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Abstract 

In this paper, a discourse modeller for conver-

sational spoken dialogue systems, called 

GALATEA, is presented. Apart from handling 

the resolution of ellipses and anaphora, it 

tracks the “grounding status” of concepts that 

are mentioned during the discourse, i.e. in-

formation about who said what when. This 

grounding information also contains concept 

confidence scores that are derived from the 

speech recogniser word confidence scores. 

The discourse model may then be used for 

concept-level error handling, i.e. grounding of 

concepts, fragmentary clarification requests, 

and detection of erroneous concepts in the 

model at later stages in the dialogue.  

1 Introduction 

A common source of errors in spoken dialogue systems 

is the speech recogniser (ASR), and the handling of 

such errors is a crucial issue in the design of spoken 

dialogue systems. The most common way of handling 

such errors has been to use utterance confidence scores 

for selecting implicit or explicit verification of full ut-

terances. This often works in dialogues where utterances 

are relatively short and predictable. However, in dia-

logue systems that are designed to allow relatively free, 

conversational speech, with longer, more unpredictable 

utterances, such utterance-level error handling is often 

inappropriate. In such systems, statistical n-gram lan-

guage models are often used in the ASR. These are of-

ten better at covering conversational language and tend 

to degrade more gracefully when the user speaks out of 

grammar (Knight et al., 2001), but they may also give 

rise to speech recognition results which are often partly 

correct. When making semantic interpretations of such 

results, some semantic concepts will be correct and 

some not. This calls for error handling on the concept 

level, i.e. individual concepts in utterances should be 

assigned confidence scores and be considered for error 

handling strategies, such as grounding, clarification and 

error detection. 

In this paper, a discourse modeller for conversa-

tional spoken language, called GALATEA, is presented. It 

is especially designed to support concept-level error 

handling. GALATEA is not a complete dialogue manager, 

but rather a processing step in the interpretation process, 

where utterances are interpreted in context. Apart from 

handling the resolution of ellipses and anaphora, it 

tracks the grounding status of concepts that are men-

tioned during the discourse, i.e. information about who 

said what when. This grounding information also con-

tains concept confidence scores that are derived from 

the speech recogniser word confidence scores. 

GALATEA builds a discourse model – a model of what 

has been said during the discourse, and which entities 

are referred to. The discourse model may then be con-

sulted by an action manager that selects error handling 

strategies, such as grounding, clarification and late error 

detection, on the concept level. 

GALATEA is developed within the HIGGINS project 

(Edlund, et al., 2004).  HIGGINS is a test bed for investi-

gating error handling techniques in spoken dialogue 

systems. The initial domain chosen for HIGGINS is that 

of pedestrian city navigation and guiding, which is simi-

lar to the now classic MapTask (Anderson et al., 1991) 

domain, as well as to a number of guide systems, such 

as REAL (Baus et al., 2001). A user gives the system a 

destination and the system guides the user by giving 

verbal instructions. The system does not have access to 

the users’ positions. Instead, it has to rely on their de-

scriptions of their surroundings. Since the user is mov-

ing, the system continually has to update its model of 

the user’s position and provide new, possibly amended 

instructions until the destination is reached. For simula-

tion, a 3D model of a virtual city is used. The domain is 

complex enough to generate a variety of error types. 

The surroundings the user and system talk about contain 

complex landmarks and relations that are challenging to 

interpret and represent semantically. For such semantic 

representations, deep semantic structures are needed.  



Table 1 shows a (made-up) scenario with recogni-

tion results, which displays the current capabilities of 

the system
1
. The different error handling techniques 

illustrated in the example will be described later on. 

 

Turn Transcription ASR result 

S.1 Where do you want to 

go? 

 

U.2 To an ATM TO AN ATM 

S.3 Ok, an ATM. Can you 

describe where you are 

now? 

 

U.4 I have a large concrete 

building on my left and a 

tree in front of me. 

I HAVE LARGE 

HELLO CONCRETE 

BUILDING ON MY 

LEFT AND TREE 

ON RIGHT 

S.5 Which colour does the 

concrete building have? 

 

U.6 Red RED 

S.7 Ok, can you see a 

wooden building in front 

of you? 

 

U.8 No, but I have one on my 

right. 

NO I HAVE ONE ON 

RIGHT 

S.9 On your right?  

U.10 Yes YES 

S.11 Ok, I think I know where 

you are.  

Walk a little bit forward 

and take left after the red 

building.  

 

Table 1: An example scenario. The rightmost column 

shows ASR results in which word confidence scores are 

represented with different shades of grey (dark means high 

confidence).  

