
2E1395 - Pattern Recognition
Solutions to Introduction to Pattern Recognition, Chapter 2:

Bayesian pattern classification

Preface

This document1 is a solution manual for selected exercises from “Introduction to Pattern Recog-
nition” by Arne Leijon. The notation followed in the text book will be fully respected here. A
short review of the issue discussed in the corresponding chapter of the text book is given here
as a reference. For a complete proof of these results and for the problem text refer to the text
book.

problem definition and optimization

This chapter of the text book generalizes the problem of classification introduced in the previous
chapter. Extensions are:

• more than two categories are considered

• more than one signal features can be employed

• the performance criterion is generalized

The new scheme of the classifier is depicted in fig. 1 taken from the text book. All the elements
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Figure 1. General signal classification

1This work comes under the terms of the Creative Commons © BY-SA 2.0 license

http://creativecommons.org/licenses/by-sa/2.0/
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of this classification system are described statistically: the signal state can take any value from
the set {j = 1 . . .Ms} with a priori probability PS(j). The observation feature vector x is the
outcome of a random vector X whose distribution depends on the state S and can be written as
fX|S(x|j) for each of the Ms possible states. The decision rule D(x) makes use of the information
given by the a posteriori probability PS|X(j|x), obtained with the Bayes Rule as:

PS|X(j|x) =
fX|S(x|j)PS(j)∑Ms

j=1 fX|S(x|j)PS(j)

to perform some actions for any incoming observation vector x. This decision mechanism is the
result of an optimization process aimed at fulfilling a performance criterion. This criterion is
defined by a cost function L(D = i , S = j) that describes the loss the system is subjected to
when it takes the decision D = i, being the source in the state S = j. Since all decisions are
taken with regard to the observation vector x, and this is only statistically related to the “true”
state S of the source, we can predict (statistically) a Conditional Expected Loss or Conditional
Risk :

R(D = i|x) =
Ms∑
j=1

L(D = i , S = j)PS|X(j|x)

The performance criterion is hence the one that leads to the minimum risk and is called Bayes
Minimum-Risk decision rule:

D(x) = arg min
i

R(D = i|x)

The last rule is proved to minimize the total expected loss Q = E [R(D(X)|X)] over all possible
outcomes of the random vector X

Special cases

• if the decision is to guess the state of the source, and the loss function is

L(D = i , S = j) =
{

0, if i = j
1, otherwise

then the optimal decision rule introduced before can be simplified to the Maximum a
Posteriori decision rule (MAP):

D(x) = arg max
i

fX|S(x|i)PS(i)

• if the previous conditions are verified and the a priori probabilities are all the same (PS(j) =
1

Ms
, for all j), then the resulting decision rule is called Maximum Likelihood Decision Rule

(ML):
D(x) = arg max

i
fX|S(x|i)

In general any decision rule can be expressed in the form:

D(x) = arg max
i=1...Md

gi(x)

and the gi(x) are called discriminant functions.
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Exercise 2.1

We observe two sequences and we know that one is generated by a human being and the other
by a random-number generator of a computer.

x = {1 2 3 4 5; 2 4 5 1 3}

There are two possible states of the source:

S = {1, 2} = {[h, c], [c, h]}

Where c stands for computer and h for human being. The a priori probability of the states are
equally distributed:

PS(1) = PS(2) =
1
2

To continue the solution of this problem we have to formulate some assumptions:

• in the absence of other information it is reasonable to assume that the machine gener-
ates uniformly distributed numbers, and that any sequence of the kind considered in this
example has the same probability of being generated:

P ({1 2 3 4 5}|c) = P ({2 4 5 1 3}|c) = q

• common sense experience (and perhaps psychological arguments) would suggest that the
probability that a human being generates the sequence {1 2 3 4 5} is higher than that of
generating the sequence {2 4 5 1 3}. In symbols:

P ({1 2 3 4 5}|h) = p1; P ({2 4 5 1 3}|h) = p2; p1 > p2

Combining the events, and assuming that they are independent we can write:

PX|S(x|1) = P ({1 2 3 4 5; 2 4 5 1 3} |[h, c]) = p1q

PX|S(x|2) = P ({1 2 3 4 5; 2 4 5 1 3} |[c, h]) = qp2

Applying Bayes’ rule:

PS|X(j|x) =
PS(j)PX|S(x|j)

PS(1)PX|S(x|1) + PS(2)PX|S(x|2)

=
1
2qpj

1
2q(p1 + p2)

