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Abstract

Analytic knowledge about the systematic variation in a language has an important place in
the description of the language. Such knowledge is interesting e.g. in the language teaching
domain, as a background for various types of linguistic studies, and in the development
of more dynamic speech technology applications. In previous studies, the effects of single
variables or relatively small groups of related variables on the pronunciation of words have
been studied separately. The work described in this thesis takes a holistic perspective
on pronunciation variation and focuses on a method for creating general descriptions of
phone-level pronunciation in discourse context. The discourse context is defined by a large
set of linguistic attributes ranging from high-level variables such as speaking style, down
to the articulatory feature level. Models of phone-level pronunciation in the context of a
discourse have been created for the central standard Swedish language variety. The models
are represented in the form of decision trees, which are readable for both machines and
humans. A data-driven approach was taken for the pronunciation modelling task, and the
work involved the annotation of recorded speech with linguistic and related information.
The decision tree models were induced from the annotation. An important part of the
work on pronunciation modelling was also the development of a pronunciation lexicon
for Swedish. In a cross-validation experiment, several sets of pronunciation models were
created with access to different parts of the attributes in the annotation. The prediction
accuracy of pronunciation models could be improved by 42.2% by making information
from layers above the phoneme level accessible during model training. Optimal models
were obtained when attributes from all layers of annotation were used. The goal for
the models was to produce pronunciation representations representative for the language
variety and not necessarily for the individual speakers, on whose speech the models were
trained. In the cross-validation experiment, model-produced phone strings were compared
to key phonetic transcripts of actual speech, and the phone error rate was defined as the
share of discrepancies between the respective phone strings. Thus, the phone error rate
is the sum of actual errors and discrepancies resulting from desired adaptations from a
speaker-specific pronunciation to a pronunciation reflecting general traits of the language
variety. The optimal models gave an average phone error rate of 8.2%.
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Sammanfattning

Analytisk kunskap om den systematiska variationen i ett sprak har en viktig plats i be-
skrivningen av spraket. Sadan information &r intressant t.ex. inom sprakundervisnings-
omradet, som bakgrund till olika typer av lingvistiska studier och i utvecklandet av mer
dynamiska takteknologitillimpningar. I tidigare studier har effekterna av enstaka variab-
ler eller relativt sma grupper av relaterade variabler pa uttalet av ord undersokts separat.
Arbetet som beskrivs i denna avhandling tar ett helhetsperspektiv pa uttalsvariation och
fokuserar pa en metod for att skapa generella beskrivningar av fonnivauttal i diskurskon-
text. Diskurskontexten definieras av en stor méngd lingvistiska attribut som stracker sig
fran hognivavariabler som talstil ner till artikulatoriska sérdragsnivan. Modeller av fonni-
vauttal i kontexten av en diskurs har skapats for sprakvarieteten central standardsvenska.
Modellerna ar representerade i formen av beslutstrad, vilka ar lasbara for bade maskiner
och ménniskor. Ett datadrivet angreppssétt antogs for uttalsmodelleringsuppgiften och ar-
betet innefattade uppmaérkning av inspelat tal med lingvistisk och relaterad information.
Beslutstrddsmodellerna inducerades fran uppmérkningen. En viktig del av uttalsmodelle-
ringsarbetet var ocksa utvecklandet av ett uttalslexikon for svenska. I ett korsvaliderings-
experiment skapades ett flertal uttalsmodeller med tillgang till olika delar av attributen
i uppméarkningen. Precisionen i uttalsmodellers forutsigelser kunde forbattras med 42,2%
genom att gora information fran lager ovanfor fonemnivan tillgdngliga vid traningen av
modeller. Optimala modeller uppnaddes nér attribut fran alla uppmérkningslager anvan-
des. Malet for modellerna var att producera uttalsrepresentationer som &r representativa
for sprakvarieteten och inte nédvéandigtvis for de enskilda talare pa vilkas tal modellerna
tréanats. I korsvalideringsexperimentet jamférdes modellgenererade fonstrangar med fa-
cittranskriptioner av faktiskt tal och fonfelfrekvensen definierades som andelen avvikelser
mellan de respektive fonstriangarna. Fonfelfrekvensen dr saledes summan av faktiska fel
och avvikelser som uppkommit genom 6nskade anpassningar fran ett talarspecifikt uttal
till ett uttal som speglar generella drag hos sprakvarieteten. De optimala modellerna gav
en genomsnittlig fonfelfrekvens pa 8,2%.



Acknowledgements

I would like to thank my supervisor Rolf Carlson for his ideas and valuable com-
ments and suggestions during my thesis work. I would also like to thank Beata
Megyesi for introducing me to the Department of Speech, Music and Hearing at
KTH.

Thanks to Bedta Megyesi, Sara Rydin, Hakan Melin and Botond Pakucs for
helping out with LiNUX-oriented questions. Thanks to Jens Edlund for PERL advice
and help with databases and sQL. Thanks to Jonas Beskow for advice on TCL/TK
and help with the KTH text-to-speech system. Thanks to Rolf Carlson for help
with RuLsys. Thanks to Botond Pakucs for PHP advice. Thanks to Giampiero
Salvi for advice and discussions on IXTEX. Thanks to Leif Gronquist for tools,
information and tips related to the Goteborg Spoken Language Corpus.

Thanks to Rolf Carlson, Sheri Hunnicutt, Kjell Gustafson and David House
for proof reading and commenting the thesis and related papers. Thanks to Kjell
Gustafson for discussions on CENTLEX matters and many other things and for good
co-operation in the CENTLEX project.

Thanks also to everyone who have made tools and resources used for the work
described in this thesis available. Special thanks Robert Bannert and Peter Czigler
for their VAKOS database, to the GROG project participants for the Radio speech
data and annotation, to the department of Linguistics at Goteborg University for
access to the Goteborg Spoken Language Corpus, to Kare Sjolander for his excellent
free software and for access to his aligner and phoneme models, and to Bedata
Megyesi for part-of-speech tagging and parsing software.

Thanks to Grétginget, Sheri Hunnicutt, Karl-Erik Spens, Inger Karlsson, Kjell
Elenius, Mats Blomberg, Preben Wik and others for many culinary experiences and
interesting discussions over lunch.

The research reported in this thesis was carried out at the Centre for Speech
Technology (CTT), a competence centre at KTH, supported by VINNOVA (the
Swedish Agency for Innovation Systems), KTH and participating Swedish com-
panies and organisations. The research was supported by the Swedish National
Graduate School of Language Technology (GSLT).






