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This document contains solutions to selected problems from Ken Steiglitz’s book: “A Digital
Signal Processing Primer” published by Addison-Wesley. Refer to the book for the problem text.
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1.5

The first reason is that our hearing is able to estimate the position of a sound source. If the
two tuning forks are in different positions with respect of the listener, she might be able to
discriminate between them.

Second, even if the forks are marked as being tuned to the same frequency, there might be
small differences that can generate beats (see section 9 in the book).

Third: even if two objects are tuned to produce the same fundamental frequency, they can
have different timbers depending on their shape/dimensions/material.

1.10

We look for the envelope of the expression

y(t) = a1 cos(ωt) + a2 cos
(
(ω + δ)t

)
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Figure 1. Schematic phasor representation (left) and waveform with envelope (right)
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If we consider the phasor form of the expression 9.2 in the book:

a1e
jωt + a2e

j(ω+δ)t

and we plot it in Figure 1, we see that the envelope is the length of the vector obtained as the
sum of the two terms. Using Pythagoras’ theorem:

E(t) =
√

l1
2 + l2

2 =
√(

a1 + a2 cos(δt)
)2 + a2

2 sin2(δt)

=
√

a1
2 + a2

2 cos2(δt) + a2
2 sin2(δt)︸ ︷︷ ︸

a2
2

+2a1a2 cos(δt) =
√

a1
2 + a2

2 + 2a1a2 cos(δt)

1.11

As can be seen in Figure 1 (right), for t = 0, for example, cos(ωt) = cos(δt) = cos
(
(ω + δ)t

)
= 1,

and

E(0) =
√

a1
2 + a2

2 + 2a1a2 = a1 + a2 = y(0)

proving that, at least in one point the envelope touches the curve.

1.12

The equation we search is obtained by imposing that y(t)−E(t) = 0, or, equivalently, y(t) = E(t):

a1 cos(ωt) + a2 cos
(
(ω + δ)t

)
=

√
a1

2 + a2
2 + 2a1a2 cos(δt)

Taking the square:

a1
2 cos2(ωt) + a2

2 cos2
(
(ω + δ)t

)
+ 2a1a2 cos(ωt) cos

(
(ω + δ)t

)
=

= a1
2 + a2

2 + 2a1a2 cos(δt) (1)

Grouping with respect to a1
2, a2

2 and 2a1a2,

a1
2
[
1− cos2(ωt)

]
+ a2

2
[
1− cos2

(
(ω + δ)t

)]
+

+ 2a1a2

[
cos(δt)− cos(ωt) cos

(
(ω + δ)t

)]
= 0 (2)

Now we recall that:

cos2(α) + sin2(α) = 1 (3)
cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (4)

thus:

1− cos2(ωt) = sin2(ωt)
1− cos2

(
(ω + δ)t

)
= sin2

(
(ω + δ)t

)
cos(ωt) cos

(
(ω + δ)t

)
= cos(δt)− sin(ωt) sin

(
(ω + δ)t

)
The first two are obtained from Equation 3, the last from Equation 4, imposing α = ωt and
β = (ω + δ)t. Substituting into Equation 2 we obtain:

a1
2
[
sin2(ωt)

]
+ a2

2
[
sin2

(
(ω + δ)t

)]
+ 2a1a2

[
sin(ωt) sin

(
(ω + δ)t

)]
= 0
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That is clearly a square:[
a1 sin(ωt) + a2 sin

(
(ω + δ)t

)]2 = 0

That is equal to zero if and only if its argument is zero:

a1 sin(ωt) + a2 sin
(
(ω + δ)t

)
= 0

Note that, this equation is similar but not the same we would obtain by imposing that the first
derivative of y(t) be zero, indicating that the solutions are close, but not coincident with the
maxima of y(t). This equation does not have an analytic solution.

