance function that
gradually increases up to a peak value and then decreases. The dominance functions of the
different segments dictate the temporal blending of articulatory commands related to these
segments. The height of the dominance function at the peak determines to what degree the
segment is subject to coarticulation, i.e. the coarticulation resistance of the articulator for
that segment.

Perkell (1990) also suggests a hybrid between the look-ahead and time-locked models,
where the gesture for V3 is divided into a gradual initial phase which starts at the offset of
V1 and a more rapid second phase that begins at a fixed time before V.
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1.2 Coarticulation in multimodal speech synthesis

Eatly text-to-speech systems (Allen et al., 1987; Carlson et al, 1982) employed
parametrically controlled models for speech generation. In these systems, control parameter
trajectories were generated within a rule-based framework, where coarticulatory effects were
modelled using explicit rules. Later, as concatenative speech synthesis techniques grew
popular, the need for such rules diminished, since coarticulation was inherently present in
the speech units used, for example diphones, demi-syllables or the arbitrary sized units used
in contemporary unit-selection based speech synthesisers.

Rule based control schemes have been successfully employed for visual speech
synthesis. Pelachaud et al. (1996) describe an implementation of the look-ahead model.
Phonemes are clustered into visemes that are classified with different deformability rank,
which serves to indicate to what degree that viseme should be influenced by its context (c.f.
coarticulation resistance in the previous section). Visemes with low deformability serve as
key-shapes that influence the shape of the more deformable ones.

Another rule-based look-ahead model is proposed by Beskow (1995). In this model,
each phoneme is assigned a target vector of articulatory control parameters. To allow the
targets to be influenced by coarticulation, the target vector may be under-specified, i.e. some
parameter values can be left undefined. If a target is left undefined, the value is inferred
from context using interpolation, followed by smoothing of the resulting trajectory. As an
example, consider the lip rounding parameter in a ViCCCV, utterance where Vi is
unrounded and V3 is rounded. Lip rounding would be unspecified for the consonants,
leaving these targets to be determined from the vowel context by linear interpolation from
the unrounded Vi, across the consonant cluster, to the rounded Vo.

For visual speech synthesis, approaches based on concatenation of context dependent
units have been less dominant, although they have been used for video based synthesis
(Bregler et al., 1997) as well as in model based systems (Hillgren and Lyberg, 1998).

The model described by Cohen and Massaro (1993) is based on Lofqvist's (1990)
gestural theoty of speech production. In this model, each segment is assigned a target
vector. Ovetlapping temporal dominance functions are used to blend the target values over
time. The dominance functions take the shape of a pair of negative exponential functions,
one rising and one falling. The height of the peak and the rate with which the dominance
rises and falls are free parameters that can be adjusted for each phoneme and articulatory
control parameter. Because the rise and fall times are context-independent, the Cohen-
Massaro model can essentially be regarded as a time-locked model. It should be noted
however that due to the nature of negative exponential functions, all dominance functions
extend to infinity, so in practice onset of a gesture occurs gradually as the dominance of the
gesture rises above the dominance of other segments. The free parameters were empirically
determined through hand-tuning and repeated comparisons between synthesis and video
recordings of a human speaker.

Other investigators have proposed enhancements to the Cohen-Massaro model as well
as data-driven automatic estimation of its parameters. Le Goff (1997) modified the
dominance functions to be n-continuous and used trajectories extracted from video
recordings of a real speaker uttering ViCV>CV; words to tune the model for French. The
resulting model was perceptually evaluated using an audiovisual phoneme identification task
with varying levels of background acoustic noise.

The Cohen-Massaro model offers no way to ensure that certain targets are reached, such
as the closure in a bilabial stop, which can be problematic especially for short segments. To
overcome this problem, Cosi et al. (2002) augment the Cohen-Massaro model with a
resistance function that can be used to suppress the dominance of surrounding segments,
thereby forcing the attainment of the target. Parameters of the augmented model were
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estimated from a database of symmetrical VCV utterances recorded using an optical motion
tracking system.

Recently, Massaro et al. (in press) used optical motion tracking of 19 points on a real
speaker’s face to obtain a database of 100 sentences that were used to tune the free
parameters of the original Cohen-Massaro model. Training was carried out both for a set of
39 monophones as well as for 509 context-dependent phones.

Reveret et al. (2000) adopt Ohman’s model of coatticulation to drive a French speaking
talking head. Coarticulation coefficients and the temporal functions guiding the blending of
consonants and the underlying vowel track were estimated from a corpus derived using
video analysis of 24 VCV wotds.