Per-Anders Jande’s Publications on
Pronunciation Modelling

e Per-Anders Jande (2003). Evaluating Rules for Phonological Reduction in
Swedish. In Proceedings of Fonetik, pp. 149-152, Lovanger, Sweden June 2—4
2003.

e Per-Anders Jande (2003). Phonological Reduction in Swedish. In Proceedings
of Proceedings of the International Congress of Phonetic Sciences (ICPhS) pp.
2557-2560, Barcelona, Catalonia, August 3-9 2003.

e Per-Anders Jande (2004). Pronunciation variation modelling using decision tree
induction from multiple linguistic parameters. In Proceedings of Fonetik pp.
12-15, Stockholm, Sweden, May 26-28 2004.

e Per-Anders Jande (2005). Annotating Speech Data for Pronunciation Variation
Modelling. In Proceedings of Fonetik pp. 25-28, Géteborg, Sweden, May 25-27
2005.

e Per-Anders Jande (2005). Inducing Decision Tree Pronunciation Variation Mod-
els from Annotated Speech Data. In Proceedings of Interspeech pp. 1945-1948,
Lisbon, Portugal, September 4-8 2005.

e Per-Anders Jande (2006). Integrating Linguistic Information from Multiple
Sources in Lexicon Development and Spoken Language Annotation. In Proceed-
ings of the LREC workshop on merging and layering linguistic information pp.
1-8, Genoa, Italy, may 23 2006.

e Per-Anders Jande (2006). Modelling Pronunciation in Discourse Context. In
Proceedings of Fonetik pp. 69-72, Lund, Sweden, June 7-9 2006.

e Per-Anders Jande (Submitted). Spoken Language Annotation and Data-Driven
Modelling of Phone-Level Pronunciation in Discourse Context. Submitted to
Speech Communication in May 2006.

vii






Contents

1 Introduction

1.1 Method Selection Rationale . . . . . . . . . ... ... ... .....
1.2 A Canonical Pronunciation Lexicon . . . . . . . . . . ... ... ...
1.3 The Approach to Pronunciation Modelling . . . . . . .. .. .. ...
1.4 Thesis Overview . . . . . . . . . . . . . e

Background

2.1 Basic Concepts . . . . . . . ...
2.2 Earlier Work on Pronunciation Variation. . . . . . . .. .. ... ..
2.3 A Tentative Rule System for Phonological Reduction . . . . . . . ..
24 SUummary . . o. ... e e e

Pronunciation Lexicon Development

3.1 CentLex: A Central Lexicon Database . . . . . .. .. ... .....
3.2 Information Included in the Lexicon . . . ... .. .. ... .....
3.3 Available Lexical Resources . . . . .. .. .. ... ... ... ....
3.4 Tools for Generating Lexical Information . . . ... ... ... ...
3.5 Analysis Format Conversion . . . . . . ... ... ... ........
3.6 Creating CentLex Entries . . . . . . ... .. ... ... .......
3.7 Database Structure . . . . . . .. ...
3.8 Awailability and Continuous Development . . . . . . ... ... ...
3.9 Co-Operation . . . . . .. ... ..
3.10 Applications . . . . . . ...
311 Summary . ... oL e e

Pronunciation Lexicon Evaluation

4.1 Lexicon Contents . . . . . . . . .. .. ... ...
4.2 Coverage and Accuracy . . . . . . . ..o
4.3 Calculating Coverage . . . . . . . . .« .. o
4.4 Coverage Results . . . . . .. ... Lo
4.5 AcCuracy . . .. ...
4.6 Strategies for Increasing Coverage and Accuracy . . . ... ... ..
4.7 Summary . ... e

ix

21
22

23
24
24
26
26
27
29
32
34
37
38
38



Annotation Method 59

5.1 Speech Data. . . . .. ... ... .. . 59
5.2 A Multi-Layer Annotation System . . . ... ... ... ... .... 61
5.3 Segmentation . . . .. . ... Lo 63
5.4 Mean Phoneme Duration Measures . . . . . .. ... ... ... ... 65
5.5 Pitch Dynamics and Pitch Range Estimation . . . ... .. .. ... 68
5.6 Word Predictability and Related Measures . . . . . . ... ... ... 70
5.7 Automatic Phonetic Transcription . . . . ... .. .. ... .. ... 72
5.8 Summary . ... e 83
Information Included in the Annotation 85
6.1 The Discourse Layer . . . . . . .. .. ... ... .. ... .. 85
6.2 The Utterance Layer . . . . . . . . .. .. ... .. ... ... 86
6.3 The Phrase Layer . . . . . . . . .. ... ... ... ... 87
6.4 The Word Layer . . . .. ... .. . . ... .. .. .. ... 88
6.5 The Syllable Layer . . . . . . . .. ... ... ... 92
6.6 The Phoneme Layer . . . .. ... ... ... ... .. ... ... 93
6.7 Summary . . . ... e e e e e e 95
Pronunciation Model Creation 97
7.1 Decision Tree Induction . . . . .. .. ... ... ... ... ..... 97
7.2 Pruning . . . . ... 98
7.3 Decision Tree Inducer . . . . . ... .. .. ... .. ... 99
7.4 Attribute Selection Measure and Optimisation Options . . . . . . . . 99
7.5 Summary . ... e 100
Pronunciation Model Evaluation 101
8.1 Baselines . . .. . . . . ... 102
8.2 Phone Error Rates . . . . .. ... .. ... 103
8.3 Data Size and Speaking Style . . . . ... .. ... 0oL 104
8.4 Phone Confusions . . . . . . . .. ... .. ... ... . ... ... 105
8.5 Attribute Ranking . . . . .. ... .. oo 109
8.6 Attributes Used by the Models . . . . .. .. ... ... ... .... 110
8.7 Model Complexity . . .. .. ... ... .. . 112
8.8 Weighted Phone Error Rates . . . ... ... ... ... ....... 113
8.9 Effectsof Noise . . . . . . . . . . . . . ... . 115
8.10 Reliability Issues . . . . . . . . . . . .. 116
8.11 Gold Standard Evaluation . . . . . .. .. ... .. ... ... ... 117
8.12 Summary . . . . ... 118
Phoneme-to-Phone Conversion 119
9.1 The Decision Tree Pronunciation Model . . . . . . ... .. .. ... 119
9.2 General Discussion on Phoneme Realisation . . . . .. ... .. ... 121

