Crash Course in Speech Signal Processing and Recognition

Giampiero Salvi

KTH CSC TMH giampi@kth.se UTL IST ISR gsalvi@isr.ist.utl.pt

Vislab, Mar. 2007

Outline

Models of Speech Production

Vowel-like sounds Source/Filter Model, General Case

Acoustic Features

Linear Prediction Analysis (LPA) Mel Frequency Cepstral Coefficients (MFCC) Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech Recognition (ASR) Definition

Three problems Warnings

CONTACT Challenges

Outline

Models of Speech Production

Vowel-like sounds Source/Filter Model, General Case

Acoustic Features

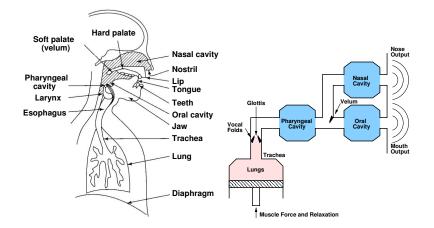
Linear Prediction Analysis (LPA) Mel Frequency Cepstral Coefficients (MFCC) Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech Recognition (ASR)

Definition Three problems Warnings

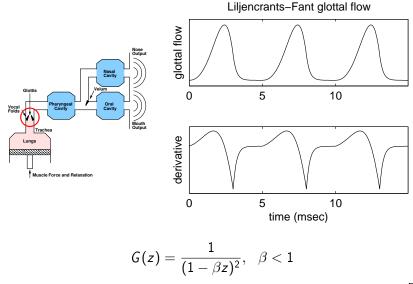
CONTACT Challenges

Physiology



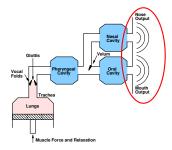
・ロト ・ 理ト ・ モト ・ モト

Glottal Flow



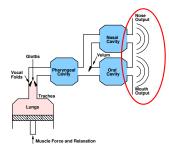
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Radiation form the Lips/Nose



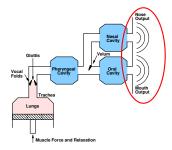
Problem of radiation at the lips plus diffraction about the head too complicated.

Radiation form the Lips/Nose

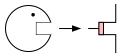


Approx. with a piston in a rigid sphere: solved but not in closed form

Radiation form the Lips/Nose

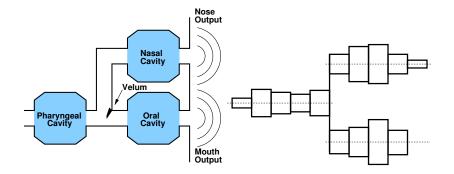


2nd approx: piston in an infinite wall



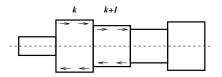
 $R(z) \approx 1 - \alpha z^{-1}$

Tube Model of the Vocal Tract



・ロト ・ 理ト ・ モト ・ モト

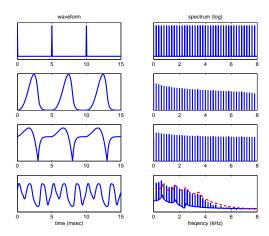
Tube Model (cntd.)

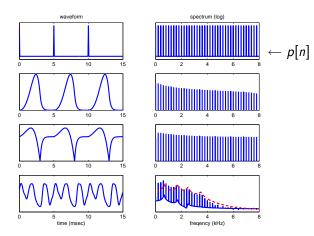


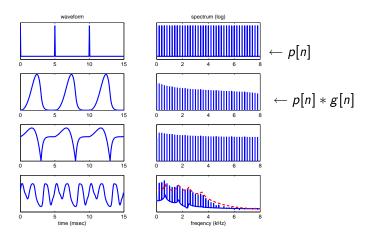
- assume planar wave propagation and lossless tubes
- solve pressure p(x, t) and velocity u(x, t) in each tube according to wave equation
- impose continuity of pressure and velocity at the junctions
- \Rightarrow all-pole transfer function (N = number of tubes)

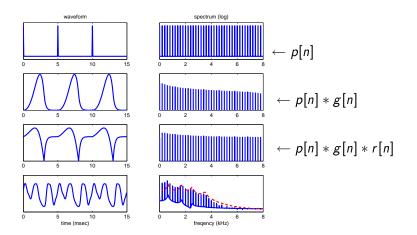
$$V(z) = \frac{Az^{-N/2}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