A different type of control model is proposed by Pelachaud (2002). This model uses
radial basis functions (RBFs) to model the trajectories of articulatory parameters. The RBFs
share some properties with the dominance functions of the Cohen-Massaro model, in that
they are negative exponential functions, but in Pelachaud’s model three RBFs per segment
and parameter are used as opposed to one single dominance function. The free parameters
of the RBFs were estimated from a training corpus of optically tracked VCV-sequences.

1.3 Comparing the models

A number of factors make it difficult to assess the relative merits of the different
approaches mentioned above. The corpora on which the models are trained differ in size,
type of content (VCV words, sentences etc.) as well as language. Different control
parameter sets are used, obtained using a variety of techniques, and different facial models
are used to produce the resulting animations.

The purpose of the present study is to seek an answer to the question whether there is
reason to prefer one of these models to another when building a data-driven visual speech
synthesis system. The two main classes of models, look-ahead (represented by Ohman’s
model) and time-locked (represented by Cohen & Massaro’s model) are trained on a corpus
of phonetically rich sentences and then evaluated objectively as well as perceptually, on a
test set not part of the original training data. In addition, they are compared against two
variants of a novel control model based on recurrent time delayed artificial neural networks,
one of which is designed specifically for real time applications.

1.4 Real-time considerations

All of the models described above account for anticipatory coarticulation, which is indeed a
fundamental property of human speech production. But any control model attempting to
model anticipation must have information about upcoming segments ahead of time. In the
case of look-ahead models, the amount of time needed is dependent on the timing and
identity of the particular segments involved. In practice, many implementations will require
access to the full utterance before any trajectories can be computed. This is for example the
case with an unconstrained implementation of the Cohen-Massaro model, whete the
negative exponential dominance functions extend to infinity.

In certain real wotld applications, such models are impossible to use without
modifications. In the Synface project (Siciliano et al, 2003) the goal is to develop a
communication aid for hard of hearing people, consisting of a talking head faithfully
recreating the lip movements of a speaker at the other end of a telephone connection in
(close to) realtime, based only on the acoustic signal. The system will utilise a phoneme
recogniser, outputting a stream of phonemes that should be instantly converted into facial
motion. In this scenario there is no way to know what phonemes will arrive in the future, so
any model attempting anticipatory coarticulation will fail. To allow for this kind of
application, we need control models that can do a reasonable job given a very limited look-
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Figure 1. The parametrically controlled talking head.

ahead window (typically less than 50 milliseconds). In the present study, one such low-
latency model is implemented and compared against the other models.

2 TALKING HEAD MODEL

The geometrical talking head model used in this study is a parametrically controlled
deformable polygon surface, depicted in figure 1, based on the work described in Beskow
(1995, 1997). Articulatory deformations are implemented as weighted geometrical
transforms (translations, rotations and scalings) that are applied to the vertices of the
polygon mesh, according to principles first introduced by Parke (1982). In this study, data-
driven articulation is controlled by the ten parameters jaw rotation, lip rounding, upper lp
retraction, upper lip raise, lower lip retraction, lower lip depression, left mouth corner stretch, right mouth
corner streteh, jaw thrust and jaw shift (sideways).

3 DATA ACQUISITION AND PROCESSING

Audio and facial motion was recorded for 287 phonetically rich Swedish sentences. The
sentences were extracted from a large corpus of newspaper text to optimise coverage of tri-
phones.

Facial motion was recorded using an optical motion tracking system from Qualisys
(http://ww. qual i sys. se) with four cameras. The system tracks passive reflective
markers (4 mm in diameter) and calculates their 3D-coordinates at a rate of 60 frames per
second.

A native Swedish male non-professional speaker was instrumented with 30 markers,
glued to the speaker’s jaw, cheeks, lips, nose and eyebrows. In addition, five markers were
affixed to a spectacle frame worn by the speaker to establish a reference for global head
movement.
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Audio was recorded onto DAT-tape. A synchronisation signal from the Qualisys system
consisting of a pulse train with one pulse per captured frame was recorded on one channel
of the DAT to facilitate post-synchronisation of audio and motion data.