9.3 Summary . . . ... e e e e e 125



10 Pronunciation Modelling in Speech Synthesis 127

10.1 The Need for Natural-Sounding Speech Synthesis . . . . . . . . ... 127
10.2 Annotation and Speech Synthesis . . . . . ... ... ... L. 128
10.3 Pronunciation Modelling and Synthesis System Types . . . .. ... 128
10.4 Using Pronunciation Models with an Existing Speech Synthesis System129
10.5 Summary . . . . ..o e e 131
11 Summary and Conclusions 133
11.1 Pronunciation Lexicon Development . . . . . ... .. .. ... ... 133
11.2 Pronunciation Lexicon Evaluation . . .. ... .. ... ....... 134
11.3 Annotation Method . . . . . . .. .. .. ... L. 135
11.4 Information Included in the Annotation . . . . .. ... ... .. .. 136
11.5 Pronunciation Model Creation . . . ... ... .. ... ....... 137
11.6 Pronunciation Model Evaluation . . ... .. .. ... .. ...... 137
11.7 Phoneme-to-Phone Conversion . . . . .. .. ... .. ... ..... 138
11.8 Pronunciation Modelling in Speech Synthesis . . . . . .. ... ... 139
11.9 General Conclusions . . . . . . . . . . . .. . i 141
Bibliography 143
Appendicies 163
A The Swedish Technical Alphabet (STA) 165
B Xenophones in CentLex 167
C The SUC Tag Set 169
D The Share of Tokens in Three Frequency Groups 171
E Phone Instances in the Gold Standard Transcript 173
F Phone Confusion Matrices 175
G Phone Instances in the Evaluation Data 181
H Phone Distance Matrix 183
I Consonant Realisations 185
J Vowel Realisations 219






Chapter 1

Introduction

Language can take many different forms and vary along many dimensions. Different
speakers will use a language in somewhat different ways, even if they are speak-
ers of what is generally conceived of as the same language. A language changes
over time and this means that language users of different ages will differ more or
less in their language performance. Sub-communities of language users based on
e.g. geographical or social factors may also differ in how they use the language.
There is also variation in language performance between individual language users,
idiomatic variation.

In addition to this variation between language users and groups of language
users, there is also variation in performance within a language group and within an
individual speaker. For example, there is considerable variation in the spoken lan-
guage performance of an individual speaker depending on the speaking situation.
The choice of words as well as the pronunciation of words may change with the
situation. Word pronunciation depends heavily on i.a. speaking style (cf. e.g. Os-
tendorf et al., 1996; Van Bael et al., 2004) and speech rate (cf. e.g. Fosler-Lussier
and Morgan, 1999; Zheng et al., 2000).

The pronunciation of a certain word also depends on its local context, such as
adjacent phonemes and the predictability of the word in its context. The predict-
ability of a word can be estimated from variables such as global word frequency
and n-gram probabilities (cf. e.g. Fosler-Lussier and Morgan, 1999; Jurafsky et al.,
2001) and is also dependent on e.g. the new/given status of the word (Horne et al.,
1994; Jurafsky et al., 1997).

Pronunciation variation is an exciting and important area of research with many
relevant applications in the speech technology area and linguistic research. More
knowledge about systematic variation in a language is an important part of the
description of the language and interesting for e.g. language teaching and contrastive
linguistic and phonological studies.

Knowledge about systematic pronunciation variation is also a necessity for de-
veloping more dynamic and human-like synthetic speech for e.g. human-computer
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dialogue systems and for interpreting human speech in automatic speech recognition
and understanding systems.

The variation in pronunciation is manifested on many levels. There is variation
in prosodic features, such as speech rate, intonation, rhythm and accent. There
is also variation in the phone-level realisation of words and in the fine-phonetic
realisation of speech segments.

Although there is a certain degree of individual (idiomatic) and random vari-
ation in the pronunciation of words in context, the variation due to context factors
is largely systematic within a restricted, relatively homogeneous group of language
users. This agreement on systematic variation strategies can be seen as a property
of the language variety (e.g. dialect) spoken by a specific group. A language variety
thus has its rules and frames for variation and this systematicity is a prerequisite
for the language to ensure successful communication.

In their discussion on the concept of distinctive features, (Jakobson et al., 1963,
section 1.3) stated that “for the study of speech sounds on any level whatsoever
their linguistic function is decisive” and it is obvious that the phonetic realisation
of words varies depending on their linguistic-semantic prominence, following the
principle of “sufficient discriminability” (Lindblom, 1990) in the particular context.

Earlier studies of pronunciation variation have mostly either been aimed at
neutralising the variation or at explaining the variation. Studies aimed at neut-
ralising variation, prototypically in an automatic speech recognision system, deal
with pronunciation variation in general, but mostly give no explanatory model of
the variation. In contrast, studies aimed at explaining variation are concerned with
describing the causal relations between variables governing pronunciation variation
and the types of variation occurring in speech. However, these studies often deal
only with a specific type of variation or a specific source of variation, investigating
the effects of a single variable or a small group of related variables on pronunciation
separately.

The focus of this thesis is a method for modelling the pronunciation of words
in discourse context, with discourse contert including the speaking situation char-
acterised by speaking style, discourse type etc. and linguistic and related context
on different levels down to the articulatory feature level. The aim is thus to create
an explanatory model of pronunciation in general allowing a large set of variables
to co-operate in a transparent model.

More precisely, the aim is to model systematic discourse context-induced vari-
ation in phone-level pronunciation inherent in a language variety. The goal is thus
to create models of the subset of variation in language performance which occurs
within a restricted language group due to discourse context and the aspect of pro-
nunciation variation modelled is pronunciation variation on the phone level. In
creating such models, the aim is to find patterns common to the language variety
being modelled while idiomatic variation specific to individual language users are
avoided.

The target language variety is central standard Swedish, the standard variety
of Swedish spoken in the Stockholm area. The methods can, however, easily be
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adapted for modelling other language varieties and languages.

The method used for pronunciation modelling is data-driven. Spoken language
is annotated with various kinds of linguistic and related information and machine
learning is used to create pronunciation models from the annotation. The phoneme
is the central unit in the approach and the annotation is aimed at describing the
discourse context of a phoneme from high-level linguistic variables such as speaking
style, down to the articulatory feature level.

