
2E1395 - Pattern Recognition

Solutions to Introduction to Pattern Recognition, Chapter 2 a:

Conditional Probability and Bayes Rule

Exercise 2A1

We can call X the observation (X = i indicates that the program leader has opened doori), and
S the state (S = j indicates that the car is behind doorj). We will �rst reason by intuition and
then prove the solution analytically.
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Figure 1. The TV show scenario

Intuition in this case can lead to a wrong conclusion: the wrong intuitive assumption can be
that the only information brought by opening door2, in the scenario considered in this example
(�g. 1), is that the car is not behind it. This assumption would, as a consequence, suggest that,
after opening door2 the probability of �nding the car behind door1 is the same as the one of
�nding it behind door3, in formulae: PS|X(1|2) = PS|X(3|2) = 1

2 .
To �nd what is wrong in the previous argument we consider a new scenario that is just a

generalization of the one given by the text. The aim of this new argument will be to show that
the choice of door1, made by the player, a�ects the beaviour of the program leader and, as a
consequence the amount of information that he provides opening door2.

We consider this time a large number N of doors (�g. 2). Initially the probability that the
car is behind any door is PS(i) = 1

N (equal probabilities). Then the player selects one door (let's
say door1).

Every time the program leader opens a door he is constrained to not opening either the door
that was selected (door1), nor the door that hides the car. The point of the following argument is
that after N−2 times the program leader opens a door, we are left with only two doors (let's say
door1 and door8, as in �g. 2). Of those, door8 could have been opened every time the program
leader made his choice (unless the car was behind it), while door1 could not be opened in any
case. This should intuitively convince the reader, that not opening door8 for N − 2 times brings
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Figure 2. The generalized TV show scenario

more information about the car being behind it, then not opening door1. In turns, the whole
process should convince the reader (and the player) that the probability of the car being behind
door8 is much higher then that for door1.

We now prove this conclusion analytically.
We go back to �gure 1. According to the scenario, the player has chosen door1. We observe

that:

[I] The door that was chosen by the player cannot be opened by the program leader regardless
of the position of the car:

PX|S(1|i) = 0, ∀i

[II] If the car is behind doori then the program leader cannot open that door:

PX|S(i|i) = 0, ∀ i

[III] The program leader chooses randomly among the doors that are allowed (not chosen by
the player, and not hiding the car). The consequence of this is that the probabilities of
opening a certain door have to be equally distributed among the available doors.

if we use these observations in the three possible cases we obtain:

1) if the car is behind door1 (S = 1)

PX|S(1|1) = 0 [I]

PX|S(2|1) = 1
2 [III]

PX|S(3|1) = 1
2 [III]

2) if the car is behind door2 (S = 2)

PX|S(1|2) = 0 [I]

PX|S(2|2) = 0 [II]

PX|S(3|2) = 1

3) if the car is behind door3 (S = 3)

PX|S(1|3) = 0 [I]

PX|S(2|3) = 1
PX|S(3|3) = 0 [II]

Note that in the �rst case the program leader can open indi�erently the second or third door,
while in the other two cases he is forced to open the only door that doesn't hide the car.
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Applying Bayes rule, we can �nd the probability that the car was behind doori when doorj
is opened:

PS|X(i|j) =
PX|S(j|i)PS(i)

PX(j)
=

PX|S(j|i)PS(i)∑N
h=1 PX|S(j|h)PS(h)

where all the terms in the formula are now known. Substituting in the cases of interest for this
problem:

PS|X(1|2) =
1
2

1
3

1
3

(
1
2 + 0 + 1

) =
1
3

PS|X(3|2) =
11

3
1
3

(
1
2 + 0 + 1

) =
2
3

Showing that after door2 has been opened the player should always decide to change his selection
from door1 to door3 if he wants to maximize the probability to win the car.

Exercise 2A3

Since X and Y are statistically independent, their joint distribution is the product of each
distributions fXY (x, y) = fX(x)fY (y). Knowing fXY it's always possible to deduct fZ(z) where
Z is a function of X and Y .

a) In this case it's not necessary to use the standard method for deriving fZ(z). We know that
a sum of Gaussian variables is still a gaussian variable. We only need to �nd µZ and σZ to
characterize the distribution of Z:

µZ = E[Z] = E[X + Y ] = E[X] + E[Y ] = µX + µY

where the third step uses linearity of the expectation function.

σ2
Z = E[(Z − µZ)2] = E[(X + Y − µX − µY )2]

= E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )]
= σ2

X + σ2
Y + 2E[(X − µX)]E[(Y − µY )]

= σ2
X + σ2

Y

where the fourth step uses independence of X and Y

b) The easiest way to solve this is to note that once the value of X has been determined, this is
not a stochastic variable anymore. Z|X is hence a translation of the variable Y (Z = x1 + Y )
and its distribution is the same as for Y with an alteration of the mean: fZ|X(z|x1) is gaussian
with σZ|X = σY and µZ|X = µY + x1.
c) Same argument as for point b): if Z is �xed then X|Z is a translation of Y (X = z1 − Y ),
and has gaussian distribution with σX|Z = σY and µX|Z = z1 − µY .