3.1 Phonetic labelling

The audio signal was used to phonetically label the corpus. First, the sentences wete
phonetically transcribed using the transcription part of a text-to-speech system. The
transcriptions were manually corrected to match the actual pronunciations and stress
patterns observed in the recorded utterances. A viterbi-based forced alignment procedure,
with speaker adaptation of the acoustic models, was used to obtain the temporal alignment
of the phonetic labels (Young et al. 1997). The symbol set included the long vowels [u:, o,
a, i, e, €, vy, o, «], the short vowels [u, 3, a, 1, e, €, &, v, e, e, @, 6, 3] and the
consonants [p, t, t, k, b,d, d, g, m,n,n,n, L, f, s, A,¢jr v, hl. In addition, a symbol for
silence and six symbols denoting release phase of stops were used. To encode stress
information, an additional set of 23 symbols for stressed vowels were included, resulting in
a total of 76 symbols.

3.2 Pre-processing of movement data

Since we are interested only in the articulatory movements in this study, the first step in the
processing of the motion data was to factor out global translations and rotations of the
head. Using the reference markers on the spectacle frame, which can be considered fixed
with respect to the head, a head local coordinate system was defined, onto which the
coordinates of all other points were transformed. This transform was applied to each frame
of movement data.

3.3 Fitting the model to data

To be able to use the recorded motion data to control our models, we need a way to map
the motion of the 30 points into control parameter trajectories for the face model. This
process is non-trivial for several reasons. Firstly, many of the face model parameters affect
the same regions of the face. For example, the points on the lower lip are affected by lip
raising as well as jaw opening. Thus, a global optimisation is needed to find the best possible
combination of parameter values for a given frame of motion data. Another factor we need
to take into account is that the geometry of the face model may not match the recorded
speaker. In fact, we want the process to be general enough to do a reasonable job of
mapping the motion data to any human-like face, with different proportions than those of
the recorded speaker. Since recording of 3D-motion data is a complicated task, it is
beneficial if we can reuse the data with different facial models.

A general solution to the problem is to use multi-dimensional minimisation techniques,
to fit the model to the recorded data set by adjusting its parameters. This reduces the
problem to that of defining a proper error metric for a match between model and data. The
model fitting is divided into two stages. First a static orientation fit, which applies a linear
transform to the measurement data that ensures optimal spatial alignment for a particular
reference frame. (It should be noted that for practical reasons the static fit actually fits the
data to the model rather than the opposite, but since it is a linear transform this is
equivalent.) Secondly a dynamic shape fit to find optimal facial deformation parameters is
carried out for every frame in the data set. For these minimisations, Powell’s direction set
method is used (Press et al., 1992), which is considered a robust general-purpose method
when the gradient of the error function is unknown.
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3.4 Orientation fit

As stated before, we cannot expect a perfect match between measurements and model,
since the model is not based on the measured subject. Nevertheless, we want the important
features of the two faces to align as closely as possible. Since we have already compensated
for global rotation and translation, we try to find a static transform T(x) that gives the best
match between data and model for a certain reference frame. The transform T(x) is
composed of matrices for translation in three dimensions, rotation around three axes and
scaling, yielding a total of seven free parameters x = (z,, 7, t,Q, a,a, 9).

A number of strategic points were selected at mouth corners, tip of the nose, chin and
eyebrows, where a corresponding model vertex v, for each marker position p; was identified.
The error function

&(x) = ;|Vi —Pi I:r(X)| @)

where K is the set of strategic points, was minimised with respect to x, and the resulting
best-fitting transform was applied to all frames in the data set.

3.5 Shape fit

For the dynamic shape fit, the goal is to find an optimal vector of model parameters y = (y,,
Y5 ... )y given a frame of measurement points pi, p2, ... Py - Minimisation will help us find
this optimal vector, but what is an adequate error metric to use for this minimisation? One
possibility is to extend the error function that was used in the orientation fit to include all
markers, by pairing each marker with the model vertex closest to it in the reference frame.
The problem is that this error metric will penalise inherent static differences in geometry,
and try to compensate for them using the articulatory parameters, which will lead to
inaccurate articulation. To circumvent this problem, an error metric was defined in such a
way that it equals zero when both the measured face and the virtual face are in a well-
defined reference pose. Rather than matching the markers directly against existing model
vertices, a set of virtual markers was introduced on the model, that are tied to a region of the
model, and move with it, but need not coincide with existing vertices or even lie on the
surface of the model. A specially recorded reference pose, with relaxed face and closed jaw
and lips, was used to tie the virtual markers to the face model, which was manually adjusted
to match this reference pose.