=
pj

p1 + p2

that can be read as the probability of the state j given the observation x. The optimal MAP
guess about the source is equivalent to the maximum likelihood optimal guess:

Sopt = arg max
j

PS|X(j|x) = arg max
j

pj

p1 + p2
= arg max

j
pj

According to our assumptions on the values of p1 and p2 the optimal guess is S = 1: the human
being has most probably generated the sequence {1 2 3 4 5} while the machine the sequence
{2 4 5 1 3}.
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Exercise 2.2

a) The minimum error probability criterion is achieved by considering the loss function:

L(D = i , S = j) =
{

1, i 6= j
0, i = j

Since the a priori probabilities of the state are uniformly distributed, we are in the Maximum
likelihood case: the decision rule is

D(x) = arg max
i

fX|S(x|i)

where
fX|S(x|i) =

1√
2πσ

e−
(x−µi)

2

2σ2

To simplify the decision rule I chose to maximize a monotone increasing function of the argument
instead of the argument itself, for example taking the logarithm:

gi(x) ∝ ln fX|S(x|i) ∝ −1
2

(x− µi)2

σ2
∝ −(x− µi)2

where we simplify all the constant terms that don’t affect the maximization process. Since the
decision mechanism checks whether g1(x) is greater or smaller than g2(x), which are monotone
functions of the argument x, this can be implemented by a simple threshold xt with g1(xt) =
g2(xt). Substituting:

(xt − µ1)2 = (xt − µ2)2 ⇐⇒

xt =
µ1 + µ2

2
This result was predictable when considering that two Gaussian distributions with the same
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variance intersect in the median point between their mean values, and that (as pointed out more
that once in chapter 1) the optimal threshold with regard to the minimum error probability
corresponds to this intersection point.

b) As previously explained (see chapter 1 and fig. 2), if we assume µ1 > µ2 as in this case, the
total probability of error is given by:

PE = PS(1)
∫ xt

−∞
fX|S(x|1)dx + PS(2)

∫ +∞

xt

fX|S(x|2)dx

Substituting the given values, and given the symmetry:

PE =
1
2

∫ 0

−∞
N(2, 1)dx +

1
2

∫ +∞

0
N(−2, 1)dx

= 2
1
2

∫ 0

−∞
N(2, 1)dx = [1− Φ(2)] = 0.023

For the numerical result refer to BETA2 pag. 405.

Exercise 2.3

We have a signal source with N possible outcomes j = 1, N , governed by the known probabilities
PS(j). There are N +1 possible decisions (D = j; j = 1, N if the state was S = j and D = N +1
“no decision”). The cost function is given in the exercise text as:

L(D= i, S=j) =


0, i = j j = 1...N
r, i = N + 1, j = 1...N
c, otherwise

that sets the cost to 0 if the decision was correct, to c if it was taken, but incorrect and to r if
it was rejected.

a) The expected cost is by definition R(D= i|x) =
∑

j L(D= i , S=j)PS|X(j|x). To compute this
we consider two different cases:

1) the decision is taken (i 6= N + 1);

R(D= i|x) = c
∑
j 6=i

PS|X(j|x) = c(1− PS|X(i|x))

The last equality is true because
∑

j PS|X(j|x) = 1. In this case we know that the minimum
expected cost is achieved with the following decision function:

D(x) = arg max
i

[cPS|X(i|x)]

2) the decision is not taken (i = N + 1).

R(D=N + 1|x) = r

N∑
j=1

PS|X(j|x) = r

and, since i = N + 1,
D(x) = “no decision”

2Beta, mathematics handbook, Studentlitteratur
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The last thing to check is which is the best choice between the first and second case for each x.
The decision will not be rejected if ∀i 6= N + 1:

R(D= i|x) ≤ R(D=N + 1|x) ⇐⇒

c[1− PS|X(i|x)] ≤ r ⇐⇒

PS|X(i|x) ≥ 1− r

c
, ∀i

This way we have proved that the decision function D(x) proposed in the example is optimal.

b) If r = 0 then rejecting a decision is free of cost, if c → ∞ then a wrong decision would be
enormously costly. In both cases it’s never worth risking an error ⇒ d(x) will always reject the
decision. From a mathematical point of view, the condition to accept a decision (no rejection)
becomes

PS|X(i|x) ≥ 1

that is never verified unless the observation x can only be generated by the source state S = i
(the equality holds), and there is no doubt on the decision to take.

