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Preface

This document contains solutions to selected problems from Ken Steiglitz’s book: “A Digital
Signal Processing Primer” published by Addison-Wesley. Refer to the book for the problem text.
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4.1

The three functions we want to sample are:

y1(t) = sin(2π0t + φ) = sin(φ)
y2(t) = sin(2πfN t + φ)
y3(t) = sin(πfN t + φ)

Note that y1(t) is a constant, in particular if the initial phase φ is zero, so is also y1(t). The
samples are depicted in Figure 1. In the middle plot you can see that if the initial phase φ is zero,
we sample the sinus in y2(t) always in the zero points. Finally y3(t) is depicted in the bottom
plot.

Note that varying the initial phase φ, the results could be completely different: for example
choosing φ = π/2, the samples of the second function y2(t) are +1 and −1.

4.2

The filter

H(ω) = 1 + a1e
−jωτ

With a1 = 0.99 and τ = 167µsec reduces frequencies at odd multiples of 3kHz. This depends on
the cosine term in equation 2.7 in the text book that we report here:

|H(ω)| =
√

1 + a2
1 + 2a1 cos(ωτ)

The cos term in the function varies between +1 and −1, assuming these values respectively for
ωτ = 2kπ and ωτ = (2k − 1)π. Consequently the function varies between

√
1 + a2

1 + 2a1 =√
(1 + a1)2 = |1 + a1|, and

√
1 + a2

1 − 2a1 =
√

(1− a1)2 = |1 − a1|. And the value |1 + a1|
is assumed at ωτ = 0, 2π while the value |1 − a1| is assumed at ωτ = π, in the range we are
interested in. Now, if a1 > 0, |1 + a1| is a maximum and |1 − a1| is a minimum, as for the
continuous line in Figure 2. On the other hand, if a1 < 0 maxima and minima are inverted, see
dashed line in Figure 2. The solution to the problem is then obtained by choosing a1 = −0.99.

1 (11)

2F1120 Spektrala transformer för Media • Höstterminen 2005
Giampiero Salvi (giampi@kth.se)

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/


0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

sin
(2

π 
0 

t)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

sin
(2

π 
f N t)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

time (samples)

sin
(π

 f N t)

Figure 1.

4.3

The filter

yt = xt + xt−1 + xt−2 + · · ·+ xt−99

has transfer function

H(ω) =
99∑

τ=0

e−jωτ

Note that this is in the form

sn =
n∑

τ=0

aτ

We write down the first three terms of the partial sum sn:

s0 = 1
s1 = 1 + a

s2 = 1 + a + a2

Now we see that s2 can be written in two different ways in terms of s1:

s2 = s1 + a2

s2 = 1 + as1
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And this is true more in general for any sn in function of sn−1:

sn = sn−1 + an

sn = 1 + asn−1

Rearranging and substituting sn−1 from one equation to the other we obtain:

sn =
an+1 − 1

a− 1

That in our case corresponds to:

H(ω) =
e−j100ω − 1
e−jω − 1

Whose modulus is depicted in Figure 3. The zeros are for e−j100ω = 1, that is 100ω = 2kπ ⇐⇒
ω = kπ/50. The tops for e−j100ω = −1, that is 100ω = (2k − 1)π ⇐⇒ ω = (2k − 1)π/50
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4.7

To suppress the DC component and fN/6 we want a zero on z = 1 and two complex conjugate
zeros in z = ejπ/6 and z = e−jπ/6. The transfer function is therefore of the kind:

H(z) =
(1− z)

z

(ejπ/6 − z)
z

(e−jπ/6 − z)
z

=
(1− z)(1− z

2 cos π/6=
√

3︷ ︸︸ ︷
(ejπ/6 + e−jπ/6) +z2)

z3

=
1−

√
3z + z2 − z +

√
3z2 − z3

z3

= −1 + (1 +
√

3)z−1 − (1 +
√

3)z−2 + z−3

The magnitude transfer function in ω can be written, starting from the first passage above as:

|H(ω)| =
|1− ejω||ejπ/6 − ejω||e−jπ/6 − ejω|

|ej3ω|
(1)

The denominator |ej3ω| is always equal to 1 and can be simplified. The square of the first term
in the numerator in Equation 1 is:

|1− ejω|2 = <
(
1− ejω

)2 + =
(
1− ejω

)2
= (1− cos ω)2 + sin2 ω

= 1 + cos2 ω − 2 cos ω + sin2 ω

= 2(1− cos ω)