Mathematically, a virtual marker q is defined in terms of #hree non co-linear model
vertices, vi , v2 and v3. The three vertices together with the surface normal vector, form a
coordinate system in which we can express the position of q in terms of the coordinates s, 7
and #:

q=Vv; +s(v, —Vv;) +t(vy - Vv,) +ue @
where e is the normalized vertex normal of vertex vi. The s and 7 coordinates represent q’s
projection in the plane of (vi, vz, v3) in batrycentric coordinates, i.e. along the edges (vi, v2)
and (vi, v3) respectively. The # coordinate represents offset from the surface in the direction
of the vertex normal.

For each real, measured marker p, a corresponding virtual marker q,y) was defined,
where y 1s the vector of articulatory parameters of the model (listed in section 2). Thus we
can define the following error metric:

e(y) = Z|qi(y)_pi| ©)

The minimisation to find ymin was carried out for each frame of motion data in the corpus.
The result is a matrix Y where each row consists of ymin for that frame. This matrix contains
a re-synthesis of the recording, ie. a set of parameter trajectories that can be used to
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animate the face model to follow the recorded movement data as closely as possible. This
matrix constitutes the training and test data for the articulatory control models desctibed in
the following section.

4 MODELS AND TRAINING

Given the articulatory parameter trajectories estimated in the preceding section, and the
time-aligned phonetic labels, we want to train different articulatory control models, to see
which one is best capable of reproducing the patterns observed in the data. In the previous
section we were fitting the facial model to a set of 3D points, now we are fitting articulatory
models to a set of parameter tracks. In both cases we use the same general-purpose
technique: minimisation of global error.

The models that are being evaluated vary quite a lot in the ways in which they predict
articulatory trajectories. What is true for all models is that they have a certain number of
free parameters represented as a vector X, take a phonetic input specification, and output a
set of estimated articulatory trajectories Z. The input consists of a time-labelled phone
sequence with stress information. As stated in section 3.1, stress information was encoded
by separate symbols for stressed vowels, which effectively doubles the number of vowel
symbols. A larger symbol set leads to fewer examples of each symbol in the data set, which
potentially can lead to worse generalisation by the models. To evaluate this risk, all models
were trained with and without stress information, and they all performed slightly better with
the larger, stress-inclusive symbol set.

The output of a control model is a set of predicted control parameter trajectories that
can be compactly represented as a matrix Z where each row is a time frame and each
column is a control parameter. The predicted trajectories are compared with the target
trajectoties Y. The objective of training the control models is to make Z and Y as similar as
possible by varying the free parameters x. If we let z; and y; denote the /th column of Z and
Y respectively and N is the number of articulatory parameters, then the error to minimize
can be expressed as

&(x) = Z(Zi -y)'(z -Y)) ©)

or, if we model each articulatory parameter individually

e(x)=(z-y) (z-) ©)
When minimising functions with a large number of free parameters, such as the control
models investigated here, taking advantage of gradient information can greatly reduce the
amount of computation required to find the minimum of the function. The gradient of the
error function is obtained by taking the derivative of (5) with respect to each of the
components of x:

_ el de(x) ae(X)E o Oe(x) _ E;i )
Oe(x) Eaxo , ox, ox, with ox, 2 . (z-y) (6)

Thus, if we can calculate the derivative of z with respect to each of the components of x,
then we can also calculate the gradient of e(x).

4.1 Training procedure

The 287 sentence corpus was split into a training part consisting of 200 sentences and a test
part of 87 sentences. After each iteration of training, the global error on the test set was
computed. To prevent over-training, training was terminated when the error on the test set
stopped decreasing.
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4.2 Cohen and Massaro's model of coarticulation

In the Cohen-Massaro model, each articulatory parameter trajectory is described as a
weighted sum of target values for all segments of the utterance. The weight of a target
changes over time according to the dominance function associated with that segment. The
dominance function has a peak at the centre of the segment, and an exponential rise and
fall-off to the sides. The dominance functions ovetlap, which makes all segments in the
utterance influence each other. The dominance function for segment 7 is given by

~6 ()7
Di (t) = %}'i |]3_¢ (t-1,)7 t< Ti
F AR 7

U

where 7, is the centre time of the segment. g, is a scaling factor used to control the degree of
dominance for each segment. , and ¢, are coefficients for forward- and backward
coarticulation respectively. Lower values for these coefficients will cause the dominance
function to spread out further into following or preceding segments respectively. The
exponent ¢, is used to vary the shape of the dominance function. A lower value produces a
function with a sharp peak, whereas a higher value produces a more rounded peak.