An important part of the work has been to develop an annotation scheme, so that
data can be organized in a way that is theoretically and practically appropriate for
the current purposes. Another important part of the work has been the development
of methods for data annotation.

The work described in this thesis is partly driven by an interest in human
language processing and the factors involved in how humans choose to alter their
speech over different situations. The work is also partly driven by an interest in
using knowledge about human language performance to improve speech technology
systems, such as synthetic speech.

To accommodate both of these aspects of pronunciation in discourse context,
the pronunciation models created have to meet two important specific requirements.
The first requirement is that the models must be able to predict phone-level pronun-
ciation in context with high accuracy. The second requirement is that the models
can serve as linguistic descriptions of pronunciation variation. This second require-
ment calls for a method making it possible to create transparent models, revealing
which variables are the most important for predicting pronunciation in context and
how variables co-operate to make predictions.

The decision tree induction paradigm is not impeded by the fact that the data
from which a model is to be induced is of disparate kinds, as it is in the annotation
described in this thesis. For example, the annotation includes discrete variables,
such as Part of Speech, continuous integer-valued variables, such as the position of
a phoneme in a cluster and continuous real-valued variables such as mean phoneme
duration. The decision tree paradigm also produces transparent models, which
can easily be transformed into rules. Models produced by a decision tree inducer
are thus able to meet the specified requirements and decision tree induction is the
method selected for creating models.

1.1 Method Selection Rationale

Modelling pronunciation variation in discourse context is interesting for the de-
scription of a language variety. The influence of a large variety of variables on
the pronunciation of words has been studied in previous research projects over the
years. However, the variables have mostly been studied in isolation or in small
sets. A detailed description of a discourse, including a large variety of linguistic
and related variables, enables studies of the interplay between various information
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sources on e.g. phone-level pronunciation and allow data-driven creation of models
for prediction of word pronunciation in context.

For creating models of pronunciation variation with the specific purpose to get
the most natural-sounding speech synthesis, the best strategy may be to try to
mimic the pronunciation variation behaviour of one single speaker and use this
speaker to build the concatenation database (cf. e.g. Miller, 1998a; Bennett and
Black, 2003, 2005).

However, if the aim is to describe a language variety from a pronunciation vari-
ation point of view or to develop a model that for other reasons is general to the
language variety (e.g. if the model is to serve as a general resource for speech tech-
nology applications), looking at many speakers of the particular language variety
for creating models is necessary. Statistics can then be used to single out common
patterns from individual patterns. Further, if a pronunciation variation model is
to be generally applicable in e.g. speech synthesis contexts, it cannot be specific
for the pronunciation variation of a single speaker. Models of the type described in
this thesis will be models general for a language variety and are thus induced from
the annotated speech of several speakers.

1.2 A Canonical Pronunciation Lexicon

The point of origin for the pronunciation models is a maximally detailed, con-
text independent canonical ‘citation form’ pronunciation description, which can
be transformed into its context dependent counterpart given a description of the
context. The canonical pronunciation description serving as the basis for the pro-
nunciation modelling method presented in this thesis corresponds to a phonemic
description of the type which can be found in a pronunciation lexicon.

For the method to be successful, it is important that the phonemic pronunci-
ation descriptions are of high and consistent quality. The same demands on lexical
resources are shared by most research in the field of speech technology, and lexica
are also important in the development of speech technology applications.

For these reasons, a part of the pronunciation modelling research has been to
develop a lexical resource called CENTLEX. This lexicon is based on lexical data
resulting from a number of projects at the Department of Speech, Music and Hear-
ing (TMH) and the Centre for Speech Technology (CTT) at KTH over the years.
The resource has been expanded and edited and now constitutes a general resource
which can be used e.g. for development of automatic speech recognition systems and
speech synthesis systems and in various speech technology applications, and gener-
ally for research purposes. CENTLEX is centrally available for the department and
for the partners of CTT and tools for co-operative continuous lexicon development
have been created.
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1.3 The Approach to Pronunciation Modelling

The approach to pronunciation variation modelling used for the work presented in
this thesis can be described as consisting of nine basic steps, as listed below. Each
of these steps is described in a separate chapter of the thesis.

e Surveying previous research in the area

e Developing a canonical pronunciation lexicon

e Evaluating the canonical pronunciation lexicon

e Developing an annotation scheme and methods for annotation
e Collecting and annotating speech corpora

e Creating pronunciation models from the annotation

e Evaluating the pronunciation models

e Phonologically analysing the pronunciation models

e Discussing how the models can be used in speech technology applications

1.4 Thesis Overview

The next chapter of this thesis (Chapter 2) gives a background to pronunciation
variation modelling, including definitions of some basic concepts and terms, a review
of previous research in the area and the presentation of an evaluation of a tentative
rule system for phonological reduction.

Chapter 3 gives a description of the work with developing CENTLEX—the pro-
nunciation lexicon that has served as the basis for the phoneme-level annotation
used for pronunciation model induction. Further, the structure of the lexicon and
tools created for continuous lexicon development are described in this chapter.
CENTLEX has been built to be a general lexical resource and has been used in
several contexts for research and development of speech technology applications.
These more general aspects of the CENTLEX database are also discussed.

In Chapter 4, an evaluation of the coverage of CENTLEX over different text types
and an evaluation of the quality of the pronunciation representations in CENTLEX
are presented. Also, strategies for increasing the coverage and the accuracy of the
lexicon are discussed in the chapter.

Chapter 5 describes the speech databases used for pronunciation modelling and
the system used for annotating the data. The chapter further includes descriptions
of methods used for segmenting the speech data into units in several layers and for
obtaining some of the information included in the annotation.

Chapter 6 gives a detailed account of all information included in the annotation
and the rationale behind including the information. Each layer of annotation is
presented separately and the information variables associated with each layer and
their possible values are listed.
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Chapter 7 describes the use of decision tree induction for creating transparent
models of pronunciation in discourse context. It is explained how training examples,
which can be seen as context-dependent phonemes, are constructed by attaching
attribute values derived from the annotation to phoneme-sized units.

Chapter 8 presents a tenfold cross validation evaluation of decision tree models
induced from the annotated speech data. One of the aspects evaluated is how
the phone error rate is affected by using different amounts of the speech data and
different sets of attributes at model training. There is also a closer examination
of the attributes and a presentation of which attributes are the best predictors of
pronunciation variation.

Chapter 9 looks closer at the phoneme-to-phone conversions made by a final
pronunciation model trained on all available data. The distributions of realisations
for each phoneme, the shares of correct classifications and the rules employed by
the model are discussed.