2 Error handling in dialogue systems 

In this section, issues important for error handling in 

spoken dialogue systems will be discussed. 

2.1 Miscommunication 

Miscommunication is a general term that denotes all 

kinds of problems that may occur in dialogue. A com-

mon distinction is made between misunderstanding and 

non-understanding (e.g. Hirst et al., 1994). Misunder-

standing means that the addressee obtains an interpreta-

tion that is not in line with the speaker’s intentions. If 

the addressee fails to obtain any interpretation at all, 

obtains more than one interpretation, with no way to 

choose among them, or does not have enough confi-

                                                           
1 The system is currently built for Swedish, but all ex-

amples in this paper have been translated into English. 

dence in any interpretation, a non-understanding has 

occurred. One important difference between non-

understandings and misunderstandings is that non-

understandings are recognized immediately by the ad-

dressee, while misunderstandings may not be identified 

until a later stage in the dialogue. Both of these forms of 

miscommunication may concern complete utterances or 

parts of utterances, i.e. partial misunderstanding and 

partial non-understanding.  

One may also classify problems depending on at 

which “action level” they occur. Clark (1996) makes a 

distinction between four levels of action that takes place 

when a speaker is trying to say something to an ad-

dressee: 

 

• Acceptance: proposal and consideration. 

• Understanding: signalling and recognition. 

• Perception: presentation and identification. 

• Contact: execution and attention. 

 

For successful communication to take place, com-

munication must succeed on all these levels. The order 

of the levels is important; in order to succeed on one 

level, all the other levels below it must be completed.  

2.2 Early error detection 

Given a speech recognition result, a system must deter-

mine if it should accept the utterance and hypothesise 

that this is what the user (might have) said, or reject it. 

If the utterance is accepted, some sort of confidence 

score is often assigned to it. This is the process of early 

error detection. The confidence scores are often based 

on the probabilities from the acoustic and language 

models, and the structure of the n-best list (Evermann 

and Woodland, 2000). To improve early error detection, 

machine-learning has been used to classify utterances as 

correct or incorrect, based on features from the recogni-

tion result, acoustic features, and dialogue history (e.g. 

Gabsdil and Lemon, 2004). 

For concept-level error handling, confidence scores 

should be calculated for the individual words in the 

speech recognition result, just like in Table 1, and trans-

ferred into concept confidence scores during semantic 

interpretation (Gabsdil and Bos, 2003). Skantze & Ed-

lund (2004a) investigates the use of machine learning 

for early error detection on the word-level, using confi-

dence scores as well as features from the utterance and 

discourse context.  

2.3 Grounding and clarification 

Grounding is the process by which speakers establish 

information as part of common ground well enough for 

current purposes (Clark, 1996). They do this by giving 

positive and negative evidence of understanding. If 

positive evidence is given on one of the action levels 



discussed above, all the other levels below it are pre-

sumed to have succeeded. If negative evidence is sig-

nalled on one of the levels, all the other levels above it 

are also presumed to have failed, while the ones below 

it are presumed to have succeeded. 

According to Clark, every contribution requires 

positive evidence, if it is to be regarded as common 

ground. Clark (1996) discusses different kinds of posi-

tive evidence: 

 

• Assertion of understanding. 

• Presupposition of understanding. 

• Display of understanding.  

• Exemplification of understanding. 

 

Assertion of understanding, such as “mhm”, ”okey”, 

“I understand”, is a common evidence. However, it can 

only give evidence on the utterance level, and it cannot 

be used to verify that the understanding was correct. 

Presupposition of understanding means that the ad-

dressee continues with a relevant next contribution. The 

distinction between “display” and “exemplification” is 

not so clear, but both includes cases where the addressee 

displays or exemplifies what she has constructed the 

speaker to mean in the next turn, including verbatim 

repetitions or paraphrases. I will use the term “display” 

here for the cases where (parts of) what is said is re-

peated. By displaying understanding (in this sense), 

speakers may verify that their understanding is correct, 

which may also be done on the concept level. Take for 

example the turn S.5 in Table 1. Apart from requesting 

the colour of the building, the system also gives some 

evidence of understanding. The understanding of the 

concepts CONCRETE and BUILDING are displayed, but not 

the concept LARGE. If the understanding was incorrect 

(i.e. a misunderstanding), the user now has the opportu-

nity to correct the system.  

If the addressee does not understand, or is not suffi-

ciently confident in parts of her understanding (i.e. a 

partial non-understanding), she may choose to clarify 

those parts, by posing a request and thereby signal non-

understanding in those concepts. S.9 in Table 1 is an 

example, where the system lacks confidence in the con-

cept RIGHT. Such requests are often formulated as 

yes/no questions. If the addressee is missing some part 

of the utterance, the clarification request may instead be 

formulated as a wh-question. The system could, for ex-

ample, have said: 

 

(1)  What do you have on your right? 