Given the dominance function D7) and the target value T, for each segment, the value
of parameter g at the time 7is given by

N
TDi(®
M= ®
D,(t)
B

Where N is the number of segments in the utterance. Dominance functions, targets and
synthesised trajectotry for a three-segment utterance can be seen in figure 2. The segment
model has five free parameters: T, o, @ 6 and ¢ Given 76 phones and 10 articulatory
parameters, this yields a total of 3800 free parameters to be estimated from the data set. But
since each articulatory parameter is modelled in isolation, we can treat it as ten separate
estimation problems of 380 parameters each.

Regarding ¢ as a free parameter that can be set individually for each phoneme is a slight

1 :
o - z(t) Parameter track
R ; : D(t) Dominance functions

0.8F SO0 & Target values -
0.6 i
0.4
0.2

. segl 'seg2 | .. seg3

0 0.2 0.4 0.6

Figure 2. Cohen-Massaro model of a three-segment utterance.
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alteration to the original Cohen-Massaro model, in which ¢ was regarded as a global
constant.

The gradient equation (6) requires that we compute the derivative of (7 with respect to
each of the free parameters. Differentiating (8) w.r.t. T, yields

oz(t) _ Di(t)
aT,

' ZD(t)

For a, @, 0, and ¢, we can use the chain-rule and differentiation of quotient to obtain the

general form
N N
T ) D) - ) T;D;(1)
9z(t) _ aD,(1) JZ : JZ e

©)

(10)
oY, oy, N D. (1)
a0
where {, can be substituted with one of @, 8, @, or ¢,
For each of these parameters, the derivative of 4, is given by
_ 6, (1, -)° :
aDi(t) _ 55 t<r, )
da; SACSDANE $3 ¢
oD, (t) _ (T D t<r
—_— 12
26, B0 Euj t>7, (12
oD, (t) t<r,
13
09, ()ﬁ(t )% t=r =
and
oD, (t I, -t)%In(r, -t) t<r,
JORLe TCROMUCRD »

oc @ t-7)%Intt-1,) t=7,
Equations (9) and (11-14) substituted into (10) give the partial derivatives of the parameter
trajectory (/) with respect to the free parameters of segment z The gradient (6) contains
derivatives of the free parameters for each phoneme class, rather than for each segment of
the utterance. To obtain the gradient components associated with phoneme p, the derivative
trajectories are summed over all 7 for which segment 7 equals p. The resulting trajectories
are then substituted into (6) to obtain the components of the gradient of the error function.
The model was trained using the Matlab function fni nunc, which implements the
Gauss-Newton minimisation algorithm.

4.3 Ohman’s model of coarticulation

Ohman (1967) describes a model of coarticulation where the trajectory of an articulator is
modelled as a vowel track with superimposed consonantal gestures. The model was
originally intended to describe lingual coarticulation in VCV sequences by predicting cross-
sectional distances in the vocal tract. Following Reveret et al. (2000), we use the model to
predict general articulatory parameters and extend it to cope with arbitrary phone
sequences.

The vowel track »(7) is formed by interpolation between successive vowel targets. A
consonant is specified by a target value ¢, a coarticulation factor w. and a function £(7) that
dictates the temporal blending of vowel track and consonant target, where w. and £(?) are in
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the interval [0, 1]. According to Ohman, the trajectory of a given articulatory parameter over
a VCV sequence can be described as

z(t) = v(t) +wk(t) (c-v(t)) (15)

In order to apply Ohman’s equation to atbitrary phoneme sequences, we can write

2(t) = v(t) + ; w; k (0) (¢ —v() (16)

where C is the set of all consonants in the utterance. Note that the Ohman model does not
define coarticulation between consonants, so the influence of one consonant must extend
no further than to the peak of the preceding or following gesture. If we let 7, denote the
centre of segment #, and assume that the peak of each gesture occurs at the centre of the
segment, then a suitable blend function £7) for segment  should go from zero at # = 7,4, to
one at # = 7, and back to zero at # = 7+1. Furthermore, to make the resulting trajectory
smooth with a continuous derivative, we wantK'(7,_;) =K'(7;,;) = 0. We choose to

represent £(7) as a third degree polynomial that fulfils the above criteria.
The vowel track »(7) is formed by temporally blending successive fixed vowel targets a,

according to the function
NV

> b

=
Ny

> 5,0

where Ny is the number of vowels in the utterance and 4(7) is the blend function of the jith
vowel in the utterance. Since there is no intervocalic coarticulation in the Ohman model, the
reasoning concerning the blend function for consonants in the previous paragraph applies
to vowels as well, thus we can use the same polynomial for 4(7); a cubic function reaching
one at the centre of vowel / and zero at the centre of the preceding (/-7) and following (+7)
vowel. An illustration of the functions involved can be seen in figure 3.

