

Machine Learning: a methodology survey with practical examples

Giampiero Salvi KTH CSC TMH giampi@kth.se

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

- the process of acquiring knowledge from experience
- focus on observations that can be described in terms of measurable quantities
 - ullet an observation corresponds to a point $\mathbf{x} \in \mathbb{R}^d$
- given a set of observations $\mathcal{D} = \{\mathbf{x}_i\}$ say something about its structure or about a new observation \mathbf{x}

Supervised learning

Classification

Supervised learning

Classification

Supervised learning

Classification

Regression

Unsupervised learning

Clustering

X X

Unsupervised learning

Clustering

Unsupervised learning

Clustering

Classification

The theory behind

parametric methods

- probabilistic assumption on the generation of the data $\mathcal{D} = \{\mathbf{x}_i\}$
- known functional shape of probability distributions, but unknown parameters

non parametric

- the shape of the distribution is not known
- no probabilistic assumption at all (heuristics)

- Nature assumes one of c states ω_j with a priori probability $P(\omega_j)$
- \blacksquare When in state $\omega_j,$ nature emits observations \mathbf{x} with distribution $p(\mathbf{x}|\omega_j)$

Х

- Nature assumes one of c states ω_j with a priori probability $P(\omega_j)$
- \blacksquare When in state $\omega_j,$ nature emits observations \mathbf{x} with distribution $p(\mathbf{x}|\omega_j)$

- Nature assumes one of c states ω_j with a priori probability $P(\omega_j)$
- \blacksquare When in state $\omega_j,$ nature emits observations \mathbf{x} with distribution $p(\mathbf{x}|\omega_j)$

Bayes decision theory

 $P(\omega_j | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{n(\mathbf{x})}$

Bayes decision theory

$$P(\omega_j | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{p(\mathbf{x})}$$

posterior probabilities

• What is learning?

- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

Parameter estimation

• ideally: $p(\mathbf{x}|\omega_j)$ i.e. $p(\mathbf{x}|\theta_j)$ in reality: $p(\mathbf{x}|\hat{\theta}_j)$ or $p(\mathbf{x}|\mathcal{D})$

Parameter estimation

• ideally: $p(\mathbf{x}|\omega_j)$ i.e. $p(\mathbf{x}|\theta_j)$ in reality: $p(\mathbf{x}|\hat{\theta}_j)$ or $p(\mathbf{x}|\mathcal{D})$

Assumptions:

- \bullet samples from class ω_i do not influence estimate for class $\omega_j, \ i \neq j$
- samples from the same class are independent and identically distributed (i.i.d.)

Parameter estimation (cont.)

class independence assumption:

Parameter estimation (cont.)

class independence assumption:

- Maximum likelihood estimation
- Bayesian estimation

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- i.i.d. $\rightarrow p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(\mathbf{x}_k|\theta)$

• Consider θ as a random variable

- characterise θ with the posterior distribution $p(\theta | D)$ given the data
- using Bayes formula, the posterior can be computed from the likelihood $p(\mathcal{D}|\theta)$ and the prior $p(\theta)$

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

■ ML: $\mathcal{D} \rightarrow \hat{\theta}$ Bayes: $\mathcal{D}, p(\theta) \rightarrow p(\theta|\mathcal{D})$

 $p(\mathbf{x}|\hat{\theta})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

Bayesian estimation

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

- we can compute $p(\mathbf{x}|\mathcal{D})$ instead of $p(\mathbf{x}|\hat{\theta})$
 - integrate the join density $p(\mathbf{x}, \theta | \mathcal{D}) = p(\mathbf{x} | \theta) p(\theta | \mathcal{D})$

Bayesian estimation (cont.)

Pros:

- better use of the data
- makes a priori assumptions explicit
- easily implemented recursively
 - use posterior $p(\theta|\mathcal{D})$ as new prior

Bayesian estimation (cont.)

Pros:

- better use of the data
- makes a priori assumptions explicit
- easily implemented recursively
 - use posterior $p(\theta|\mathcal{D})$ as new prior

Cons:

- definition of noninformative priors can be tricky
- often requires numerical integration
- not widely accepted by traditional statistics (frequentism)

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

Parametric

Parametric

Parametric

Parametric

Parametric

Parametric

Parametric

non parametric

Parzen window

 \bullet define cell volume as a function of total number of samples n

Parametric

non parametric

Parzen window

- \bullet define cell volume as a function of total number of samples n
- k_n -nearest neighbour
 - \bullet define number of samples in a cell as a function of \boldsymbol{n}

use a linear combination of the components of x to rank a class

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

- compare the g_i s to choose the best class
- **\blacksquare** for two categories $g_1(\mathbf{x}) = g_2(\mathbf{x})$ defines a hyperplane