c) If r > c, rejecting a decision will always be more expensive than trying one ⇒ no decision
will be rejected, from the mathematical point of view, the condition is that the probability of
the state given the observation be grater than a negative number, which is always verified by
probabilities:

PS|X(i|x) ≥ −ε; ε > 0

d) If i = 1, N then the discriminant function correspond to the one in point a) which we know to
be optimal. We have to prove that the choice of the decision N + 1 leads to the same condition
as in point a). Decision N + 1 is chosen (arg max(.) = N + 1) if and only if ∀i = 1, N ,

gN+1(x) = (1− r

c
)

N∑
j=1

fX|S(x|j)PS(j) > gi(x) = fX|S(x|i)PS(i) ⇐⇒

fX|S(x|i)PS(i)∑N
j=1 fX|S(x|j)PS(j)

< 1− r

c
, ∀i = 1, N

applying Bayes rule,
PS|X(i|x) < 1− r

c
, ∀i = 1, N

as we wanted to prove.

e) The three functions gi(x) are:

g1(x) = PS(1)fX|S(x|1) =
1
2

1√
2π

e−
(x−1)2

2

g2(x) = PS(2)fX|S(x|2) =
1
2

1√
2π

e−
(x+1)2

2

g3(x) = (1− r

c
)[g1(x) + g2(x)] =

3
4
[g1(x) + g2(x)]

These functions are plotted in fig. 3.
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Figure 3.

f) The decision D(x) = 3 is taken if and only if g3(x) > max [g1(x), g2(x)], which is verified in
the region indicated in the figure by a u sign. The total probability of rejection is

PD(3) = PX|S(−x0 < x < x0|1)PS(1) + PX|S(−x0 < x < x0|2)PS(2)

=
1
2

∫ x0

−x0

N(1, 1)dx +
1
2

∫ x0

−x0

N(−1, 1)dx

Since the problem is fully symmetric the two terms are equal and

PD(3) =
∫ x0

−x0

N(−1, 1)dx

= Φ(x0 + 1)− Φ(−x0 + 1)

Last thing to do is to find the value of x0 i.e. the value at which g3(x) = g1(x):

g3(x) = g1(x) ⇐⇒

(1− r

c
)[

1
2
N(1, 1) +

1
2
N(−1, 1)] =

1
2
N(1, 1)

(1− r

c
)
1
2

1√
2π

e−
x2+1

2 [e−x + ex] =
1
2

1√
2π

e−
x2+1

2 ex

e2x =
c− r

r
⇐⇒ x = log

√
c− r

r

With the values specified by the problem x0 = ln
√

3. The total probability of rejection is then

PR = PD(3) = Φ(ln
√

3 + 1)− Φ(− ln
√

3 + 1)
= Φ(1.549)− Φ(0.45) ' 0.27
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Figure 4. Rejection is never considered

Where the function Φ is tabled in BETA3 pag. 405.
The decision g3 (rejection) is never chosen if g3(x) < max [g1(x), g2(x)], ∀x ∈ R. This is

guaranteed if g3(0) < g1(0) as is clear looking at fig 4. Since g3(0) = (1 − r
c )[g1(0) + g2(0)] =

2 (1− r
c ) g1(0) for the symmetry, then rejection is never considered if

r >
c

2

Intersection of Two Gaussian Distributions The problem of finding for which x, PXS(x, 0) <>
PXS(x, 1) is common in the exercises seen so far. This corresponds to finding where PS(0)PX|S(x, 0) <>
PS(1)PX|S(x, 1). In case of Gaussian distributions N(µi, σi) if we set pi = PS(i) with i = 0, 1
the intersection points are:

x1,2 =
σ2

1µ0 − σ2
0µ1 ± σ0σ1

√
(µ0 − µ1)2 + 2(σ2

1 − σ2
0) ln

(
p0σ1

p1σ0

)
σ2

1 − σ2
0

In the special case in which σ0 = σ1 = σ that is the most interesting in our case (same noise
that affects both observations), there is at most one finite solution, and a single threshold on the
value of x is a solution to the problem described before:

x1 =
µ1 + µ0

2
+

σ2

(µ0 − µ1)
ln

(
p1

p0

)
If the probability of the source is equal (p0 = p1 = 1/2) then

x1 =
µ1 + µ0

2
3Beta, mathematics handbook, Studentlitteratur
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... or if the means are opposite to each other (µ0 = −µ and µ1 = µ)

x1 =
σ2

2µ
ln

(
p1

p0

)
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