

Advances in Regional Accent Clustering in Swedish

Giampiero Salvi giampi@kth.se

- Introduction
- Method
- Data
- Results

aim: analysis of regional pronunciation variation on large data sets (\sim 5000 speakers)

- aim: analysis of regional pronunciation variation on large data sets (~5000 speakers)
- how? Automate part of the process with data mining techniques

Introduction

- aim: analysis of regional pronunciation variation on large data sets (~5000 speakers)
- how? Automate part of the process with data mining techniques
- Inspiration: analysis of L2 speakers (Minematsu and Nakagawa, 2000)

Introduction

- aim: analysis of regional pronunciation variation on large data sets (~5000 speakers)
- how? Automate part of the process with data mining techniques
- Inspiration: analysis of L2 speakers (Minematsu and Nakagawa, 2000)

previous work:

- Analysis of accent variation of single phonemes (Salvi, 2003a)
- Use of accent information in ASR (Salvi, 2003b)

- first use ASR (Automatic Speech Recognition) techniques to collect statistics for each phoneme
 - divide database in A subsets depending on accent region
 - extract acoustic features at fixed time intervals
 - build accent dependent monophone models with one distribution per state
- **result** is a pdf for each phoneme ph_1, \dots, ph_P , subsegment s_1, \dots, s_S and accent region r_1, \dots, r_A

Statistics with ASR

 $(\overline{T}T)$

Statistics with ASR (cont.)

advantages

- do not need phonetic transcriptions
- procedure can be automated and reproduced identical elsewhere
- easy to deal with large databases

Statistics with ASR (cont.)

advantages

- do not need phonetic transcriptions
- procedure can be automated and reproduced identical elsewhere
- easy to deal with large databases

disadvantages

- pronunciation model based on dictionary (canonical)
- harder to spot mistakes (if database is not clean)
- suprasegmental (prosodic) features hard to include

- Analyse differences between groups by comparing distributions
 - metric based on Bhattacharyya distance

use agglomerative hierarchical clustering to interpret the data

Analysis in previous studies

clustering

- consider each phoneme independently
- merge initial/middle/final subsegments

visualization

Analysis in this study

Analysis in this study (cont.)

advantages:

- let allophones from different phonemes cluster together
- enable observation of more general groups (consonants, vowels...)
- study the initial, middle and final part of each phoneme separately

Analysis in this study (cont.)

advantages:

- let allophones from different phonemes cluster together
- enable observation of more general groups (consonants, vowels...)
- study the initial, middle and final part of each phoneme separately

disadvantages:

- the clustering tree becomes huge
- problems of visualisation

- Swedish SpeechDat FDB5000
- 5000 speakers recorded over the telephone line
- 270 hours of recordings (including silence)
- 10msec spaced Mel frequency cepstrum coefficients c_0, \ldots, c_{12}
 - + 1st order differences d_0, \ldots, d_{12}
 - + 2nd order differences a_0, \ldots, a_{12}
- total of 96.803.850 data points (39 dim vectors)
- **20** accent regions \times 46 phonemes \times 3 subsegments = 2760 distributions

every split in the tree defines two groups

use Linear Discriminant Analysis to rank the acoustic features with respect to that grouping

First split: vowels / consonants + silence

Discriminant analysis:

features	prediction accuracy
c_0	78.6%
c_0, d_0	90.6%
c_0, d_0, c_2	91.4%
all	99.5%

Second split: silence (initial,final) / consonants + silence (middle)

Discriminant analysis:

Third split: voiced plosives / consonants + silence (middle)

Discriminant analysis:

features	prediction accuracy
d_0	88.8%
d_0, d_1	91.7%
d_0, d_1, a_9	100%
all	100%

Phoneme /r/ has a retracted pronunciation south of Sweden

Similar behaviour for initial, middle and final segment

LDA: many variables explain, e.g. c_4 , d_4

Conclusions

- The method proposed enables:
 - analysis of large amounts of data
 - formalisation of the experiments (reproducibility)
 - analysis of cross-phoneme allophone clusters
 - separation of subsegments (initial, middle and final)
 - analysis of both broad and detailed classes of phonemes
 - ranking of the acoustic features relevant to a discrimination

Conclusions

The method proposed enables:

- analysis of large amounts of data
- formalisation of the experiments (reproducibility)
- analysis of cross-phoneme allophone clusters
- separation of subsegments (initial, middle and final)
- analysis of both broad and detailed classes of phonemes
- ranking of the acoustic features relevant to a discrimination

To do

- interpret the results (!)
- repeat analysis without energy features

Bibliography

http://www.speech.kth.se/~giampi

- Minematsu, N. and Nakagawa, S. (2000). Visualization of pronunciation habits based upon abstract representation of acoustic observations. In *InSTIL'2000*, pages 130–137.
- Salvi, G. (2003a). Accent clustering in Swedish using the Bhattacharyya distance. In 15th ICPhS Internamtional Congress of Phonetic Sciences.
- Salvi, G. (2003b). Using accent information in ASR models for Swedish. In *Eurospeech, 8th European* conference on speech communication and technology, pages 2677–2680.