The free parameters in our implementation of the Ohman model are the vowel target
values a,, the consonant target values ¢,, and the consonant coarticulation factors w.,. Given
48 vowel phones (24 unstressed + 24 stressed) and 28 consonants, we have 104 free
parameters to estimate for each articulatory parameter to be predicted. In order to calculate

the gradient of the error function to optimise the training process, we obtain the derivative

v(t) = 17

1 ¥ V2ERN T
Y \ — Zz(t) Parameter track
|/ = V() Vowel track
0.8 b(t) Vowel blend fnc |+
_ Wc*k(t) Consonant fnc
VvV Vowel targets
0.6 O Consonant targets [
04 -
N\
. L\
o — ~
0.2+ , R N
/ / \ o N N .
o V1 cy’ \ €2 Nz
0 0.2 0.4 0.6

Figure 3. Ohman model of a V{C{C,V;, utterance.
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of (16) with respect to each of the free parameters:

‘;Z“)-K(t)(c —v(t)) (18)
(1) _
e =k O (19)
and
o) _ b

KOF (20)
oa Zb(ﬁl 2 "k

For each phoneme p, these trajectories are summed over all / where segment 7 equals p, and
substituted into (6) to obtain the gradient of the error function.
The model was trained using the Gauss-Newton minimisation algorithm.

4.4 ANN 1 - symmetrical context

Artificial neural networks (ANNs) were trained to predict articulatory parameter values on a
frame-by-frame basis. Input to the networks consisted of a series of feature vectors, one per
time frame (at 60 frames per second) constructed from the time-labelled phone sequence
using table lookup. The vectors contained 17 phonetic features uniquely describing the
present phone. The features set consisted of phoneme class (consonant or vowel), six binary
place features (bzlabial, labiodental, dental, retroflex, alveolar and velar) five binary manner features
(nasal, fricative, stop, release and wvoiced), four 3-valued vowel features (gpen, front, rounded and
protruded) and stress.

A large number of network configurations were examined before the final configuration
was chosen. For each of the variables below, several networks were trained and evaluated
based on the error over the test set and subjective judgements of the quality of the resulting
animations. Due to the combinatory complexity it was impossible to try all combinations of
all variables.

o Segment- vs. frame based input — one input vector per segment (with an additional
duration feature), versus synchronous frame based input. The latter led to better
convergence and lower error in the estimation.

o Single vs. multiple networks — one single network with ten outputs vs. multiple
networks, each predicting a subset of the parameters, vs. ten single-output
networks predicting one parameter each.

*  Number of hidden units — for all different configurations varying numbers of hidden
units were used.

o Sige of context window — varying number of frames of forward and backward context
was evaluated.

*  Recurrent v.s feed-forward — recurrent networks tended to produce smoother
parameter trajectories than the feed-forward networks.

The best performance was achieved with a set of four separate recurrent three-layer ANNs,
each predicting its own group of two or three parameters. It was found that by grouping the
parameters involved in bilabial occlusion (jaw rotation, upper lip raise and lower lip
depression) into a separate network, more reliable prediction of occlusion was achieved.
Other groups were formed for rounding, protrusion and jaw motion, as shown in table 1. A
time delay was used for the input to provide a symmetric context of £15 frames, yielding a
total input layer size of 17%x31 = 527 units. The hidden layer had 30 to 50 units and was
connected to itself with time delays between one and five frames. The networks had 21332
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Figure 4. Total error of the 16 ANNs trained with varying degtree of look-ahead, from 0 to 15 frames.

to 40603 connections (see table 1), with a total of 123870 free parameters for the four
networks combined.

The networks were trained using the algorithm back propagation through time, as
implemented by (Strém, 1997). Training was terminated when the error over the test set
stopped decreasing, after approximately 200 iterations.