Chapter 10 discusses how pronunciation models can be used in speech synthesis
systems to produce more dynamic synthetic speech. Chapter 11 gives a brief sum-
mary of the thesis and ends with some concluding remarks.



Chapter 2

Background

This chapter will give a background to pronunciation variation modelling, starting
with a presentation of the theory on which the current research builds and defin-
itions of some basic concepts and terms. This chapter will also include a review
of previous research in the area and a summay of an initial listening experiment
testing the hypothesis that a general reduction rule system can be used to increase
the perceived naturalness of speech synthesis at high speech rates.

2.1 Basic Concepts

This section will include brief descriptions of some basic concepts associated with
the field of pronunciation variation modelling and definitions of the central terms
used in the thesis.

2.1.1 Pronunciation Variation Theory

The pronunciation of a word can vary on a continuous scale of phonetic detail, with
a maximally detailed pronunciation of the word at the one end and no realisation
at the other end. How a word is realised in a particular situation depends on many
factors.

We speak in order to communicate, and thus on the most abstract level, we want
to pronounce words in such a manner that communication is maximally facilitated.
We must convey enough information for the intended message to get through, but
we do not want to convey too much information, both for production-economical
reasons and for conversational-pragmatic reasons (cf. e.g. Lindblom, 1990). The
conversational-pragmatic reasons can be summarised by H. P. Grice’s second con-
versational maxim of quantity: “Do not make your contribution more informative
than is required” (Grice, 1975, 1989) (originally referring to semantic information,
but equally true for phonetic information). We also want to be able to contrast
the more important parts of the sentence from the background (e.g. contrast the
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parts of an utterance conveying new information to the parts conveying given in-
formation). Varying the degree of phonetic detail over the words and syllables of
an utterance is the conventional way of doing this.

Lindblom (1990) discusses this variation in phonetic detail over different parts of
an utterance and over different speaking situations. Lindblom describes the speech
as varying on a hyper-hypo-speech dimension, where hyper-articulated speech has
a great deal of phonetic detail, while hypo-articulated speech has less phonetic
detail. A hyper-articulated form of a word will resemble the canonical form on the
segmental-phonetic level, while a hypo-articulated form will be reduced in relation
to the canonical form.

In this thesis, a canonical pronunciation representation will refer to the phono-
logical representation of the pronunciation of a word, i.e. to a pronunciation repres-
entation of the type that can be found in a pronunciation lexicon. Pronunciation
lexica normally describe maximally detailed pronunciation of words, i.e. how words
are pronounced in a clear fashion in isolation.

A context-dependent pronunciation will, in this thesis, refer to a representation
of an actual pronunciation (supplied by a human or an automatic transcription
system) or to a form produced by a pronunciation model. The context-dependent
pronunciation is described as a realisation of the canonical phonological form.

2.1.2 Phonemes and Phones

In this thesis, a phoneme is defined as an abstract unit in the canonical phonemic
form of a word. The sequence of phoneme units used to describe the ‘underly-
ing’ pronunciation of a word is chosen so that each phoneme unit has a physical
counterpart in a maximally detailed pronunciation of a word. A phone is an ab-
stract context-dependent realisation of the phoneme and a phonetic segment is the
physical correspondent of a phone in an actual speech signal.

The phoneme and the phone units are used as a way of describing pronunci-
ation variation based on general phonological theory, however without making any
claims about mental counterparts of the units or about human speech processing.
In this thesis, the definition of a phonemic representation is that it is the canonical
pronunciation representation that can be found in a pronunciation lexicon. A phon-
etic representation is a representation of a stream of often overlapping or partly
overlapping speech segments, converted into a sequence of categorical classes.

A phoneme is really an ‘umbrella class’ for a group of allophones serving the same
function. Substituting an allophone for another allophone of the same phoneme
class in a string of phones constituting a word can never change the string into
another word (although it may change the string to a less typical or anomolous
pronunciation of the same word). However, if the allophone is substituted for an
allophone from a different phoneme class, the string is changed into either another
word or a non-word. Both the phoneme and the allophone are abstract units, only
applicable in canonical descriptions of pronunciation. In practice, speech segments
may not be aurally distinguishable, although belonging to different categories.
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The phone has a more pragmatic definition than the phoneme. A phone symbol
represents speech sounds, segments, which share acoustic and functional properties.
The phone set used for describing the pronunciation of spoken language can be
extended or curtailed, depending on the intended use of the description. For the
work presented in this thesis, a limited set of phone symbols are used and the same
phone symbol may be used to describe the (non-canonical) realisation of more than
one phoneme.

The phone symbol set used is the same as the set of phonemes/allophones
used to describe canonical word pronunciations. The decision to use this very
restricted phone set was made since an automatic transcription system was used
for obtaining phone sequences during the annotation of spoken language. The
automatic transcription system uses a set of acoustic monophone models, including
one model per phoneme in the central standard Swedish phomeme inventory.

The use of this phone symbol set is convenient when a model of pronunciation
variation is to be used in an existing diphone speech synthesis system, with exactly
those diphones available. On the other hand, the degree of phonetic detail modelled
is limited by the small phone set. However, it would be possible to extended the
phone set to describe more fine-phonetic variation within the framework of the
current pronunciation modelling method.

Since the symbol sets for phonemes and phones overlap, phonemes and phonemic
representations are often written in slashes, /founiim/, and phones and phonetic
representations written in square brackets, [foun|, to distinguish between the two
types of representations.

In the annotation of speech data, the phoneme symbols used have been those in
the Swedish Technical Alphabet, STA. In the text of this thesis, the phoneme and
phone symbols from the International Phonetic Alphabet, IPA, are used in most
cases. There is a one-to-one correspondence between the symbol sets, as illustrated
in Table A.1 in Appendix A.

2.2 Earlier Work on Pronunciation Variation

As stated in the introduction to this thesis, in earlier work on pronunciation vari-
ation, two main types of studies, differing in their general aim, can be discerned.
Simply put, there are studies aimed at explaining the variation in pronunciation and
studies aimed at neutralising the variation. Studies aimed at explaining variation
are concerned with describing the causal relations between variables governing pro-
nunciation variation and the types of variation occurring in speech. These studies
often deal only with a specific type of variation or a specific source of variation.
The purpose is generally to extend the phonetic or phonological description of a
language or a language variety. A practical application of detailed knowledge about
the sources of different kinds of pronunciation variation is in the speech synthesis
area.
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Studies aimed at finding methods for neutralising pronunciation variation are
mostly concerned with variation in general, but not necessarily with describing or
explaining the sources of the variation. The purpose of these studies is mostly to
improve automatic speech recognition (ASR) systems. The studies may explore
source-dependent solutions for neutralising pronunciation variation. For example,
dialect and speech rate induced variation, respectively, may be handled in different
ways in an ASR system.