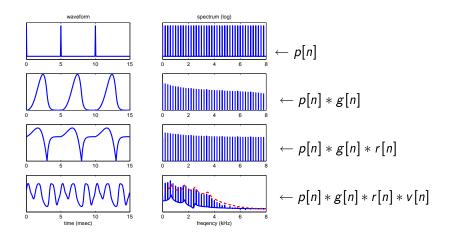
(日) (四) (日) (日)



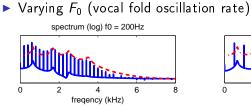








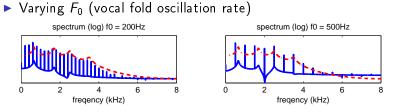
F_0 and Formants



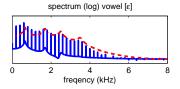
spectrum (log) f0 = 500Hz 0 2 4 6 8 freqency (kHz)

・ロト ・個ト ・モト ・モト

F_0 and Formants



Varying Formants (vocal tract shape)



spectrum (log) vowel [u]

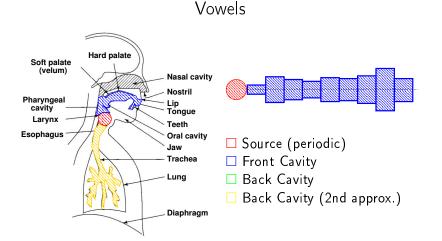
4

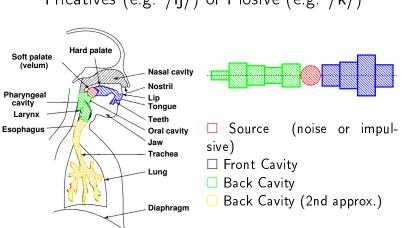
fregency (kHz)

6

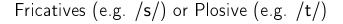
8

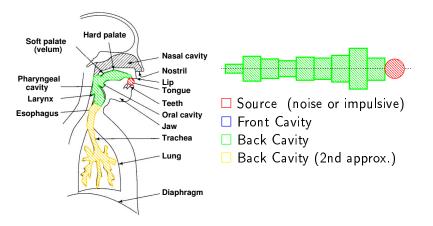
2



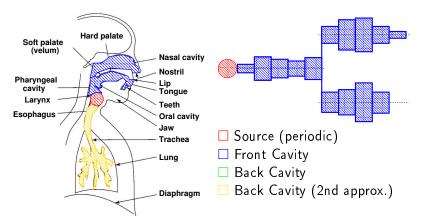


Fricatives (e.g. $/\mathfrak{f}/$) or Plosive (e.g. /k/)



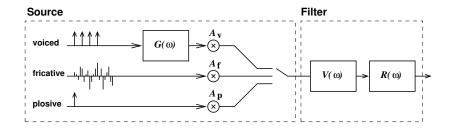


Nasalised Vowels



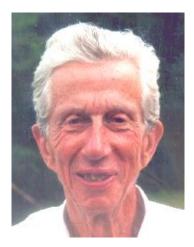
(日) (四) (日) (日)

Complete Source/Filter Model



イロト イポト イヨト イヨト

Gunnar Fant



▲□▶ ▲圖▶ ▲国▶ ▲国≯

Outline

Models of Speech Production

Vowel-like sounds Source/Filter Model, General Case

Acoustic Features

Linear Prediction Analysis (LPA) Mel Frequency Cepstral Coefficients (MFCC) Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech Recognition (ASR)

Definition Three problems Warnings

CONTACT Challenges

Linear Prediction Coefficients (LPC)

► assume all-pole model:

$$H(z) = \frac{S(z)}{U_g(z)} = AG(z)V(z)R(z) \triangleq \frac{A}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$

Linear Prediction Coefficients (LPC)

assume all-pole model:

$$H(z) = \frac{S(z)}{U_g(z)} = AG(z)V(z)R(z) \triangleq \frac{A}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$