The square of the second term in Equation 1 is:

|ejπ/6 − ejω|2 = (cos π/6︸ ︷︷ ︸
√

3/2

− cos ω)2 + (sinπ/6︸ ︷︷ ︸
1/2

− sinω)2

= 3/4 + cos2 ω −
√

3 cos ω + 1/4 + sin2 ω − sinω

= 2−
√

3 cos ω − sinω (2)

With the same procedure, but noticing that cos(−x) = cos(x) and sin(−x) = − sin(x) the square
of the third term in Equation 1 is:

|e−jπ/6 − ejω|2 = 2−
√

3 cos ω + sinω (3)

Notice that Equations 2 and 3 are in the form a+b and a−b with a = 2−
√

3 cos ω and b = sinω.
Their product is thus a2−b2. Simplifying and inserting the three terms into Equation 1 we have:

|H(ω)|2 = 2(1− cos ω)(4 cos2 ω − 4
√

3 cos ω + 3)
= 6− (8

√
3 + 6) cos ω + 8(1 +

√
3) cos2 ω − 8 cos3 ω

Figure 4 shows the magnitude transfer function (top plot), the test signal (middle plot) and the
output at regime (bottom plot). Note that the fluctuations in the output are due to numerical
errors.

To find the maximum for ω ∈ (0, fN/6) we note first that |H(ω)| is always positive. Since
the square function is monotone for positive numbers, a maximum in |H(ω)| corresponds to a
maximum in |H(ω)|2. Then it is sufficient to equal to zero the derivative of the function |H(ω)|2
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in function of the variable ω. To do this we remind that the derivatives of trigonometric functions
are cos′ x = − sinx and sin′ x = cos x, Then:

A′(ω) =
d|H(ω)|2

dω

= (8
√

3 + 6) sinω − 2× 8(1 +
√

3) cos ω sinω + 3× 8 cos2 ω sinω

= sinω
(
24 cos2 ω − 16(1 +

√
3) cos ω + 8

√
3 + 6

)
When is this equal to zero? We notice that sinω, ω ∈ [0, π/6] is zero only with ω = 0 that is
not an interesting solution. The second term is a quadratic form in cos ω. Solving with respect
to cos ω we obtain the two solutions:

cos ω =
√

3
2

cos ω =
2
3

+
√

3
6

The first solution corresponds to the limit ω = π/6. The second solution is the one we are
interested in and corresponds to the peak between [0, π/6], inverting we obtain:

ω∗ = arccos

(
2
3

+
√

3
6

)
' 0.3 rad

The corresponding value of the amplitude response is after simplification:

|H(ω∗)| =

√
104
27

− 20
9

√
3 ' 0.0534

Another way to solve the problem is to consider the inverse comb filter described in Section 8
in the text book. We see that to design a filter that stops the DC and an integer fraction of the
Nyquist frequency it is sufficient to use the formula:

yn = xn + axn−L

To suppress the DC component we set a close to −1. To suppress fN/6 we set L = 12. The res-
ulting frequency response is depicted in Figure 5 (top plot) together with the example signal x(n)
(middle plot), and the output of the filter at regime (bottom plot). Note that the fluctuations
are due to numerical errors

Which solutions is best depends on the desired behaviour of the filter in the rest of the base
band.

4.9

The filter equation is

yt = xt + xt−1

(a) If the signal is a ramp x(t) = t the output will diverge at double the speed:

yt = t + (t− 1) = 2t− 1

See Figure 6 top left plot.
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(b) for the sinusoid x(t) = sin(πt/100):

yt = sin
(

πt

100

)
+ sin

(
π(t− 1)

100

)
= 2 cos

( π

200

)
sin
(

πt

100
− π

200

)
(4)

The last equality is obtained by noting that

sin(α + β) + sin(α− β) = 2 cos(β) sinα

and that the arguments to the two sines in Equation 4 can be written as
πt

100
=

πt

100
− π

200
+

π

200
π(t− 1)

100
=

πt

100
− π

200
− π

200
and substituting

α =
πt

100
− π

200
β =

π

200
See Figure 6 top right plot. Note that in the figure only every 20th sample is displayed for
convenience.
(c) The definition given in the text book is probably wrong as t mod 5 is odd iff (if and only if)
t is odd and even iff t even. There would not be any need to make use of the function mod if
the author intended to define the function this way. Furthermore the function obtained by the
definition is switching between −1 and +1 at every sample, which does not seem to be a very
interesting example. We interpret the definition in the following way instead:

x(t) =


+1 if t div 5 is even and t mod 5 is zero
−1 if t div 5 is odd and t mod 5 is zero
0 otherwise
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that is a signal with period ten samples, with a positive impulse in the beginning of each period
and a negative impulse in the middle of each period (see Figure 6 bottom plot):