Nonlinear extension

Nonlinear extension

 \blacksquare non-linearly map the features in a higher dimensional space $x \to y$

$$g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$$

Gradient descent procedures

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current ${\bf a}$ with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \, \, \mathbf{\Delta} J(\mathbf{a})$$

Gradient descent procedures

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current ${\bf a}$ with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \, \, \mathbf{\Delta} J(\mathbf{a})$$

• Perceptron criterion: $J_p(\mathbf{a}) = \sum_{y \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y})$ where \mathcal{Y} is the set of misclassified samples

Gradient descent procedures

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current a with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \ \mathbf{\Delta} J(\mathbf{a})$$

• Perceptron criterion: $J_p(\mathbf{a}) = \sum_{y \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y})$ where \mathcal{Y} is the set of misclassified samples

Gradient descent procedures

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current a with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \, \, \mathbf{\Delta} J(\mathbf{a})$$

• Perceptron criterion: $J_p(\mathbf{a}) = \sum_{y \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y})$ where \mathcal{Y} is the set of misclassified samples

Gradient descent procedures

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current a with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \, \, \mathbf{\Delta} J(\mathbf{a})$$

• Perceptron criterion: $J_p(\mathbf{a}) = \sum_{y \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y})$ where \mathcal{Y} is the set of misclassified samples

- \bullet define a criterion $J(\mathbf{a})$ that is maximised if \mathbf{a} is a solution
- \bullet update the current a with a fraction of the gradient of J

$$\mathbf{a} \leftarrow \mathbf{a} - \eta \ \mathbf{\Delta} J(\mathbf{a})$$

• Perceptron criterion: $J_p(\mathbf{a}) = \sum_{y \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y})$ where \mathcal{Y} is the set of misclassified samples

Support vector machines

Perceptron

Support vector machines

 \bigcirc

 \bigcirc

*y*₁

 \bigcirc

Perceptron

Support vector machine

Multi layer neural networks

Multi layer neural networks

Multi layer neural networks (cont.)

Multi layer neural networks (cont.)

Multi layer neural networks (cont.)

Backpropagation algorithm

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

Stochastic methods

Gradient descent procedure find local minima

- Gradient descent procedure find local minima
- solution: repeat training several times with different initialisations

- Gradient descent procedure find local minima
- solution: repeat training several times with different initialisations
- Simulated annealing
 - based on concepts from physics
 - well grounded theoretically
- Boltzmann learning

- Gradient descent procedure find local minima
- solution: repeat training several times with different initialisations
- Simulated annealing
 - based on concepts from physics
 - well grounded theoretically
- Boltzmann learning
- Evolutionary methods (Genetic algorithms)
 - based on concepts from biology
 - no theory behind: heuristic

Genetic algorithms

Generations

Ge	Generation k+1	
chromosomes	after ranking	survival + reproduction
01110110100100101001		10010100101010101010
1001010010101010101010		01010111110100101100
01001010001010010101		10101001000101010010
10101001000101010010		0101001010100001010
01001001010101001000	00101011110100011111	10010100100100101100
00010111101010101010	🗶 🎊 01001010001010010101	01010111110101010010
01010111110100101100	00010111101010101010	10101001001010001010
00101011110100011111	/ \ 01110110100100101001	01010010100101010010
01010010101010001010	∕	\0101001010101010101010

Genetic algorithms

Generations

G	Generation k+1	
chromosomes	after ranking	survival + reproduction
01110110100100101001		10010100101010101010
1001010010101010101010		01010111110100101100
01001010001010010101		10101001000101010010
10101001000101010010		01010010101010001010
01001001010101001000	00101011110100011111	10010100100100101100
00010111101010101010	🛛 🔨 01001010001010010101	01010111110101010010
01010111110100101100	00010111101010101010	10101001001010001010
00101011110100011111	∥ 🔨 01110110100100101001	01010010100101010010
01010010101010001010	/ \ 010010010101001000	\01010010101010101010

Genetic operators

¥	replication (survival)	crossover	mutation
gen	01110110100100101001	1001010010 01010111110100101100	10010100101010101010
			¥¥¥
+	01110110100100101001	1001010010 0100101100	100 <mark>0</mark> 01001 1 1010 0 01 1 10
gen		0101011111 <mark>1010101010</mark>	

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

Universal principles

No free lunch theorem

• if we make no prior assumptions on the nature of the problem, no learning method can be proved to be superior to any other, not even random guessing