▶ the output signal s[n] can be expressed as the sum of the input u_g[n] and a number of previous samples a_ks[n − k]:

$$s[n] = \sum_{k=1}^{p} a_k s[n-k] + A u_g[n]$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Linear Prediction Coefficients (LPC)

assume all-pole model:

$$H(z) = \frac{S(z)}{U_g(z)} = AG(z)V(z)R(z) \triangleq \frac{A}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$

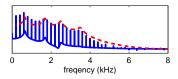
▶ the output signal s[n] can be expressed as the sum of the input u_g[n] and a number of previous samples a_ks[n − k]:

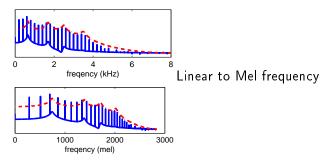
$$s[n] = \sum_{k=1}^{p} a_k s[n-k] + A u_g[n]$$

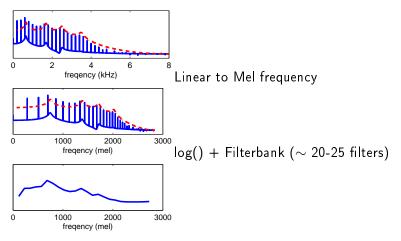
• given a linear predictor α_k of a_k , minimise the error:

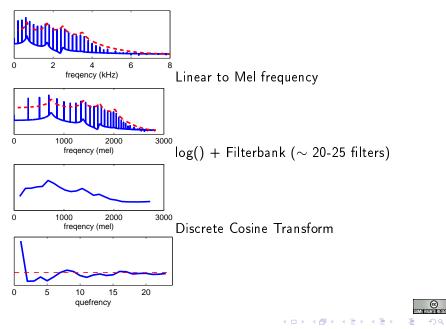
$$e[n] = s[n] - \tilde{s}[n] = s[n] - \sum_{k=1}^{p} \alpha_k s[n-k]$$

(日) (四) (三) (三) (三)









$\mathsf{MFCC}\;(\mathsf{cntd.})$

Rationale

▶ signals combined in a convolutive way: a[n] * b[n] * c[n]

Rationale

- ▶ signals combined in a convolutive way: a[n] * b[n] * c[n]
- in the spectral domain: A(z)B(z)C(z)

Rationale

- ▶ signals combined in a convolutive way: a[n] * b[n] * c[n]
- in the spectral domain: A(z)B(z)C(z)
- ► taking the log: log(A(z)) + log(B(z)) + log(C(z))

Rationale

- ▶ signals combined in a convolutive way: a[n] * b[n] * c[n]
- in the spectral domain: A(z)B(z)C(z)
- ► taking the log: log(A(z)) + log(B(z)) + log(C(z))
- to analise the different contribution perfor Fourier transform (DCT if not interested in phase information).

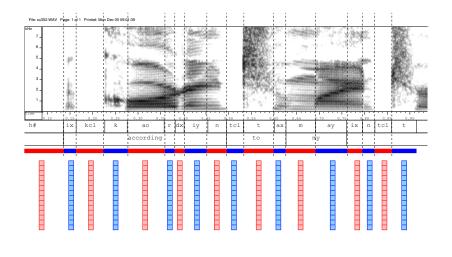
Rationale

- ▶ signals combined in a convolutive way: a[n] * b[n] * c[n]
- in the spectral domain: A(z)B(z)C(z)
- ► taking the log: log(A(z)) + log(B(z)) + log(C(z))
- to analise the different contribution perfor Fourier transform (DCT if not interested in phase information).

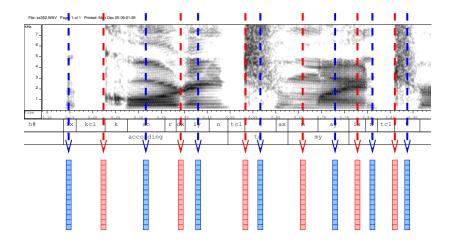
Advantages

- fairly uncorrelated coefficients (simpler statistical models)
- do not assume all-pole model

