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5.3

(a) From the text book

cos θ0 =
1 + R2

2R
cos θ

Figure 1 (left) plots θ0 as a function of θ for different values of R. Note that the values have
been normalised from 0 to 1. You can see that for R = 1, θ0 = θ in the whole range. When R
approaches 0, the correspondence is less and less linear and in the limit θ0 assumes only the two
extreme values 0 and π. This corresponds to the frequency response having a maximum either
at zero frequency or Nyquist frequency. On the right plot in Figure 1 the normalized amplitude
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Figure 1.

response of the filter is plotted for R = 0.3 and for a number of values of θ (note that in order
to simplify comparison, θ has been normalised and varies from 0 to 1 instead of 0 to π). The
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plot shows how for θ far from π/2 the peak of the spectrum is either at zero frequency or at the
Nyquist frequency as noted before.
(b) As you can see in Figure 1 (left), when θ < π/2, θ0 is shifted to lower angles.

5.4

We need to compute equation 5.2 in the text book with φ = θ:

1
|H(θ)|2

= (1−R2)2 + 4R2 cos2 θ − 4R(R2 + 1) cos2 θ + 4R2 cos2 θ

= (1−R2)2 − 4R(−2R + R2 + 1) cos2 θ

= (R− 1)2(R + 1)2 − 4R(R− 1)2
1
2
(cos(2θ) + 1)

= (R− 1)2[(R + 1)2 − 2R cos(2θ)− 2R]
= (R− 1)2[R2 + 1− 2R cos(2θ)]

The gain is obtained taking the square root:

A =
1

|H(θ)|
= (R− 1)[R2 + 1− 2R cos(2θ)]

1
2

as we wanted to prove.

5.7

(a) The transfer function is obtained by multiplying at the denominator the terms in the form
1− zzz

−1 for each zero zz and at the denominator the terms in the form 1− zpz
−1 for each pole

zp. In our case we have:

H(z) =
(1−

√
Rz−1)(1 +

√
Rz−1)

(1−Rejθz−1)(1−Re−jθz−1)

=
1−Rz−2

1−Rz−1(ejθ + e−jθ) + R2z−2

=
1−Rz−2

1− 2R cos(θ)z−1 + R2z−2
(1)

(b) If we write the transfer function as a fraction between the numerator N(z) and the denom-
inator D(z) we obtain:

Y (z) =
N(z)
D(z)

X(z)

and rearranging the terms:

D(z)Y (z) = N(z)X(z)

that in our case is:(
1− 2R cos(θ)z−1 + R2z−2

)
Y (z) =

(
1−Rz−2

)
X(z)

In the time domain, each term z−1 corresponds to a delay, so we can write the same equation in
time:

yt − 2R cos(θ)yt−1 + R2yt−2 = xt −Rxt−1
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Figure 2.

moving all output terms beside the present to the right side:

yt = xt −Rxt−1 + 2R cos(θ)yt−1 −R2yt−2

(c) A simple way to solve this task is to substitute the value z = ejθ in Equation 1. Here we
will show an alternative way using geometry. As depicted in Figure 2 the transfer function H(z)
has two poles in p1,2 = Re±jθ and two zeros at z1,2 = ±

√
R. Note that since R < 1,

√
R > R.

The amplitude response at angular frequency θ is given by the product of the distance between
the point zθ = ejθ and the zeros divided by the product of the distances from the poles1, that is:

|H(θ)| =
|N(θ)|
|D(θ)|

=
|zθ − z1||zθ − z1|
|zθ − p1||zθ − p2|

Looking at the left plot in the figure, it is straightforward that:

|zθ − p1|2 = (1−R)2

Looking at the second plot from the left we note that the square distance between p2 and zθ is
the sum of the square lengths of the sides of the depicted triangle. The way to measure these
lengths is indicated in the figure and leads to:

|zθ − p2|2 = (cos θ −R cos θ)2 + (sin θ + R sin θ)2 = (1−R)2 cos2 θ + (1 + R)2 sin2 θ

From the third and fourth plots we see that:

|zθ − z1|2 = (cos θ −
√

R)2 + sin2 θ = 1 + R− 2
√

R cos θ

|zθ − z1|2 = (cos θ +
√

R)2 + sin2 θ = 1 + R + 2
√

R cos θ

Noting that the last two terms are in the form a− b and a + b, their product is a2 − b2, and the
numerator is:

|N(θ)|2 = (1 + R)2 − 4R cos2 θ

For the denominator:

|D(θ)|2 = (1−R)2
[
(1−R)2 cos2 θ + (1 + R)2 sin2 θ

]
= (1−R)2

[
(1 + R2 − 2R) cos2 θ + (1 + R2 + 2R)2 sin2 θ

]
= (1−R)2[(1 + R2) (cos2 θ + sin2 θ)︸ ︷︷ ︸

1

+2R (− cos2 θ + sin2 θ)︸ ︷︷ ︸
1−2 cos2 θ

]

= (1−R)2
[
1 + R2 + 2R− 4R cos2 θ

]
= (1−R)2

[
(1 + R)2 − 4R cos2 θ

]
1note that this is not inconsistent with what we wrote in exercise 5.7 as a term 1− ziz

−1 is equivalent to z−zi
z

and, the extra terms z do not affect the amplitude response: |ejω| = 1
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Figure 3.

And combining numerator and denominator:

|H(θ)|2 =
(1 + R)2 − 4R cos2 θ

(1−R)2 [(1 + R)2 − 4R cos2 θ]

=
1

(1−R)2

that is independent of θ as we wanted to prove.

5.9

We look for a feedback filter that has finite impulse response. We remind exercise 4.3 in Chapter 4
where the following filter was defined:

yt = xt + xt−1 + xt−2 + · · ·+ xt−n

where in that case n = 99. This filter is called moving average, because, besides a constant, it
performs an average of the samples over a window that is shifted one sample at every time step.
We know that this filter is FIR (Finite Impulse Response). In exercise 4.3 we obtained a simple
analytic expression for the transfer function H(ω). Now we repeat the same derivation, but in
the time domain. We write the output of the filter at time step t− 1:

yt−1 = xt−1 + xt−2 + xt−3 + · · ·+ xt−n−1

We notice that the right term in the previous equation can be written in terms of yt:

yt−1 = yt − xt + xt−(n+1)

And rearranging:

yt = xt − xt−(n+1) + yt−1

Which can be implemented by the feedback filter in Figure 3.
An Infinite Impulse Response filter must be recursive (with feedback), if it was feed forward,

in fact, each sample in the impulse response would be represented by a delay and a gain term.
This would lead to an infinite number of elements in the filter, and to an infinite number of
computations, which is not feasible.
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