 

Purver et al. (2001) explores the different forms that 

clarification requests may take, by studying the British 

National Corpus. An interesting finding is that 45% of 

the clarification requests were elliptical or fragmental 

(just like S.9 in Table 1). For concept-level error han-

dling, these are especially interesting, since they focus 

on problematic concepts and thereby make the dialogue 

more efficient.  

It is important to note that while clarification re-

quests signal non-understanding, they may also give 

positive evidence of understanding by display, as is il-

lustrated in (1). In this example, the system displays that 

it has understood that the user has something on her 

right, but at the same time gives negative evidence on 

her understanding of what it is.  

The most explored techniques for grounding in spo-

ken dialogue systems are “explicit” and “implicit” veri-

fication, illustrated below:  

 

(2) U.1 I have a large concrete building on my left 

 S.2e Do you have a large concrete building on 

your left? 

 S.2i (You have) a large concrete building on 

your left. 

 S.2ii Which colour does the large concrete 

building that you have on your left have? 

 

S.2e exemplifies explicit verification, which may be 

described as a clarification request. S.2i exemplifies 

implicit verification, where the system displays its un-

derstanding. These techniques may often be experienced 

as tedious and unnatural, since they operate on the utter-

ance level and are realised as separate communicative 

acts. Implicit confirmation may also be integrated into 

the next act, as in S.2ii, but as Gabsdil (2003) notes, this 

is done on the utterance-level (including the whole pre-

vious utterance). As the example shows, this may sound 

unnatural and tedious, compared to just including the 

most important concepts, as in S.5.  

Traum (1994) presents a computational model of 

grounding where a recursive transition network is used 

to model the stages of the grounding process, including 

acknowledgements, repairs, and request for repairs. 

Larsson (2002) describes a model for grounding utter-

ances (or issues), where positive and negative evidence 

are given on all action levels, using the information state 

approach. While these models handle the process of 

grounding information, the units that are considered for 

grounding are utterances or issues. The examples pro-

vided do not show how individual concepts can be 

grounded. Another problem is that negative answers to 

grounding and clarification moves are not used as con-

straining information. In Larsson (2002), a “backup” 

copy of the dialogue state is kept to restore the state if 

the proposed interpretation is rejected. Consider exam-

ple (2) above. If the user would answer “no”, the fact 

that the user does not have a large concrete building on 

her left is valuable information for constraining possible 

user positions. This shows that clarification requests 

should be treated using a general model for handling 

requests, including the support for negations.  



Concept-level clarification requests have been stud-

ied to a greater extent than concept-level display. Rieser 

(2004) and Schlangen (2004) describe implementations 

of systems that are capable of posing fragmentary clari-

fication requests based on concept confidence scores on 

all action levels. However, the models do not handle the 

user’s reactions to those requests.  

A dialogue system also needs to consider the case of 

complete non-understanding. Typically, the system says 

something like “Sorry, I didn’t understand”, thereby 

encouraging the user to repeat. Skantze (2005) shows in 

an experiment that this is not what humans typically do 

when faced with complete non-understanding. Instead, 

they tend to ask new task-related questions, without 

signalling non-understanding.  

2.4 Late error detection  

Clarification requests correspond to what Schegloff 

(1992) calls second-turn repair, i.e. the repair is done in 

the second turn counting from the problematic utter-

ance. Third-turn repair occurs if an interlocutor give 

positive evidence of understanding and the first speaker 

realises that she has been misunderstood and initiates a 

repair. By displaying evidence of understanding, the 

system may detect errors by letting the user initiate a 

third-turn repair. Late error detection is the task of de-

tecting that the user has initiated such a repair, i.e. to 

detect a previous misunderstanding. 

Late error detection may also be performed if an in-

terlocutor realises that her model of the world contains 

contradictory information. An example can be seen in 

Table 1. After turn U.4, the system believes that the user 

has a tree on her right (since there was an undetected 

misrecognition). But after turn U.10, the system realises 

that there is no place the user could be. The only fact 

that has a relatively low confidence and has not been 

grounded is that the user has a tree on her right. The 

system may now assume that this was a misunderstand-

ing, and update its model. 