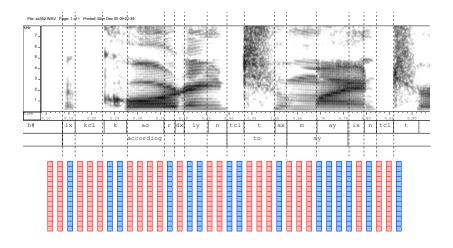
Segment-Based Processing



Landmark-Based Processing



Frame-Based Processing



Outline

Models of Speech Production

Vowel-like sounds Source/Filter Model, General Case

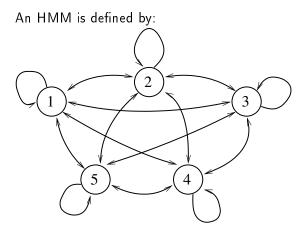
Acoustic Features

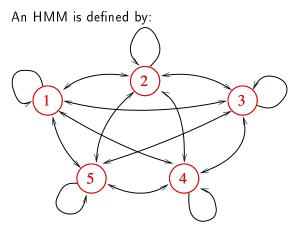
Linear Prediction Analysis (LPA) Mel Frequency Cepstral Coefficients (MFCC) Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech Recognition (ASR)

Definition Three problems Warnings

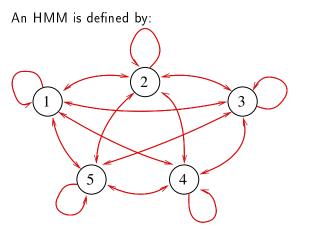
CONTACT Challenges





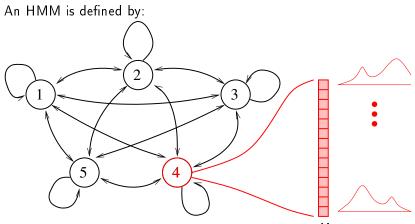
a set of N reachable states $S = \{s_1, s_2, ..., s_N\}$

・ロト ・西ト ・ヨト ・ヨト



a state transition probability distribution $A = \{a_{ij}\}$ where

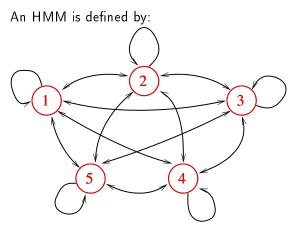
$$a_{ij} = Prob\{x_{t+1} = s_j | x_t = s_i\}$$



the probability distribution of an observation $\mathbf{o}_t \in \mathbb{R}^M$ given the state s_j ,

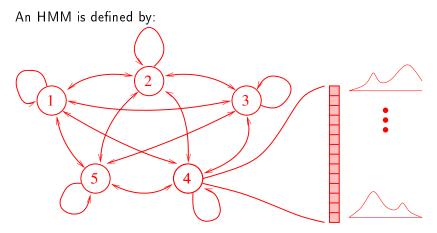
$$b_j(\mathbf{o}_t) = P(\mathbf{o}_t | x_t = s_j)$$

・ロト ・四ト ・ヨト ・ヨト



the initial state distribution $\pi = \{\pi_i\}$ where

$$\pi_i = Prob\{x_1 = s_i\}, \forall i \in [1, N]$$

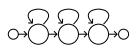


 $\lambda = \{S, \mathbb{R}^M, \pi, A, B\}$

・ロト ・個ト ・モト ・モト

Example 1: Isolated Word Recognition

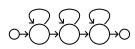
each phoneme is modelled by a three-state left-to-right HMM:



Ν

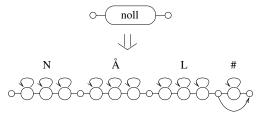
Example 1: Isolated Word Recognition

each phoneme is modelled by a three-state left-to-right HMM:



N

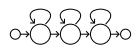
each word is modelled as a sequence of phonemes:



(日) (同) (日) (日)

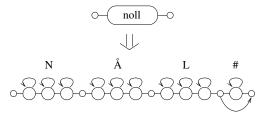
Example 1: Isolated Word Recognition

each phoneme is modelled by a three-state left-to-right HMM:



N

each word is modelled as a sequence of phonemes:



 there are two words in the vocabulary: "noll" (zero) and "ett" (one).

(日) (四) (日) (日)

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing just one word, decide if the spoken work was "noll" or "ett".

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing just one word, decide if the spoken work was "noll" or "ett".

Solution: compute the likelihood of the observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$ given the model: $P(\mathbf{O}|\lambda_i)$ for each model (word) and select arg max_i $P(\mathbf{O}|\lambda_i)$.