The output of the filter is

y(t) =


+1 if t div 5 is even and t mod 5 is 0 or 1
−1 if t div 5 is odd and t mod 5 is 0 or 1
0 otherwise

See Figure 6 bottom plot again.
If we compute the phase response φ(ω) = ∠H(ω) of the filter, we obtain, for each frequency,

that is for each sinusoidal component, the radian phase shift. This is the rotation of each output
phasor relative to the input phasor at frequency ω.

y(t) = A(ω) cos
(
ωt + φ(ω)

)
A more intuitive measure of the time shift is obtained by writhing the same equation as

y(t) = A(ω) cos
(
ω
(
t− τ(ω)

))
τ(ω) is called phase delay and its relation to the phase φ(ω) is clearly:

τ(ω) = −φ(ω)
ω

This gives the time delay in seconds of each sinusoidal component. For the filter in this example,

H(ω) = 1 + e−jωT

In the following, to make the result more general, we keep the T even if its value is equal to 1
sec in the example. The phase response is:

∠H(ω) = arctan
(

sin(−ωT )
1 + cos(−ωT )

)
= arctan

(
− sin(ωT )

1 + cos(ωT )

)
= − arctan

(
2 sin(ωT/2) cos(ωT/2)

2 cos2(ωT/2)

)
= − arctan

(
sin(ωT/2)
cos(ωT/2)

)
== − arctan

(
tan

(
ωT

2

))
= −ωT

2

(See Appendix A for an alternative way of solving the previous equation). And the corresponding
phase delay is

τ(ω) =
T

2

In this sense the filter gives a delay of half a sample. The same can be verified, for example in
case (b), where the phase delay is explicit in the sinus term. In this case T = 1, ω = π/100 and
τ(ω) = π

200/ π
100 = 1/2
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4.11

The transfer function of the filter is:

H(ω) = 1−RLe−jωL

and its square modulus can be written as

|H(ω)|2 = |1−RLe−jωL|2 (5)
= (1−RL cos ωL)2 + R2L sin2 ωL (6)
= 1 + R2L cos2 ωL− 2RL cos ωL + R2L sin2 ωL (7)
= 1 + R2L − 2RL cos ωL (8)

When ω varies, the cosine assumes values between −1 and 1 and the amplitude response assumes
respectively the maximum and minimum values:

max |H(ω)| =
√

1 + R2L + 2RL =
√

(1 + RL)2 = |1 + RL| (9)

min |H(ω)| =
√

1 + R2L − 2RL =
√

(1−RL)2 = |1−RL| (10)

The whole function is plotted in Figure 7
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A Computing the phase in ex. 4.9

We want to solve the equation

∠H(ω) = − arctan
sin(ωT )

1 + cos(ωT )

We would like the argument to the arctan function to be the tangent of some angle, in order to
eliminate the functions. We refer to Figure 8. We construct the triangle ADE with side AD =
1 + cos ωT and side DE = sinωT . We call the angle EAD β. We note that the ratio between
DE and AD is equal to the ratio between sinβ and cos β and thus equal to tanβ. If we can find
the angle β in function of ωT the problem is solved.

Now we look at triangle CEF. The angle ECF is equal to BAC (ωT ) since the segment AB
and CE are parallel to one another. The angle CFE is right (π/2) by construction, which means
that angles CEF and ACB are also equal to guarantee that the sum of the interior angles of
a triangle equal to π. Furthermore segment CE is long 1 because of how we built the figure.
Triangles ABC and CEF are thus identical because they have the same interior angles and equal
corresponding sides. We can deduct that segment EF is long sinωT .

Now we move to the comparison between triangles ADE and AEF. These are right triangles
with common hypotenuse, and sides DE and EF of equal length. This is enough to prove that
ADE and AEF are also identical. The result is that angles DAE and EAF, that is β, are equal
to ωT/2.

Substituting we get

∠H(ω) = − arctan
(

tan
(

ωT

2

))
= −ωT

2

that is the same solution we obtained previously applying trigonometric equations.
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