2.5 Choosing error handling strategies 

The previous discussion shows that there are several 

ways to handle uncertainty and errors in dialogue. A 

speaker may give evidence of understanding, request 

clarification on what is not understood, or presuppose 

understanding and defer the detection of errors to a later 

stage in the dialogue. As Allen et al. (1996) points out, 

sometimes it may be better to “choose a specific inter-

pretation and run the risk of making a mistake as op-

posed to generating a clarification subdialogue”. The 

choice of strategy should depend on the result of the 

early error detection, i.e. how confident the system is in 

its understanding, but also on the consequence that a 

misunderstanding would have; the cost of a potential 

misunderstanding should be compared to the cost of 

making the grounding move. As an example, take utter-

ance S.3 in Table 1. The system has a fairly high confi-

dence in the user’s position, but still chooses to give 

positive evidence of understanding, instead of deferring 

the detection. The reason is that if the system would 

misrecognise the user’s goal, the system would not de-

tect the error until the user has already reached the goal. 

The possibility to defer error handling based on con-

sequence of misunderstanding has not been explored to 

a great extent; confidence scores are most often only 

considered once and not stored for late error detection. 

To be able to defer error detection, as well as choosing 

from different error handling strategies on the concept 

level, the system should keep a model of when concepts 

have been grounded, by whom and how confident the 

system is in this.  

3 The HIGGINS spoken dialogue system 

In this section, the architecture, semantic structures and 

modules of the HIGGINS spoken dialogue system will be 

described. 

3.1 Architecture 

The HIGGINS spoken dialogue system is a distributed 

architecture with modules communicating over sockets. 

Each module has a clearly defined input and output (in 

XML), and can be implemented in any language, run-

ning on any platform. Figure 1 shows the most impor-

tant modules and messages in HIGGINS, in the present 

configuration. The recognition result (the top hypothesis 

with word confidence scores) from the ASR is sent to an 

interpreter, called PICKERING. PICKERING recognises 

and creates semantic representations of communicative 

acts (CA:s) from the user (without considering the dis-

course context).  

In HIGGINS, dialogue management is not imple-

mented as a single module. Instead, this processing is 

divided into a discourse modeller (GALATEA) and an 

action manager. This division is similar to the ap-

proaches taken in Allen et al. (2001) and Pfleger et al. 

(2003). The communicative acts are sent from 

PICKERING to GALATEA, which does a context aware 

interpretation and builds a discourse model. The dis-

course model is then sent to the action manager, which 

consults the discourse model and the domain database to 

make decisions and send communicative system acts. 

These acts are sent back to the GALATEA, as well as to a 

generator. Thus, GALATEA models communicative acts 

both from the user and the system; ellipsis, anaphora 

and grounding status is handled and modelled in the 

same way for all communicative acts. The action man-

ager may also make changes to the discourse model (if, 

for example, an error is detected) and send it back to 

GALATEA.  



From the generator, the textual representation of the 

system’s communicative act (enriched with prosodic 

markup) is sent to a speech synthesiser (TTS).  

 

Figure 1: The most important modules and messages in 

the HIGGINS architecture. CA stands for communicative 

act. 

GALATEA is fairly generic and can be configured 

with XML. The action manager, on the other hand, is 

highly domain dependent. However, much of the work 

that a typical dialogue manager has to do (such as ellip-

sis and anaphora resolution) is already resolved by 

GALATEA.  

3.2 Semantic representations 

Semantic descriptions are consistently represented as 

rooted unordered trees of semantic concepts. Nodes in 

the tree may represent for example attribute-value pairs, 

objects, relations and properties. Such structures are 

very flexible and can be used to represent deep semantic 

structures, such as nested feature structures, as well as 

simple forms, depending on the requirements of the 

domain. By using tree matching (similar to Kilpeläinen, 

1992), a pattern tree can be used to search for instances 

in a given target tree. Thus, larger semantic structures 

can form databases which may be searched. It is also 

possible to include variables in a pattern tree for speci-

fying constraints and extracting matching nodes, as well 

as using special pattern nodes for negation, etc.  

The semantic tree structures in HIGGINS are repre-

sented with XML. Figure 2 shows an example, repre-

senting a wooden building, where a style-sheet (XSLT) 

has been used to visualise the XML as a graphical tree 

structure (using HTML). Values starting with a dollar 

sign are interpreted as variables. If this tree was used as 

a pattern in a database search, the result would be all 

possible bindings of variable ID4 (i.e. a list of the id:s of 

all the wooden buildings in the database). The database 

in HIGGINS is a large XML document that contains all 

landmarks and their properties, as well as a set of possi-

ble user positions and how they relate to the landmarks.  