In the context of this thesis, the focus of interest is which variables have been
shown to affect phone-level pronunciation. Some examples of studies of variables
governing pronunciation variation are presented in sections 2.2.1 and 2.2.2 below.
The studies may be focused on neutralising variation in ASR systems or be studies
aimed at general language description. Sections 2.2.3 to 2.2.5 focus on different
types of methods for modelling pronunciation variation.

Since speech synthesis is an area where pronunciation models of the type de-
scribed in this thesis can be applied, two sections presenting some earlier work on
pronunciation modelling in speech synthesis, sections 2.2.6 and 2.2.7, are also in-
cluded in this chapter. Finally, since the target language used for the work presented
in this thesis is (central standard) Swedish, some previous work on pronunciation
variation modelling for Swedish is presented in Section 2.2.8.

2.2.1 Variables Governing Pronunciation Variation

Variables that have been found to influence the within-speaker phone-level realisa-
tion of words in context are foremost speech rate, word predictability (often es-
timated by global word frequency) and speaking style. For example Fosler-Lussier
and Morgan (1998, 1999) investigated the relationships between word predictab-
ility, speech rate and pronunciation in spontaneous American English speech. It
was shown that reduction on the phone level in relation to the maximally detailed
pronunciation is greater for highly predictable words and when speech rate is high.
Van Bael et al. (2004) investigated the application probability of a set of phon-
ological reduction rules operating on canonical pronunciation representations for
recorded Dutch speech of three different speaking styles. They found that signific-
antly more reduction rules needed to be applied when transforming the canonical
representation into the transcript of spontaneous speech than when transforming
it into the transcript of read speech and public lectures.

Jurafsky et al. (2001) report a higher probability of reduced pronunciation of
frequent function words in American English spontaneous speech, when the func-
tion words occur in pairs with high bigram or reverse bigram probabilities. They
also report that higher unigram probabilities for content words imply a higher prob-
ability for elision of a word final /t/ or /d/. Ostendorf et al. (1996, 1997) explore
the use of speaking style-dependent lexical expansion rules. They also deal with
speaking style prediction from acoustic observations (e.g. speaking rate and relative
energy) and from information status (e.g. new vs. given information and content
words vs. function words) for American English in an ASR context. Finke and
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Waibel (1997) use information about word frequency, information status, estim-
ated speech rate and fy to select the most probable pronunciation variant from an
ASR lexicon during automatic phonetic transcription.

Zheng et al. (2000) report using parallel, rate-specific acoustic models for auto-
matic recognition of American English, which improved the recognition accuracy
compared to a model with a collapsed-rate acoustic model. This study is an ex-
ample of pronunciation variation modelling on a higher level. The acoustic models
used were trained in the usual way, but on different data sets (slow and fast speech)
and it was shown that separating different types of speech can improve recognition.

Hazen et al. (2002) report using finite state transducer representations of phon-
ological pronunciation variation in an ASR setting. What is different about this
model is that there are rules using stress and syllable position as context. This
information is captured with syllable position-dependent labels in the phonetic
representations. Another interesting language model is reported by Bates and Os-
tendorf (2002). This model uses hand-labelled prosodic attributes (based on fo,
energy, and duration values) as context in pronunciation variation rules.

Nakajima et al. (2001) report comparing phonetic transcripts of Japanese con-
tinuous conversational speech and read versions of the conversations to derive phon-
ological pronunciation variation rules. Although the rules are used in an ASR set-
ting, there are aspects of the method for deriving rules, and of the results, which
may be interesting also in the context of creating explanatory models of pronunci-
ation variation. These aspects are that Part of Speech is used as context for the
reduction rules and that Part of Speech-specific as well as general reduction rules
were detected.

2.2.2 Studies Involving Several Pronunciation Predictors

Some previous studies on pronunciation variation have simultaneously taken several
context variables into account. For example, Bates and Ostendorf (2001) used
syntax and discourse-related features e.g. to predict the context-dependent phone-
level realisation of words in the Switchboard corpus! with decision trees. The
features used were the log trigram score, Part of Speech tags for the word and for
the left and right adjacent words, the position of the word in the utterance, the
position of the word in relation to a sentence pivot point (the main verb), and
dialogue act classification. They also used a number of phone and stress-related
baseline features.

The idea behind the pivot point concept is that it can capture some discourse-
level information, since words before the main verb of a sentence (or more general
macro-syntactic unit) typically convey given information, while words after this
pivot point typically convey new information (Jurafsky et al., 1997, 1998b).

Bates and Ostendorf (2001) also included intermediate predictors as attrib-
utes for their decision trees. The intermediate predictors included a prediction of

1 American English spontaneous telephone speech.
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phonetic distance (number of deviating articulatory features) and a prediction of
transformation type (no transformation, insertion, reduction or other) and were de-
termined by decision trees trained to make these decisions. The best result, a phone
error rate (PER) of 19.4%, was obtained when all attributes were used. Compared
to the baseline model using phoneme-level attributes only, the reduction of PER
was about 10%.

Bates and Ostendorf (2002) added prosodic variables (duration-based, energy-
based, and fundamental pitch-based measures) to the attribute set used in Bates
and Ostendorf (2001). The duration-based variables included the absolute duration
of utterances, words and phones, respectively. They also included word duration
normalised by (divided by) the utterance duration and phone duration normalised
by the word duration. The energy-based variables included the mean, maximum
and minimum values over the utterance, over the word and over windows of 15
and 30 frames, respectively. The energy values were also normalised by dividing
them with the average energy of the first 10 frames of the particular conversation.
The fg-based variables included the mean, maximum and minimum values over the
utterance, over the word, and over 15 and 30 frame windows, respectively. Further,
the slope values and the number of slope changes over the utterance and the word
were included. Pitch values were normalised both by subtracting and by dividing
the fg with a speaker baseline. The prosodic attributes, especially word duration
and word energy values, gave slight improvements in PER. More details are given
in Bates (2003).