4.5 ANN 2 - low latency model

For the purpose of real-time applications, as discussed in section 1.4, a second group of
networks was trained where the context was asymmetrically shifted to require less latency.
In order to find a good compromise between low latency and high accuracy, a series of 16
networks was trained where the forward context varied from zero (no latency) to fifteen
frames (250 milliseconds; each frame represents one 60™ of a second). The networks were
based on the occlusion ANN in the previous section, and the total context window size
(look-ahead, look back and current) was 31 frames for all networks. All networks were
trained for 200 iterations. The resulting error over the test set is shown in figure 4.

Based on this information, it was decided that two frames of look-ahead (33
milliseconds) provided a good compromise between accuracy and low latency. Four
networks, identical to the ones trained in the previous section, with the exception of the
context windows being 2 frames forward and 28 frames backward, were trained using the
same procedure as above.

5 OBIJECTIVE EVALUATION

To evaluate the performance of the models, target and predicted trajectories were compared
for the four models, over the 89-sentence test set. Figure 5 shows an example of parameter
traces for the jaw rotation parameter for each of the models for the test set utterance
“svenska Ryrkan ska vara till hjalp for de forsamlingsbor som sa onskar” (“the Swedish church should

Table 1. The four ANNSs and the parameter groups they predict

Network Predicted parameters Nurnbcr Of Numbc# of
hidden units connections

Occlusion Jaw rotation, upper lip raise, lower lip depression 50 40603

Rounding Lip rounding, left mouth corner stretch, right 50 40603

mouth corner stretch
Protrusion Upper lip retraction, lower lip retraction 30 21332
Jaw Jaw thrust, jaw shift 30 21332
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support the parishioners who so desire”). It can be observed that the trajectories produced by the
Cohen-Massaro and Ohman models are smoother than the ANN-based models, since the
former two models only produce one gesture per segment, while the ANN’s have no such
restrictions, although they are stabilised to some degtee by the recurrent connections in the
hidden layers. Trajectory jaggedness was not considered disturbing in the resulting
animations.
The RMSE (root mean squared error) between target (y) and predicted (z) parameter
trajectories were calculated over the test set for each parameter for all four models. The
RMSE values were calculated as percentages of the full range of the target parameter. The
analysis was carried out over three subsets of the test corpus: vowel segments, consonant
segments and all segments except silence. It has been suggested that RMSE can be
misguiding when comparing articulatory trajectories, since the RMSE is strongly influenced
by areas of large amplitude (where larger errors are more likely to occur), whereas small
deviations that could be crucial for e.g. lip closure could be overlooked. The Pearson
product-moment correlation may give a better estimate of global match between signal
shapes (Yehia et al., 1998). Table 2 shows the RMSE and the Pearson product-moment
correlation (gy,) for the four models, averaged over all parameters.

As the table indicates, the Cohen-Massaro model performs the best, having the lowest

I I
— z(t) Cohen—Massaro model
y(t) Target

j

I I
— z(t) ©hman model
y(t) Target

j

T T
— Zz(t) Low-latency ANN
y(t) Target

j

sil
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0.5 1 2 3 4
Time (s)

15 25 35

Figure 5. Target and estimated trajectories of the jaw rotation parameter for the four control models.
Phonetic transcription in the Swedish ST.4-alphabet is given in the bottom plot.
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Table 2. Average RMS error and correlation between target and estimated trajectories

Control model
Cohen-Massaro (3800 Ohman (7040 free ANN 1 (723870 free ANN 2 low latency

free parameters) parameters) parameters) (123870 free params)
RMSE (%) Oy RMSE (%) Oy RMSE (%) Oy RMSE (%) Oy
All segments 9,04 0,6626 9,50 0,6185 9,61 0,634z 9,61 0,6065
Vowels 9,06 0,6631 9,74 0,6015 9,86 0,6325 9,84 0,6129
Consonants 9,02 0,6516 9,34 0,6156 9,43 0,6255 9,45 0,5926

average RMSE as well as the highest correlation coefficient. Ohman’s model shows slightly
lower RMSE than the ANN models, although the correlation values are higher for the
ANN 1 than Ohman’s model. ANN 2 (low latency) shows almost identical RMSE-values as
ANN 1 although the correlations are lower for the low latency model. In general,
differences between the models are small, and it is difficult to say that one is better than
another based on these numbers alone.

The table also lists the total number of free parameters, which differs significantly
between the models. In general, a model with a large number of free parameters runs the
risk of being over-trained to a particular data set, but by terminating the training before the
error over the test set started increasing as a result of poor generalisation, this risk was
controlled for. Furthermore, for the ANN’s, many connection weights are small. The
weights above 0,05 represent only 5% of the connections (about 6000 in total), a number
that approaches the number of free parameters of the other models.