 

 
 
<object id=”$id4”> 

 <properties> 

  <type> 

   <value>building</value> 

  </type> 

  <material> 

   <value>wood</value> 

  </material> 

 </properties> 

</object> 

Figure 2: The semantic representation of a wooden build-

ing visualised graphically, as well as the corresponding 

XML. 

The semantic representations may be enhanced with 

“meta-information”, such as confidence scores, com-

municative acts, and if information is new or given. 

Figure 3 shows the representation of the utterance “the 

building is made of wood”. The structure tells us that 

this is a communicative act (CA) of the type ASSERT, that 

the object is singular (SING), and that the object and type 

are GIVEN information but the material NEW. This meta-

information can easily be removed to create a pattern 

like the one in Figure 2 for database searches (since 

such information is not contained in the database). 

 

 

Figure 3: The semantic representation of the utterance “the 

building is made of wood”. 

These structures make it fairly straightforward to 

represent the semantics of verbs, relations, etc. They are 

just represented as single nodes or tree fragments. It is 

not necessary to specify the arguments that for example 

a predicate must have. Tree structures may also be uni-

fied. A semantic template is used to specify how the 

nodes may be structured, to guide the unification.  The 

template also makes it possible to unify structures start-

ing at different levels in the tree.  

3.3 PICKERING: the semantic interpreter 

The interpreter developed within HIGGINS is called 

PICKERING (Skantze & Edlund, 2004b) and is imple-

mented in Oz
2
. PICKERING uses a context free grammar 

                                                           
2 http://www.mozart-oz.org/ 
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to parse recognition results. The grammar is enhanced 

with rules for generating the kind of semantic trees de-

scribed above. PICKERING can automatically make ex-

ceptions from the syntax given in the grammar by 

handling insertions and non-agreement inside phrases 

and by combining non-continuous phrases. While devia-

tions from the grammar are allowed by PICKERING, they 

are taken into account when the scoring the interpreta-

tions. Since PICKERING has access to the semantic re-

sults, it can automatically filter out semantically 

equivalent solutions, by using tree comparison.  

To make error handling on concept level possible, 

PICKERING also automatically transfers word confidence 

scores into the semantic trees. The semantic template 

used for unification can be marked with slots for confi-

dence scores. The confidence scores for the words that 

are involved in creating a node with such a slot are then 

averaged to compute a confidence score for the node. 

When averaging the word confidence scores, they are 

weighted based on the length of the individual words, 

which gives a better result according to Gabsdil and Bos 

(2003). An example semantic result with concept confi-

dence scores is shown in Figure 4 

 

 
 

I HAVE LARGE HELLO CONCRETE BUILDING ON MY LEFT 

Figure 4: The semantic result from Pickering, interpreting 

the first part of U.4 in Table 1, with concept confidence 

scores. 

3.4 The action manager 

The discourse model can be compared with the informa-

tion state used in TrindiKit (Larsson, 2002). However, 

the discourse model only contains information about 

what has been said, not the system’s plans or agenda – 

this is modelled by the action manager. “Issues” are 

central concepts in the issue-based approach to dialogue 

management described by Larsson (2002).  Issues are 

not directly modelled in GALATEA, since they are not 

needed for ellipsis resolution, anaphora resolution, or 

grounding tracking. Issues could be modelled in the 

action manager, but they are not at the current moment. 

Instead, the action manager has a check-list that it goes 

through each time the discourse model gets updated. For 

example, after U.2 in Table 1, the system first checks if 

there are any concepts that should be grounded, and 

chooses to display understanding of “an ATM”. It then 

checks the discourse model and finds that the user’s 

goal is known. The next item on the check list is the 

user’s position, and since there is no information on that 

in the discourse model, the action manager poses an 

open request on the user’s position (S.3).  

Since “issues” or “sub-dialogues” are not explicitly 

represented, the system does not need to know when 

issues are resolved or rejected. For example, if the sys-

tem needs more information about the user’s position, it 

might ask “can you see a wooden building in front of 

you?”. If the user then says “I have a green building on 

my left”, the system may find out that it has enough 

information to continue with route directions. Whether 

the “issue” raised by the first question is resolved or not 

does not matter. 

4 GALATEA: the discourse modeller 

The discourse modeller developed within HIGGINS and 

introduced here is called GALATEA and is also imple-

mented in Oz. The discourse modeller has three main 

tasks: 

 

• Resolve ellipses by maintaining a CA-list (list of 

past communicative acts) in chronological order, 

with the most recent act first. Ellipses are trans-

formed into full propositions, based on the CA-

list. 

• Resolve anaphora by maintaining an entity list, 

extracted from the CA:s, with the most recently 

mentioned entity first. 

