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Outline)
a

� What is learning?

� Parametric methods

� Non-parametric methods

� Stochastic methods

� Non-metric methods (skip)

� Universal principles

� Unsupervised learning

� Examples



What is learning?)
a

� the process of acquiring knowledge from
experience

� focus on observations that can be described in
terms of measurable quantities

• an observation corresponds to a point x ∈ Rd

� given a set of observations D = {xi} say
something about its structure or about a new
observation x



Supervised learning)
a
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Regression
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Unsupervised learning)
a

Clustering
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The theory behind)
a

� parametric methods
• probabilistic assumption on the generation of the data
D = {xi}
• known functional shape of probability distributions, but

unknown parameters

� non parametric
• the shape of the distribution is not known

• no probabilistic assumption at all (heuristics)



The probabilistic model)
a

� Nature assumes one of c states ωj with a priori
probability P (ωj)

� When in state ωj, nature emits observations x
with distribution p(x|ωj)

state1 state2 state3
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Bayes decision theory)
a
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Bayes decision theory)
a

state1 state2 state3
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Outline)
a

� What is learning?

� Parametric methods

� Non-parametric methods

� Stochastic methods

� Non-metric methods (skip)

� Universal principles

� Unsupervised learning

� Examples



Parameter estimation)
a
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� ideally: p(x|ωj) i.e. p(x|θj) in reality: p(x|θ̂j) or
p(x|D)



Parameter estimation)
a
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� ideally: p(x|ωj) i.e. p(x|θj) in reality: p(x|θ̂j) or
p(x|D)

� Assumptions:
• samples from class ωi do not influence estimate for class

ωj, i 6= j

• samples from the same class are independent and
identically distributed (i.i.d.)



Parameter estimation (cont.))
a

� class independence assumption:
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Parameter estimation (cont.))
a

� class independence assumption:
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� Maximum likelihood estimation

� Bayesian estimation
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Bayesian estimation)
a

� Consider θ as a random variable

� characterise θ with the posterior distribution
p(θ|D) given the data

� using Bayes formula, the posterior can be
computed from the likelihood p(D|θ) and the
prior p(θ)

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

� ML: D → θ̂ Bayes: D, p(θ) → p(θ|D)
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Bayesian estimation (cont.))
a

Pros:

� better use of the data

� makes a priori assumptions explicit

� easily implemented recursively
• use posterior p(θ|D) as new prior



Bayesian estimation (cont.))
a

Pros:

� better use of the data

� makes a priori assumptions explicit

� easily implemented recursively
• use posterior p(θ|D) as new prior

Cons:

� definition of noninformative priors can be tricky

� often requires numerical integration

� not widely accepted by traditional statistics
(frequentism)
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� What is learning?

� Parametric methods

� Non-parametric methods

� Stochastic methods

� Non-metric methods (skip)

� Universal principles

� Unsupervised learning

� Examples
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Probabilistic nonparametric
methods )

Parametric non parametric

� Parzen window

• define cell volume as a function of total number of
samples n

� kn-nearest neighbour
• define number of samples in a cell as a function of n



Linear discriminant functions)
a

� use a linear combination of the components of x
to rank a class

gi(x) = wt
ix + wi0

� compare the gis to choose the best class

� for two categories g1(x) = g2(x) defines a
hyperplane

x
1

x
2

w
0

w
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� non-linearly map the features in a higher
dimensional space x→ y

g(x) = aty
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� Gradient descent procedures
• define a criterion J(a) that is maximised if a is a solution

• update the current a with a fraction of the gradient of J

a← a− η ∆J(a)
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Linear discriminant functions (cont.))
a

� Gradient descent procedures
• define a criterion J(a) that is maximised if a is a solution

• update the current a with a fraction of the gradient of J

a← a− η ∆J(a)

• Perceptron criterion: Jp(a) =
∑

y∈Y(−aty) where Y is
the set of misclassified samples
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� Gradient descent procedures
• define a criterion J(a) that is maximised if a is a solution

• update the current a with a fraction of the gradient of J
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Linear discriminant functions (cont.))
a

� Gradient descent procedures
• define a criterion J(a) that is maximised if a is a solution

• update the current a with a fraction of the gradient of J

a← a− η ∆J(a)

• Perceptron criterion: Jp(a) =
∑

y∈Y(−aty) where Y is
the set of misclassified samples
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Support vector machines)
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Perceptron
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Perceptron
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Multi layer neural networks (cont.))
a