It can be noted that RMSE values agree reasonably well with those reported by Massaro
et al. (in press), where the average RMSE over the training set (100 sentences) was trained
was 13 % of the parameter range when 39 context independent phones were used, and 6%
with 509 context-dependent phones.

6 PERCEPTUAL EVALUATION

While the objective measures are informative about how well the different control models
predict the parameter trajectories, it is not obvious how they relate to the quality of the
resulting animations. In order to obtain a rating of this, a perceptual evaluation was carried
out.

6.1 Method

A sentence intelligibility test was carried out with 25 normal hearing native Swedish
subjects.

Each of the four control models was used to synthesise animations with the animated
talking head for a corpus of 90 phonetically labelled sentences not part of the training or
test corpora, spoken by a male talker. The corpus consisted of short everyday sentences
seven to nine syllables in length and has been developed specifically for audio-visual
intelligibility testing by G. Ohngren, based on the work by MacLeod and Summerfield
(1990).

In addition to the four data-driven control models, a rule-based control model (Beskow,
1995) and an audio-alone condition was included in the evaluation, yielding six presentation
conditions. The frame rate of the animation was 30 Hz.

The acoustic signal was processed using a noise-excited vocoder (Shannon et al., 1995)
with three frequency bands in the range of 100-5000 Hz. This form of audio degradation
has been used in previous intelligibility studies (Siciliano et al., 2003) and has the advantage
over additive noise of being robust to intensity perturbations in the speech signal.
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Table 3. Average intelligibility scores for the 25 subjects for each condition.
Audio-visual condition
Coh. ANN 2
Audio only onen” Ohman ANN 1 (low Rule-based
Massaro
latency)
Keywords 62,7 74,8 753 72,1 72,8 81,1

correct (%)

Subjects were seated in front of a computer display and a loudspeaker, where they were
presented with sentences and were asked to repeat what they perceived. Sentences were
organised in six sub-lists of 15 sentences, each of which was paired with one of the six
conditions. The pairing of lists and conditions was rotated between subjects, and the order
in which the conditions occurred was randomised for each subject. Before the session, each
subject was given a number of practice sentences for which the text of the sentence was
given. In addition, each session began with 15 audio-alone sentences that were not scored.

6.2 Results

Results were scored by counting the percentage of correctly identified keywords for each
15-word list, where three words in each sentence had been defined as keywords. These
percentages were entered into a repeated measures ANOVA, with the repeated variable
being the six levels of the presentation condition. The effect of presentation condition was
significant (F(5, 120) = 9,13; p < 0.05).

The average proportion of correct keywords for each condition is given in table 3.
Pairwise compatisons using LSD (least significant difference) indicate that all face
conditions give significantly higher intelligibility than the audio-alone condition, with p <
0,05. Furthermore, the rule-based control model provides higher intelligibility than the data-
driven ones, but no significant difference could be found between the four data-driven
models on that significance level.

7 DISCUSSION

As stated in the introduction, the aim of this study was to find out whether there was reason
to claim that any one of the data-driven control models is in some way superior to the
others. The results of the objective as well as the perceptual evaluations indicate that this is
not the case — all models perform more or less equally well, which means we are free to
choose a model based on other criteria. As stated before, real-time considerations can be
one such critetion, which makes the low-latency ANN model a strong candidate.

One question that demands an answer is why the data-driven models fall short of the
rule-based model in the perceptual evaluation. This is not as surprising as one might first
think. The rule-based model was developed with clear articulation and high intelligibility as
the primary goal, and as such it almost tends to hyper-articulate. The data-driven models on
the other hand, are trained to mimic the speaking style of the target speaker, who could be
characterised as having a rather relaxed pronunciation. It should also be noted that the
speaker was not selected on the basis of maximal visual intelligibility. So while the data-
driven models are indeed capable of producing rather natural looking speech animations,
they do not provide optimal intelligibility. It is likely that re-training the models on a corpus
with a highly intelligible speaker would improve this aspect, but that is a matter of further
investigation. While improving the intelligibility of a rule-based articulation scheme can be a
very laborious process, a data-driven model can be automatically trained to more intelligible
articulation, or to any particular style of speaking, which is one of the main attractions of
employing data-driven techniques for generating synthetic visual speech.
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