• When new CA:s are added to the model, ground-

ing status is added to nodes in the semantic rep-

resentation, i.e. information about who added the 

concept to the model, in which turn, and how 

confident the system is in the concept. This in-

formation is also transferred to the entity list.  

 

The CA-list and the entity list form the discourse 

model, which is represented with XML.  

4.1 Ellipsis resolution 

GALATEA resolves ellipses by transforming them into 

full propositions. To do this, domain dependent context 

rules are used that transform communicative acts based 

on previous acts (similar to Carbonell, 1983). Table 2 

exemplifies a transformation based on a rule that han-

dles all answers to wh-requests (called content-requests 

here). The rule is applied when the new CA is an ellipsis, 



and there is a wh-request in the CA-list with a requested 

node marked with THEME:1. If possible, a new CA of 

type ASSERT is created where the top node in the request 

is copied and the theme-node is unified with the first 

node that can be unified in the ellipsis (in this case the 

COLOUR node). If the unification fails, the rule is not 

applied.  

 

Context: 
Which colour 

does the con-

crete building 

have? 

 

Ellipsis: 

Red  

Transforma-

tion: 

The concrete 

building is red 

 

Table 2: Example transformation. 

The rules are written in XML, but will not be ex-

plained in detail here. The context may be a CA from the 

other speaker or the same. It is also, of course, possible 

to transform CA:s other than ellipses. Each rule has a 

fairly generic purpose. Currently, about 10 different 

context rules are used in HIGGINS.  

4.2 Anaphora resolution 

GALATEA has no access to the domain database. Thus, it 

cannot map entities (i.e. referents) in the discourse to 

real objects in the world. Instead, it keeps a list of enti-

ties that are mentioned (e.g. “a large building”) in the 

discourse and assigns variable id:s to them. For some 

entities (such as the user), an absolute id can be as-

signed. The action manager may then use the entities in 

the discourse model as patterns and make a database 

search to find possible referents, i.e. bindings to the 

entity id variables (as described in 3.2).  

When semantic structures are created in PICKERING, 

they are marked with given/new status, based on defi-

niteness and sentence structure. Some parts may be 

given and some new, for example when asserting in-

formation about a given object (see Figure 3 for an ex-

ample). Each time an entity marked as new is added to 

the entity list, it is placed on top. If an entity marked as 

given is added (i.e. an anaphora), the entity list is 

searched from top to bottom for an antecedent. The 

nodes marked as given in the entity to be added are used 

as a search pattern and the potential antecedents as tar-

get, and a pattern match is performed. If an antecedent 

is found, it is moved to the first position in the entity list 

and unified with the added entity. If no antecedent is 

found, the added entity is treated as new and simply 

placed first. 

Since assertions about entities are unified in the en-

tity list, it is possible to refer to entities with descrip-

tions they haven’t actually been directly referred with 

before. For example, there is a reference in utterance 

S.11, in Table 1, to “the red building”. There is no entity 

directly referred to in this way before, but the entity list 

will contain one after U.6.  

The entity list may also be used by the action man-

ager to select an appropriate referring expression (such 

as S.5 and S.11 in Table 1).  

4.3 Grounding status 

Handling anaphora and ellipses are necessary capabili-

ties of a discourse modeller. In addition to this, 

GALATEA is also capable of tracking the grounding 

status of concepts. The grounding status is information 

about who added the concept to the model, in which 

turn and how confident the system is in the concept. 

Since the same concept may be mentioned several 

times, the grounding status is represented as a list of 

grounding data. This way, the system may model 

grounding information over time. This information may 

then be consulted for various error handling strategies, 

which is described in the next section. The grounding 

status can be compared with the “contextual functions” 

used in Heistercamp and McGlashan (1996), and the 

discourse pegs used in McTear et al. (2005), that are 

used to keep track of the system’s belief in what has 

been said.  

The grounding information is added before resolving 

ellipses and anaphora. This ensures that only concepts 

that were part of the original utterance are grounded, not 

those that are added in the ellipsis resolution. In the se-

mantic template used for unification, places where 

grounding information should be added are marked. An 

example of how grounding is updated is given in Table 

3. As can be seen in the table, each GROUNDING tag con-

tains a list of CA-tags, which represent communicative 

acts in which the concept was grounded. Each such tag 

contains information on the speaker (AGENT), the turn 

(CAID) and (if applicable) the concept confidence score 

(CONF), taken from the parse result (as exemplified in 

Figure 4).  



U.4: I have a large concrete building on my left … 

 
S.5: Which colour does the concrete building have? 

 
U.6: Red 

 

Table 3: How the grounding status for the entity that 

represents the concrete building gets updated.  