Universal principles

No free lunch theorem

• if we make no prior assumptions on the nature of the problem, no learning method can be proved to be superior to any other, not even random guessing

Ugly duckling theorem

• if we make no prior assumptions on the nature of the problem, no feature representation should be preferred to any other

Universal principles

No free lunch theorem

• if we make no prior assumptions on the nature of the problem, no learning method can be proved to be superior to any other, not even random guessing

Ugly duckling theorem

• if we make no prior assumptions on the nature of the problem, no feature representation should be preferred to any other

Minimum description length principle

• prefer low complexity solutions. True only asymptotically, but valid in practice

Occam's razor

• avoid overfitting

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

Unsupervised learning

- release assumption on class independence
- Iearn a mixture of distributions
- the parametric solution is formally similar, but different in practice

- A maximum likelihood solution is the Expectation Maximisation algorithm
- Problem with missing data (class membership $\forall \mathbf{x}_k \in \mathcal{D}$)
- Solution:
 - assume the missing data is known
 - compute and maximise likelihood
 - estimate the new best guess for the missing data
 - iterate
- guaranteed to find ML solution with marginalised missing data

Heuristic methods

k-means clustering

- use Euclidean distance as similarity measure
- \bullet define k centroids
- assign data points to the nearest centroid
- recompute centroids
- iterate

Properties

• is equivalent to Model Based Clustering with equal and spherical covariances

Heuristic methods (cont.)

hierarchical clustering

- start with one cluster per data point
- iteratively merge most similar clusters
- single linkage, complete linkage, average linkage, ...

Number of clusters

- what if the number of clusters is not known?
- Large number of heuristic methods
 - measure the within and across cluster spread

Number of clusters

- what if the number of clusters is not known?
- Large number of heuristic methods
 - measure the within and across cluster spread
- Bayes Information Criterion
 - model fit to the data: likelihood
 - model complexity in number of parameters (minimum description length principle)
 - number of data points available for parameter estimation

- What is learning?
- Parametric methods
- Non-parametric methods
- Stochastic methods
- Non-metric methods (skip)
- Universal principles
- Unsupervised learning
- Examples

- Synface: map acoustic to visual information in speech
- Accent analysis with hierarchical agglomerative clustering
- Mille, model first language learning with Model Based Clustering

- idea: use a synthesized talking face derived from speech as a hearing aid for users of voice channels
- **problem:** extract (phonetic) information from the speech signal with very low latencies ($\sim 50ms$)
- **•** it is a regression problem
- Instruction by the second s
 - map acoustic signal to visemes
 - use rules to generate the lip movements

Synface: methods

Recurrent neural network

Hidden Markov models

- aim: analysis of regional pronunciation variation on large data sets (\sim 5000 speakers)
- how? Automate part of the process with data mining techniques

- Analyse differences between groups by comparing distributions
 - metric based on Bhattacharyya distance

$$D_{\text{bhatt}}(\Theta_1, \Theta_2) = \underbrace{\frac{1}{8} (M_2 - M_1)^T \left[\frac{\Sigma_1 + \Sigma_2}{2} \right]^{-1} (M_2 - M_1)}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 \right| \left| \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 + \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\left| \frac{\Sigma_1 + \Sigma_2}{2} \right|}{\sqrt{\left| \Sigma_1 + \Sigma_2 \right|}}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\Sigma_1 + \Sigma_2}{2}}_{\mathbf{I} = \underbrace{\frac{\Sigma_1 + \Sigma_2}{2}}_{\mathbf{I} = \underbrace{\frac{1}{2} \ln \frac{\Sigma_1 + \Sigma_2}{2}}_{\mathbf{I} = \underbrace{\frac{\Sigma_1 + \Sigma_2}{2}}_{\mathbf{I} = \underbrace{\frac{\Sigma_2 + \Sigma_2}{2}}_{\mathbf{I} = \underbrace{\frac{\Sigma$$

Accent clustering (cont.)

- Background: infants have no innate linguistic knowledge
- Aim (long term): mathematical modelling of the learning process
 - acoustic features classification
 - time integration into meaningful sequences
- Aim (so far): spectral features classification
 - unsupervised
 - incremental

start with a MCLUST model get new data adjust old model to new data divide new data into well and poorly[∞]

modelled points

- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- start with a MCLUST model
 get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly[∞] modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly[∞] modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

- **1.** start with a MCLUST model
- 2. get new data
- 3. adjust old model to new data
- 4. divide new data into well and poorly^ℵ modelled points
- 5. try a more complex model, if better BIC set as best and go back to 4
- 6. set the current best model and go back to 2

Thank you!