1.13

We want to find the analytical expression for the phase of the function y(t). We can write the
expression using phasors as in equation 9.3 in the book:

ejωt
[
a1 + a2e

jδt
]

Then we recall that the phase of the product of two complex numbers is the sum of the respective
phases:

φ(t) = ∠{ejωt}+ ∠{a1 + a2e
jδt}

The first term is just wt the second can be computed as the arctan of the ratio between the real
and imaginary part of the expression:

φ(t) = ωt + arctan
(

a2 sin(δt)
a1 + a2 cos(δt)

)
The instantaneous frequency is the derivative of this expression with respect to time:

F (t) =
dφ

dt
= ω +

d

dt
arctan f(t) (5)

where we named f(t) the expression in parenthesis. We recall that the derivative of a composite
function g (f(x)) can be obtained as:

d

dt
g (f(x)) = g′ (f(x)) f ′(x)

and that the derivative of arctan(x) is 1
1+x2 . Then,

d

dt
arctan f(t) =

f ′(t)
1 + f2(t)

Now we have to compute f ′(t): we call:

g(t) = a2 sin(δt)
h(t) = a1 + a2 cos(δt)

such that f(t) = g(t)
h(t) . Using the rule of derivative of a multiplication of functions:

f ′(t) =
d(g(t)/h(t))

dt
=

g′(t)h(t)− h′(t)g(t)
h2(t)
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Figure 2. Plot of the solution for ω = 0.3157, a1 = 1, a2 = 0.7 and δ = 0.02. The dashed line is the
average of the istantaneous frequency that is equal to ω

And finally:

f ′(t)
1 + f2(t)

=
g′(t)h(t)−h′(t)g(t)

h2(t)

1 + g2(t)
h2(t)

=
g′(t)h(t)−h′(t)g(t)

h2(t)

h2(t)+g2(t)
h2(t)

=
g′(t)h(t)− h′(t)g(t)

h2(t) + g2(t)

with:

g′(t) = a2δ cos(δt)
h′(t) = −a2δ sin(δt)

Substituting and simplifying (and adding the term ω from Equation 5):

F (t) = ω +
a2

2δ + a1a2δ cos(δt)
a1

2 + a2
2 + 2a1a2 cos(δt)

(6)

That is the solution to the problem. Figure 2 plots the function in Equation 6 for the values of
the parameters specified in the text book at page 15.

1.17

The quantity δ in radiants per second (rad/s) corresponds to 2πf where f is the frequency in
Hz, that is 1/s. The period of the oscillation is the inverse of the frequency:

T =
1
f

=
2π

δ
' 6.28 rad

0.02 rad/s
= 314 s

1.18

We can solve the problem using phasors. Because we are considering a nonlinear operation,
we have to be carefull. Infact if we have two sinusoidal signals s1(t) = a1cos(ω1t) and s2(t) =
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a2cos(ω2t), and we represent them with the corresponding phasors, we have:

s1(t) = <
{
a1e

jω1t
}

s2(t) = <
{
a2e

jω2t
}

But, if s(t) is the square of the sum of the two signals s(t) = (s1(t) + s2(t))2, we cannot obtain
this by first summing and squaring the phasors and then taking the real part. Infact:

<
{
(x + y)2

}
6= (<{x}+ <{y})2

One way to overcome this problem is to use Euler’s formula:

s1(t) = a1

(
ejω1t + e−jω1t

2

)
s2(t) = a2

(
ejω2t + e−jω2t

2

)
Then the resulting singal is:

s(t) =
a1

2

4
(
ejω1t + e−jω1t

)2 +
a2

2

4
(
ejω2t + e−jω2t

)2 +
2a1a2

4
(
ejω1t + e−jω1t

) (
ejω2t + e−jω2t

)
=

a1
2

4
(
ej2ω1t + e−j2ω1t + 2

)
+

a2
2

4
(
ej2ω2t + e−j2ω2t + 2

)
+

a1a2

2

(
ej(ω1+ω2)t + e−j(ω1+ω2)t + ej(ω1−ω2)t + e−j(ω1−ω2)t

)
=

a1
2

2
cos 2ω1t +

a2
2

2
cos 2ω2t + a1a2 cos(ω1 + ω2)t +

a1a2 cos(ω1 − ω2)t +
a1

2 + a2
2

2
(7)

Thus the frequencies are 2ω1, 2ω2, ω1 + ω2, ω1 − ω2, and the DC component with proportions
indicated by the coefficients in Equation 7
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