Exercise 2A4

By de�nition the conditional probability density function fX|S(x|i) is the distribution of X when
the value of S is known.

a) hence, directly from the text:

fX|S(x, 0) = N(0, 1) and fX|S(x, 1) = N(1, 2)
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b) Since S can assume any of the two values with equal probablility PS(0) = PS(1) = 1/2. We
know that the probability density function fX(x) is the derivate of the cumulative distribution
FX(x) and that the last corresponds to the probability of the event X < x:

FX(x) = P (X < x)

This can be written as the sum of the probabilities of the two incompatilbe events: (X < x)∩(S =
0) and (X < x) ∩ (S = 1), in formulae:

FX(x) = FXS(x, 0) + FXS(x, 1)
= PS(0)FX|S(x|0) + PS(1)FX|S(x|1)

=
1
2
FX|S(x|0) +

1
2
FX|S(x|1)

where for the second passage we have applied Bayes rule. We can now compute the distributions
by di�erentiating both members:

fX(x) =
1
2
fX|S(x|0) +

1
2
fX|S(x|1)

c) applying Bayes:

PS|X(0|0.3) =
PS(0)PX|S(0.3|0)

PX(0.3)
=

PS(0)PX|S(0.3|0)
PS(0)PX|S(0.3|0) + PS(1)PX|S(0.3|1)

=
PX|S(0.3|0)

PX|S(0.3|0) + PX|S(0.3|1)

where we have simpli�ed PS(i) = 1/2, ∀i. Note that, being X a continuous varible, it's always
PX|S(x|i) = 0, ∀x, i. The fraction can be solved as a limit over an interval:

PS|X(0|0.3) = lim
dx→0

fX|S(0.3|0)dx
fX|S(0.3|0)dx+ fX|S(0.3|1)dx

=
fX|S(0.3|0)

fX|S(0.3|0) + fX|S(0.3|1)

Exercise 2A5

Two variables X and S are de�ned with distributions:

X → N(1, 1) =
1√
2π
e−

(x−1)2

2

S → PS(1) = 0.8, PS(2) = 0.2

a) If S = 1 then Z = X and fZ|S(z|1) = fX(z) = N(1, 1)
if S = 2 then Z = 2X which is still a gaussian variable with mean and variance given by:

µZ = E[Z] = E[2X] = 2µX = 2
σ2

Z = E[(Z − µZ)2] = E[(2X − 2µX)2] = 4E[(X − µX)2] = 4σ2
X = 4

and hence fZ|S(z|2) = N(2, 2). Summarizing:

fZ|S(z|i) = N(i, i) =
1√
2πi

e−
(x−i)2

2i2
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b) The unconditioned distribution for the variable Z is given by (look at the previous exercise
for a formal proof):

fZ(z) = PS(1)fZ|S(z|1) + PS(2)fZ|S(z|2)

c) Using Bayes rule,

PS|Z(i|z1) =
PS(1)PZ|S(z1|1)

PZ(z1)
= lim

dx→0

PS(1)fZ|S(z1|1)dx
fZ(z1)dx

=
PS(1)fZ|S(z1|1)

fZ(z1)

d) Again using Bayes:

PX|Z(x|z1) =
PX(x)fZ|X(z1|x)

fZ(z1)

Exercise 2A6

a) By de�nition of the transition matrix, aij is for each t the probability of going to state j at
time t when we were at time t− 1 in state i, that is: PSt|St−1

(j|i). If we set t = 13,

PS13|S12
(k|2) = a2k

That corresponds for each k to the second row in matrix A.

b) Since St forms a �rst-order Markow chain, the conditional probability of state St to the
previous outcomes can be simpli�ed:

PSt|St−1St−2···S1
= PSt|St−1

then in our case:
PS13|S11,S12

(k|1, 2) = PS13|S12
(k|2) = a2k

as in the previous point.

d) This time we know the outcome of S at time t and we want the conditional probability at the
previous time step. Applying Bayes:

PS11|S12
(k|2) =

PS11(k)PS12|S11
(2|k)

PS12(2)

=
PS11(k)PS12|S11

(2|k)∑
k PS11(k)PS12|S11

(2|k)

In principle the unconditioned probabilities PS11(k) that appear in this formula cannot be com-
puted if the prior probability at t = 0 is not given. In this case the problem assumes that the
prior was such that PS11(k) is the same for each k. We can then simplify those terms, obtaining:

PS11|S12
(k|2) =

PS12|S11
(2|k)∑

k PS12|S11
(2|k)

=
ak2∑
k ak2

=


1/9, k = 1
8/9, k = 2
0, k = 3
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Figure 3. State transitions in the Markov chain

d) The problem is best described looking at �gure 3. In the �gure all transitions from S10 = 3
to S12 = 2 are indicated with an arrow to which the transition probability is attached. Dasched
transitions have 0 probability as referring to matrix A. The probability for each path is the
product of transition probabilities along the path. Of the three paths in the �gure, only the one
that goes through S11 = 1 has non zero probability. This also means that, being only one path
possible,

PS11|S10,S12
(k|3, 2) =

{
1 k = 1
0 otherwise

This intuitive solution can be formalized as follows: for simplicity we call A the event S10 = 3,
Bk the event S11 = k, and C the event S12 = 2 (see �gure). We can then write:

PS11|S10,S12
(k|3, 2) = P (Bk|AC)

Applying Bayes rule (with respect to the conditioning event C):

P (Bk|AC) =
P (Bk|A)P (C|ABk)

P (C|A)

Now we note that P (C|ABk) = P (C|Bk) because of the assumption of �rst-order Markov chain
(see also point b). We note also that P (C|A) is the probability of S12 = 2 conditioned to S10 = 3
for any value of S11 and can be hence written as the sum of the product of probabilities along
all possible paths:

P (C|A) =
∑

k

P (Bk|A)P (C|Bk)

Substituting we get the general solution to this problem:

PS11|S10,S12
(k|3, 2) =

PS11|S10
(k|3)PS12|S11

(2|k)∑
k PS11|S10

(k|3)PS12|S11
(2|k)

=
a3kak2∑
k a3kak2

That gives the same numerical solution already discussed.
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