The fact that a word conveys given information as opposed to new information
may have consequences for the pronunciation of the word in its context. Simply put,
since there is more top-down information available for a word associated with given
information than for a word associated with new information, there may be less
need for bottom-up information. Thus, a speaker can pronounce a word associated
with given information with less phonetic detail without increasing the demands
on the listener. Horne et al. (1993, 1994) describe an algorithm developed to keep
track of the semantic identity of lexical instances in a text as well as of semantic
relations between words, as to avoid putting focal stress on a word conveying given
information in a speech synthesis setting (Horne and Filipsson, 1996; Bruce et al.,
1996). The fact that given information is generally not phonetically accented may
of course not only affect stress patterns, but also the segmental realisation of words.

Greenberg et al. (2002) report a study of the relation between stress accent and
pronunciation variation in American English based on a subset of the Switchboard
corpus. The study revealed that the heavier the stress, the less a syllable will
deviate from the canonical realisation. Unstressed syllables thus deviated more
from the canonical realisation than did stressed syllables. Nuclei and codas were
the parts of the syllable that were most affected by stress. The codas were subjected
mostly to segment elision (in relation to the canonical realisation) and nuclei were
subjected mostly to substitution. Onsets of unstressed syllables were also affected,
and subjected to both elision and substitution, however to a lesser degree than the
succeeding parts of the syllable.
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Gregory et al. (1999) report investigations of the effects of word predictability
on the realisation of certain words from the Switchboard corpus. The words in-
vestigated were words who in their canonical pronunciation end in /t/ or /d/. The
realisation factors investigated were three ‘shortening phenomena’: 1) /t/ or /d/
elision, 2) /t/ or /d/ tapping and 3) word duration shortening.

A base model was created, including a set of well-known predictors of ‘reduced
pronunciation’: speech rate, left and right adjacent phone type (vowel or consonant),
right adjacent vowel quality (full or reduced), word length (syllables) and word type
(function word or content word). Also included in the base model was information
about the identity of the final consonant of the word (/t/ or /d/).

The predictability measures investigated were 1) prior probability, defined as the
relative word frequency in Switchboard, 2) collocational probability, including sev-
eral measures based on bigram and trigram probabilities and mutual information
(the bigram probability divided by the product of the individual word probabilit-
ies), and 3) discourse probabilities, including a count of word repetition thus far in
the conversation and a measure of semantic relatedness calculated through Latent
Semantic Analysis, LSA (Landauer and Dumais, 1997; Landauer et al., 1998).

The addition of information resulting from combining the set of predictability
measures with the base model was measured using multiple regression analysis.
Only the mutual information measure was shown to affect tapping. Elision was
affected by word frequency, mutual information, reverse trigram probability and
forward trigram probability. Durational shortening was shown to be sensitive to
word frequency, mutual information and semantic relatedness.

In a similar manner to Gregory et al. (1999), Bell et al. (2003) investigated
the effects of disfluencies, predictability, and utterance position on ‘lengthening
phenomena’ in 8,000 occurrences the ten most frequent English function words
collected from the Switchboard corpus. It was concluded that the words are more
likely to be longer or occur in a phonetically fuller form when 1) neighbouring
disfluencies are present, 2) the predictability of the word is low and 3) when the
word stands in utterance initial or utterance final position.

Duez (1998) studied elision and assimilation phenomena in consonant sequences
in French spontaneous speech, taking into account phoneme context, word type
(function word or content word), syllable prominence and the position of the phon-
eme in the syllable, word and phrase, respectively. The study was conducted on
a spontaneous speech database with phonetic transcripts provided by human tran-
scribers. The manually obtained transcripts were compared to canonical phonemic
representations. Among other things, Duez (1998) found that reduction phenomena
seem to be highly dependent on syllable boundaries (phonemes adjacent to syllable
boundaries were much more prone to having reduced realisations than phonemes
not in the immediate vicinity of syllable boundaries), on the position in the syl-
lable (codas were more prone to phonological reduction than onsets) and on syllable
prominence (non-prominent syllables were more prone to reduction than prominent

syllables).
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Duez (2001) describes additional reduction phenomena and assimilatory effects
in French speech and relates the effects to different context factors. Observations
relating to phonological features of phonemes were that sonorants are more often
deleted or substituted than obstruents and that voiced obstruents are more often
deleted or substituted than voiceless obstruents. An observation relating to word
type (function word vs. content word) was that function words largely show indi-
vidual patterns. Finally, an observation relating to the position in the phrase was
that phrase-final syllables often are more prominent and less subjected to reduction
processes than non-final syllables.

Vilimaa-Blum (1998) reports a similar study for Finnish spontaneous speech,
finding e.g. syllable length, stress (prominence) and vowel harmony to be import-
ant factors for how words are reduced. Su and Basset (1998) looked at vowel and
consonant reduction phenomena in both French and Taiwanese Mandarin. They
found that vowel reduction was more common in French and consonant reduction
was more common in Taiwanese Mandarin. Further, coda consonants were reduced
more often than onset consonants in French. For Taiwanese Mandarin, it was the
other way around. This suggests that the language specific factors of reduction are
very important. Greenberg and Fosler-Lussier (2000) use the fact that pronunci-
ation variation is very sensitive to syllabic, lexical and phrasal context to argue for a
view on pronunciation variation that is less centred on articulatory/bio-mechanical
factors and more dependent on higher level linguistic organisation.

There are many reports on fine-phonetic studies of vowel reduction due to con-
text factors, cf. e.g. Moon and Lindblom (1994) and Engstrand (1988).

2.2.3 Methods for Modelling Pronunciation Variation

Strik and Cucchiarini (1998, 1999) and Cucchiarini and Strik (2003) give overviews
of the literature dealing with pronunciation variation for automatic speech recog-
nition purposes. In these overviews, the methods used in the reviewed literature
are characterised in terms of 1) information sources (knowledge-based vs. data-
driven methods), 2) the type of pronunciation variation modelled, 3) information
representation and, 4) level of modelling. Strik and Cucchiarini distinguish between
two types of pronunciation variation modelled for ASR systems: within-word and
cross-word variation and conclude that within-word variation is the most frequently
modelled type. Further, two types of information representation are distinguished:
enumeration and formalisation. Enumerations are representations where all pos-
sible variations are listed, e.g. in a lexicon. Formalisations can be rule systems
(either derived from data or constructed from linguistic knowledge). For data-
driven approaches, the derived formalisations can also be in the form of e.g. artificial
neural networks or phone confusion matrices.