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing just one word, decide if the spoken work was "noll" or "ett".

Solution: compute the likelihood of the observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$ given the model: $P(\mathbf{O}|\lambda_i)$ for each model (word) and select arg max_i $P(\mathbf{O}|\lambda_i)$.

Problem: Summing the log likelihood over the possible paths is not feasible.

- Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing just one word, decide if the spoken work was "noll" or "ett".
- Solution: compute the likelihood of the observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$ given the model: $P(\mathbf{O}|\lambda_i)$ for each model (word) and select arg max_i $P(\mathbf{O}|\lambda_i)$.
- Problem: Summing the log likelihood over the possible paths is not feasible.
- Solution: Forward-Backward algorithm

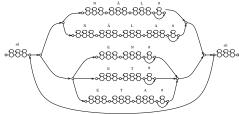
$$\alpha_t(i) = \operatorname{Prob}(\mathbf{o}_1, \mathbf{o}_2, ..., \mathbf{o}_t, x_t = s_i | \lambda)$$

$$\beta_t(i) = \operatorname{Prob}(\mathbf{o}_{t+1}, \mathbf{o}_{t+2}, ..., \mathbf{o}_T | x_t = s_i; \lambda)$$

・ロト ・ 日 ・ ・ 日 ト ・ 日 ト

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing a sequence of "noll" or "ett", reconstruct the sequence.

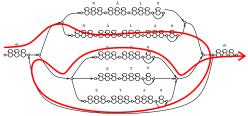
Solution (1): build an HMM describing the possible sequence of words:



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing a sequence of "noll" or "ett", reconstruct the sequence.

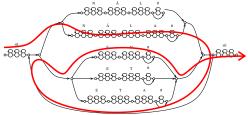
Solution (1): build an HMM describing the possible sequence of words:



Solution (2): find the best path in the full model, given O

Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing a sequence of "noll" or "ett", reconstruct the sequence.

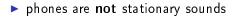
Solution (1): build an HMM describing the possible sequence of words:



Solution (2): find the best path in the full model, given **O** Implementation: Viterbi algorithm

- Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing a **known** sequence of "noll" or "ett", find the best values of $\lambda_i = \{\pi_i, A_i, B_i\}$.
 - Note: the association between HMM states and time steps is not known

- Problem: given an observation sequence $\mathbf{O} = \{\mathbf{o}_1, \dots, \mathbf{o}_T\}$, containing a **known** sequence of "noll" or "ett", find the best values of $\lambda_i = \{\pi_i, A_i, B_i\}$.
 - Note: the association between HMM states and time steps is not known
- Solution: Baum-Welsh Algorithm (instance of the Expectation Maximisation algorithm).



- phones are not stationary sounds
- phones are strongly affected by context

- phones are not stationary sounds
- phones are strongly affected by context
- difference between phonemes (lexicon) and phones (sounds)

- phones are not stationary sounds
- phones are strongly affected by context
- difference between phonemes (lexicon) and phones (sounds)
- assimilation, co-articulation, reduction...

- phones are not stationary sounds
- phones are strongly affected by context
- difference between phonemes (lexicon) and phones (sounds)
- assimilation, co-articulation, reduction...
- spontaneous speech (!)

Outline

Models of Speech Production

Vowel-like sounds Source/Filter Model, General Case

Acoustic Features

Linear Prediction Analysis (LPA) Mel Frequency Cepstral Coefficients (MFCC) Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech Recognition (ASR)

Definition Three problems Warnings

CONTACT Challenges

▶ the phonemes (speech categories) are not known in advance

- ▶ the phonemes (speech categories) are not known in advance
- the words are not given

- ▶ the phonemes (speech categories) are not known in advance
- the words are not given
- infer phonemes and words from experience (unsupervised/reinforcement learning)

- ▶ the phonemes (speech categories) are not known in advance
- the words are not given
- infer phonemes and words from experience (unsupervised/reinforcement learning)
- build associations between sounds (words) and images (objects) by interacting with the environment.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- ▶ the phonemes (speech categories) are not known in advance
- the words are not given
- infer phonemes and words from experience (unsupervised/reinforcement learning)
- build associations between sounds (words) and images (objects) by interacting with the environment.
- more next time!