Multi layer
neural networks

x0 x1 x2
xd

input units

bias unit

output unit

hidden layer

E

� Backpropagation algorithm
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Stochastic methods)
a

� Gradient descent procedure find local minima

� solution: repeat training several times with
different initialisations

� Simulated annealing
• based on concepts from physics

• well grounded theoretically

� Boltzmann learning

� Evolutionary methods (Genetic algorithms)
• based on concepts from biology

• no theory behind: heuristic
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Universal principles)
a

� No free lunch theorem
• if we make no prior assumptions on the nature of

the problem, no learning method can be proved to be
superior to any other, not even random guessing

� Ugly duckling theorem
• if we make no prior assumptions on the nature of the

problem, no feature representation should be preferred
to any other

� Minimum description length principle
• prefer low complexity solutions. True only asymptotically,

but valid in practice

� Occam’s razor
• avoid overfitting
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Supervised
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� release assumption on class independence

� learn a mixture of distributions

� the parametric solution is formally similar, but
different in practice



Model based clustering)
a

� A maximum likelihood solution is the Expectation
Maximisation algorithm

� Problem with missing data (class membership
∀xk ∈ D)

� Solution:
• assume the missing data is known

• compute and maximise likelihood

• estimate the new best guess for the missing data

• iterate

� guaranteed to find ML solution with
marginalised missing data



Heuristic methods)
a

� k-means clustering
• use Euclidean distance as similarity measure

• define k centroids

• assign data points to the nearest centroid

• recompute centroids

• iterate

� Properties
• is equivalent to Model Based Clustering with equal and

spherical covariances



Heuristic methods (cont.))
a

� hierarchical clustering
• start with one cluster per data point

• iteratively merge most similar clusters

• single linkage, complete linkage, average linkage, ...
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Number of clusters)
a

� what if the number of clusters is not known?

� Large number of heuristic methods
• measure the within and across cluster spread



Number of clusters)
a

� what if the number of clusters is not known?

� Large number of heuristic methods
• measure the within and across cluster spread

� Bayes Information Criterion
• model fit to the data: likelihood

• model complexity in number of parameters (minimum
description length principle)

• number of data points available for parameter estimation



Outline)
a

� What is learning?

� Parametric methods

� Non-parametric methods

� Stochastic methods

� Non-metric methods (skip)

� Universal principles

� Unsupervised learning

� Examples



Examples)
a

� Synface: map acoustic to visual information in
speech

� Accent analysis with hierarchical agglomerative
clustering

� Mille, model first language learning with Model
Based Clustering



Synface)
a

� idea: use a synthesized talking face derived from
speech as a hearing aid for users of voice channels

� problem: extract (phonetic) information from the
speech signal with very low latencies (∼ 50ms)

� it is a regression problem

� ...but, solved as a classification problem
• map acoustic signal to visemes

• use rules to generate the lip movements



Synface: methods)
a

� Recurrent neural network

HIDDEN LAYER

OUTPUT LAYER

OUTPUT

INPUT

INPUT LAYER

� Hidden Markov models



Accent clustering)
a

� aim: analysis of regional pronunciation variation
on large data sets (∼5000 speakers)

� how? Automate part of the process with data
mining techniques

phonemej segmenti

phonemej segmenti

accent1

accentA

speech database

accent dependent
model set

accent dependent
model of



Accent clustering: distance measure)
a

� Analyse differences between groups by comparing
distributions
• metric based on Bhattacharyya distance

Dbhatt(Θ1, Θ2) =

II︷ ︸︸ ︷
1

8
(M2 − M1)

T

[
Σ1 + Σ2

2

]−1

(M2 − M1)︸ ︷︷ ︸
I

+
1

2
ln

∣∣∣Σ1+Σ2
2

∣∣∣√
|Σ1||Σ2|︸ ︷︷ ︸
III

IIIIII



Accent clustering (cont.))
a

phonemej

measure

distance

model set

0
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15

20

di
st

an
ce



Mille)
a

� Background: infants have no innate linguistic
knowledge

� Aim (long term): mathematical modelling of the
learning process
• acoustic features classification

• time integration into meaningful sequences

� Aim (so far): spectral features classification
• unsupervised

• incremental



Mille: Algorithm)
a

1. start with a MCLUST model

2. get new data

3. adjust old model to new data

4. divide new data into well and poorly
modelled points

5. try a more complex model, if better BIC
set as best and go back to 4

6. set the current best model and go back to
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End)
a

Thank you!


