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Phoneme recognition with deep vs
cortex-inspired architectures

Joint work with CB:

I Pawel Herman

I Tin Franovic [3][4]

I Nizar Gandy Assaf Layouss [2]

[3] T. Franovic. “Exploratory Multivariate Search for Spectro-Temporal Associations in Speech Data Using a
Biomimetic Framework”. MA thesis. KTH, CSC, 2012

[4] T. Franovic, P. Herman, G. Salvi, S. Benjaminsson, and A. Lansner. “Cortex-inspired network architecture for
large-scale temporal information processing”. In: Frontiers in neuroinformatics. Vol. 7. 2013

[2] N. G. Assaf Layouss. “A critical examination of deep learning approaches to automated speech recognition”.
MA thesis. KTH, CSC, 2013
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Goal: Compare speech representations
learned by:

Deep Neural
Networks [6]

and Cortex-inspired
architecture

[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath,
and B. Kingsbury. “Deep neural networks for acoustic modeling in speech recognition”. In: IEEE Signal
Processing Magazine 29.6 (2012), pp. 82–97
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The DIVA model [5]

SomatosensoryStateMap
(Inf.Parietal Cortex)
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[5] F. H. Guenther, S. S. Ghosh, and J. A. Tourville. “Neural Modeling and Imaging of the Cortical Interactions
Underlying Syllable Production”. In: Brain and Language 96 (2006), pp. 280–301
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Imitation Learning: voice mismatch
Adult vocal tract
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H=hard palate, S=soft palate, E=epiglottis,
G=glottis, T=tongue, J=jaw, L=lips
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Imitation Learning: voice mismatch [1]

Adult Manifold Infant Manifold

Feature space Feature space
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Learning by imitation with Self Organizing Maps

[1] G. Ananthakrishnan and G. Salvi. “Using Imitation to learn Infant-Adult Acoustic Mappings”. In: Proc. of
Interspeech. Firenze, Italy, 2011
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Learning words

[7]

[7] F. Lacerda, E. Klintfors, L. Gustavsson, L. Lagerkvist, E. Marklund, and U. Sundberg. “Ecological Theory of
Language Acquisition”. In: Forth International Workshop an Epigenetic Robotics. 2004, pp. 147–148
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Illustration (10 “words”)
MOIWXMOPOQSMNVQVSEQASDPOEMOASF
MOPOQSMOPOQSMOASFANMO
ANMOMNMXSONMNMOPOQS
ANMOANMOMOPOQSMOASFZSWOS
MOASFANMOANMOMOPOQS
MOASFMOPOQSMNVQVSEMNVQVSE
NSKDFEMXSONMOASFMOPOQSNSKDFE
MNVQVSEMNMXSONNSKDFEMXSON
MNZSWOSMOIWXMNVQVSE
MXSONNSKDFENSKDFEMOASF
MNMXSONQASDPOEANMOMNVQVSEMNVQVSE
MOASFANMOMXSONQASDPOEANMO
NSKDFEMOASFMXSONMOPOQS
MOIWXMOIWXMOASFZSWOSNSKDFE
ANMOANMOMOPOQSMXSONNSKDFE
QASDPOEZSWOSMOASFMNVQVSE
MNMNQASDPOE
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Illustration (10 “words”)
MOIWX MOPOQS MNVQVSE QASDPOE MOASF
MOPOQS MOPOQS MOASF ANMO
ANMO MN MXSON MN MOPOQS
ANMO ANMO MOPOQS MOASF ZSWOS
MOASF ANMO ANMO MOPOQS
MOASF MOPOQS MNVQVSE MNVQVSE
NSKDFE MXSON MOASF MOPOQS NSKDFE
MNVQVSE MN MXSON NSKDFE MXSON
MN ZSWOS MOIWX MNVQVSE
MXSON NSKDFE NSKDFE MOASF
MN MXSON QASDPOE ANMO MNVQVSE MNVQVSE
MOASF ANMO MXSON QASDPOE ANMO
NSKDFE MOASF MXSON MOPOQS
MOIWX MOIWX MOASF ZSWOS NSKDFE
ANMO ANMO MOPOQS MXSON NSKDFE
QASDPOE ZSWOS MOASF MNVQVSE
MN MN QASDPOE
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Our solution

I Based on non-parametric Bayesian methods
[10][9]

I not biologically related

I it would be interesting to find similar
processing capabilities in the brain

[10] N. Vanhainen and G. Salvi. “Word Discovery with Beta Process Factor Analysis”. In: Proc. of Interspeech.
Portland, OR, USA, Sept. 2012

[9] N. Vanhainen and G. Salvi. “Pattern Discovery in Continuous Speech Using Block Diagonal Infinite HMM”. In:
Proc. of IEEE ICASSP. submitted
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Words and affordances [8]

[8] G. Salvi, L. Montesano, A. Bernardino, and J. Santos-Victor. “Language bootstrapping: Learning word meanings
from perception-action association”. In: IEEE Trans. Syst., Man, Cybern. B 42.3 (June 2012), pp. 660–671
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Words and affordances [8]

graspsgrasping

he
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falling

taps

falls

sliding

rises

rolling

slides

ballsphere

is

has

just
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tappingsquarebox

but

cube

stilland movesinert

poked pokingpushed pushingpushes tappedpokestouched touching touches

therobotAction ColorShapeSize

Velocity

OH VelHandVel

Contact

the meaning of words is grounded into the robots
action/perception world

[8] G. Salvi, L. Montesano, A. Bernardino, and J. Santos-Victor. “Language bootstrapping: Learning word meanings
from perception-action association”. In: IEEE Trans. Syst., Man, Cybern. B 42.3 (June 2012), pp. 660–671
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Machine Learning and Biological Systems
Successful because:

I powerful tool to solve complex problems

I can solve aspects of the problems that are not
entirely understood (“black box”)

I not necessarily similar to human learning

20 / 23



My Interest in Machine Learning
I there is much to be learned about biological

systems from ML modelling
I inspiration from biological systems can be very

beneficial to ML
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Conclusions

We try to model speech related cognitive abilities

Technological goal:

creating talking machines

Scientific goal:

understanding humans (human brain?) better
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