5 Error handling strategies 

The grounding status information in the discourse 

model may be used by the action manager to perform 

the various concept-level error handling strategies de-

scribed in section 2. 

Currently, a simple distinction is made between high 

and low grounding status. If a concept is only men-

tioned by the user with low confidence score, it has a 

low grounding status. If it has been mentioned by the 

system and/or by the user with a high confidence, it has 

a high grounding status. The threshold used for “high” 

and “low” confidence is different for different strate-

gies.  

5.1 Grounding 

The entity list may be used by the action manager to 

display positive evidence of understanding, by search-

ing for concepts with low grounding status. This may be 

done as a separate communicative act, as in S.3 in Table 

1, or integrated in another act, as in S.5. Since GALATEA 

also models the system’s actions, those concepts will 

then have a high grounding status. 

Every time the system refers to a given entity, ap-

propriate integrated display of understanding is auto-

matically done. To construct a referring expression to an 

entity that is on the entity list, the action manager sim-

ply makes a copy of the entity and removes all concepts 

with high grounding status. This ensures that the con-

cepts with low grounding status will get a high ground-

ing status. An example is shown in Table 3. When the 

system needs to ask a question on the colour of the 

building, it copies the entity and removes the concept 

LARGE, since it has a high grounding status (based on 

the confidence score). The TYPE concept (BUILDING) is 

not removed, since it is needed for a valid referring ex-

pression (otherwise it would say “which colour does the 

concrete have”). 

5.2 Clarification 

The latest CA in the discourse model may be searched 

for concepts, or trees of concepts, with low grounding 

status. The action manager may then embed such a 

fragment in a CA of type request and send it, resulting in 

a fragmentary clarification request. When GALATEA 

receives this elliptical CA, it will be transformed into a 

full request. This way, the grounding status for the in-

volved concepts will be updated correctly. Table 4 

shows how a clarification dialogue with elliptical com-

municative acts is interpreted by GALATEA.  

 

Turn Utterance After transformation 

U.1 I have a red build-

ing on my left 

[same] 

S.2 red? is the building red? 

U.3 no the building is not red 

 green the building is green 

Table 4: How a clarification dialogue is interpreted by 

GALATEA.  

Negations and confirmations are represented with 

POLARITY nodes that are attached to concepts. This 

makes it easy to represent and integrate “yes” and “no” 

answers, as well as adverbial negations.  A concept may 

have several POLARITY nodes, which makes it possible 

for one participant to confirm something while another 

participant negates it. The POLARITY nodes are then 

taken into account when doing tree pattern matching. 

Figure 5 shows the resulting entity after the dialogue in 

Table 4. As can be seen, the negative answer is kept in 

the model, which is useful when constraining possible 

user locations.  

 

 

Figure 5: The resulting entity after the clarification dia-

logue.  



5.3 Late error detection 

Due to the misrecognition in U.4 (in Table 1), the dis-

course model will contain an error. However, after turn 

U.10, the system discovers that there is no place where 

the user can be. It may now use the grounding status in 

the discourse model to look for errors. The only concept 

with a low grounding status is shown in Figure 6. This 

concept may be removed, and the system will still have 

the information that the user can see a tree somewhere.  

 

 

Figure 6: A concept with low grounding status is detected.  

It is also possible to remove information that is asso-

ciated with a specific turn (by looking at the CAID at-

tribute in the grounding status). The most obvious case 

is when the system has just grounded some concepts 

and the user signals a problem. The concepts associated 

with the system’s previous turn may then be removed. 

For example, if the user had signalled a problem after 

S.5 in Table 3, the system could remove the concepts 

CONCRETE and BUILDING, or add negative POLARITY 

nodes to them. The model would still contain the fact 

that the user has something large on her left. 

Since the model also contains information about 

what the user has grounded, it is possible to detect cases 

where the user misunderstands the system. For example, 

the user never displays any understanding of the con-

cepts WOOD and BUILDING in U.8 in Table 1, which can 

be detected in the discourse model.  

5.4 Choosing strategy 

Given these different error handling strategies the dis-

course model allows, the question is how to choose 

strategy. Generally, low confidence scores lead to clari-

fication requests, mid confidences scores lead to display 

of understanding, and high confidence scores lead to no 

grounding actions. Since the choice of strategy is done 

in the action manager, it is possible to make a task-

related choice, i.e. to have different confidence thresh-

olds for different tasks, depending on the consequence 

of misunderstanding, as discussed in 2.5. For example, 

when the user asserts the goal, as in S.1 in Table 1, the 

system has a much higher threshold for not displaying 

understanding. When the user asserts her position in 

U.4, the system instead chooses to defer the handling of 

the low confidence score in the concept RIGHT.  

6 Conclusions and future work 

In this paper, the discourse modeller GALATEA has been 

presented. It models the grounding status of concepts 

mentioned during the course of the discourse by storing 

confidence scores for individual concepts, together with 

information about when the concepts have been men-

tioned and by whom. It has been shown how this infor-

mation may be used by an action manager for display of 

understanding, clarification requests, and late error de-

tection, all on the concept level.   

Currently, the thresholds used for different strategies 

and tasks have been manually tuned. Finding methods 

for automatic tuning is a topic for future research. The 

selection of clarification and grounding strategies is 

built into the same action manager as the one that han-

dles the navigation task. It should be possible to build a 

separate generic action manager for handling these 

tasks, which could be reused in different applications. 

The display of understanding and clarification re-

quests described here currently only operates on the 

perception level on the action ladder described previ-

ously. In current spoken dialogue systems, this is proba-

bly where most errors occur, but a possible future 

direction is to extend the model to track confidence 

scores and grounding status for different levels. Schlan-

gen (2004) presents a model where pragmatic confi-

dence scores are used for clarification requests. 

The next step is to conduct experiments with users to 

evaluate the system. An especially important topic is to 

look at how users give negative signals when the system 

gives positive evidence after misrecognitions, and how 

these negative signals may be detected, so that the errors 

in the discourse model may be corrected (as described 

in 5.3). Error recovery strategies after total non-

understanding will also be studied.  

Compared to full propositions, the meaning of an el-

liptical utterance is more dependent on prosodic fea-

tures. We are currently investigating how prosodic 

features of (synthesised) elliptical clarification requests 

affect the perceived meaning (Edlund et al., 2005).  

An important question is, of course, to what extent 

the techniques described in this paper may apply to 

other domains. GALATEA, as well as other HIGGINS 

components, is currently being tested in Connector, a 

dialogue system acting as an automatic switchboard and 

secretary. Connector is part of the EU-funded CHIL-

project
3
 – a project investigating automatic tracking and 

support of interactions in meeting rooms. 
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Appendix A 

The same dialogue as in Table 1. The fourth shows the interpretation of the utterance after ellipsis resolution. Impor-

tant concepts are written in uppercase. Concepts that are grounded (i.e. displayed) in the same turn are also bold. 

The fifth column shows the error handlings strategies that are used. 

 
Turn Transcription ASR result After ellipsis resolution Error handling 

S.1 Where do you want to 

go? 

 Where do you want to go?  

U.2 To an ATM TO AN ATM I want to go to an ATM  

S.3 Ok,  Ok 

 

 

 an ATM  You want to go to an ATM.  

 

Separate display of un-

derstanding (ATM) 

 Can you describe where 

you are now? 

 Can you describe where 

you are now? 

 

U.4 I have a large concrete 

building on my left  

I HAVE LARGE 

HELLO CONCRETE 

BUILDING ON MY 

LEFT  

I have a LARGE CON-

CRETE BUILDING on my 

LEFT  
 

 

 and a tree in front of 

me. 

AND TREE ON RIGHT I have a TREE in FRONT of 

me. 

 

S.5 Which colour does the 

concrete building have? 

 Which colour does the 

CONCRETE BUILDING 
have? 

Integrated display of 

understanding 

(CONCRETE, BUILDING) 

U.6 Red RED The CONCRETE BUILDING 

is red 

 

S.7 Ok,  Ok, 

 

 

 can you see a wooden 

building in front of you? 

 Can you see a WOODEN 

BUILDING in FRONT of 

you? 

 

U.8 No,  NO  I can not (NEGATIVE) see a 

WOODEN BUILDING in 

FRONT of me 

 

 but I have one on my 

right. 

I HAVE ONE ON 

RIGHT 

I have a WOODEN 

BUILDING on my RIGHT. 

 

S.9 On your right?  Do you have a WOODEN 

BUILDING on your RIGHT? 

Clarify RIGHT 

U.10 Yes YES I do (POSITIVE) have a 

WOODEN BUILDING on my 

RIGHT. 

 

S.11 Ok,  

 

 Ok,  Late error detection of 

RIGHT in U.4 

 I think I know where 

you are. 

 I think I know where you 

are. 

 

 Walk a little bit forward 

and take left after the 

red building. 

 Walk a little bit FORWARD 

and take LEFT AFTER the 

RED BUILDING. 

 



Appendix B 

The complete entity list after turn U.10 in Table 1, before late error detection.  

 

 

 
 

 