In sections 2.2.4 and 2.2.5 below, some studies using different combinations of
information sources, variation types and information representations are presented.
These are all studies aimed at improving speech recognition. They may include
rule application probabilities or probability of use for different word pronunciations.
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However, they do not say anything about when (in what contexts) a certain rule
should be applied or when a certain word pronunciation should be used.

2.2.4 Knowledge-Based Methods

Automatic speech recognition performance in relation to using a static, canonical
pronunciation lexicon can be improved with relatively simple methods. For ex-
ample, a small set of knowledge-based phonological reduction rules can be used to
extend the lexicon with reduced forms and application probabilities can be associ-
ated with the different pronunciation representations. In this section, some studies
using relatively simple methods for improving ASR performance are presented. It
is interesting to see that these straight-forward methods give improvements in ASR
performance. However, these studies do not consider when (in what contexts) a
certain pronunciation variant should be used, and are thus only of limited interest
for the modelling of pronunciation variation with the aim to describe a language
variety or to increase the naturalness of synthetic speech.

Adda-Decker and Lamel (2000) evaluate different hand-constructed reduction
rules for German by creating different speech recognition lexica and comparing the
word error rate from continuous speech recognition resulting from using the differ-
ent lexica. The rules delete [o] vowels before [1], [n] and [m] in unstressed syllables.
Only slight improvements were seen using the lexica expanded with these simple
rules. A similar experiment was conducted by Kessens et al. (1999) for Dutch. How-
ever, in this case, using five phonological rules to expand their recognition lexicon
was enough to show a significant improvement in recognition performance. Kessens
et al. (1999) also modelled cross-word variation using two different methods: 1)
adding more phonetic realisation variants to the lexicon and 2) adding new lexical
items in the form of multi-words. The second cross-word pronunciation modelling
method proved better than the first method. In combination, within-word model-
ling and cross-word modelling using the better method showed an improvement in
word error rate of 8.8%. Wester et al. (1998b) report further improvements when
also adding pronunciation variant probabilities to the model. Another study using
cross-word (phrase level) variation modelling for improving Dutch ASR is reported
by Ordelman et al. (1999b,a).

Tajchman et al. (1995a,b) and Seneff and Wang (2002); Chung et al. (2004);
and Seneff and Wang (2005) report using knowledge-based rules and data-driven
methods to derive their application probabilities. Koval et al. (2002) use knowledge-
based phonological rules to create hierarchical networks representing the possible
pronunciations of words.

2.2.5 Data-Driven Methods

Data-driven methods have been used for creating more complex ASR pronunciation
models and this section presents some experiments using data-driven methods for
pronunciation modelling.
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Wester et al. (2000) used a data-driven approach to the deduction of phonolo-
gical elision rules. First, an ASR lexicon with one canonical phonemic representa-
tion per orthographic word was automatically expanded with all possible variants of
each pronunciation representation with one or more phonemes deleted, given the re-
striction that at least one phoneme per syllable should be left. This naive expansion
of course produced many variants that are never used in actual speech. However,
in a forced recognition step, the recogniser was used to transcribe a spontaneous
speech corpus and thus select the most likely phonetic realisation for each word
given the observation sequence. Elision rules for phonemes in the context of one
preceding and one succeeding phoneme were derived by comparing the phonemic
representations in the original lexicon with the selected phonetic realisations. Rules
which were applied less than 100 times in the material transcribed were excluded.

The rules also had to have a minimal relative rule application (number of times
the rule was applied divided by the number of times it could have been applied)
of 0.2 to be included in the final system. A new recognition lexicon was generated
from the lexicon with one representation per word, using the derived rules. Further,
the acoustic models were re-estimated using the selected phonetic realisations and
the language models were re-estimated, so that different variants received different
probabilities. Using the four most common elision rules showed the same recogni-
tion performance as using a four-rule knowledge-based rule system, although the
data-derived rules only produced a quarter of the pronunciation representations pro-
duced by the knowledge-based rules. In a similar comparison of knowledge-based
and data-derived phonological reduction rules, Kipp et al. (1997) use a data-driven
approach that outperforms a knowledge-based approach for German continuous
speech segmentation. Fukada et al. (1998) report using a method similar to that
used by Wester et al. (2000) to expand a lexicon for Japanese ASR.

Byrne et al. (1998) and Riley et al. (1999) describe the use of decision trees
to model pronunciation variation in English continuous speech. Using decision
trees on-line in evaluation (i.e., allowing all phoneme-level variation of each word
found in the training data) proved to decrease recognition performance. Limiting
over-generalisations by only allowing variants that occurred sufficiently often in the
training material, however, increased the performance slightly. Multi-word units
added to the lexicon further increased the performance.

Pastor-i-Gadea and Casacuberta (2001) automatically train finite state auto-
mata using Spanish speech data. The automata describe the different phonetic
realisation variants of words. Like Byrne et al. (1998), Pastor-i-Gadea and Cas-
acuberta also use the stop criterion of a certain number of appearances in the
training data for a rule to be incorporated in the system. Kessens et al. (2002)
show that this rule selection criterion (i.e., absolute frequency of rule application)
is the most suitable selection criterion for a Dutch ASR.
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2.2.6 Pronunciation Modelling in Speech Synthesis

A strategy used for modelling phone-level pronunciation variation for speech syn-
thesis purposes has been to model the pronunciation of a single speaker, typically
the speaker whose voice is used in the concatenation database (cf. e.g. Miller, 1998a;
Sundaram and Narayanan, 2002; Bennett and Black, 2003, 2005). Miller (1998b)
used syntactic and prosodic annotation at several linguistic levels to create an ar-
tificial neural network model of the pronunciation of a single speaker. When the
specific purpose is to get the most natural-sounding speech synthesis, modelling the
pronunciation of a single speaker is a good strategy.

However, a model created for a single speaker will not be general for any group
of speakers. If the aim is to describe the language variety from a pronunciation
variation point of view, it is necessary to study the behaviour of many speakers of
the particular language variety. Statistics can then be used to single out common
patterns from individual patterns.

Werner et al. (2004a,b) use a stochastic pronunciation net induced from a speech
corpus including many speakers (thus being a more general pronunciation model)
and a word duration model. They first determine adequate word durations us-
ing the probability of a word in its context and then estimate the appropriate
phone sequence given the specified durations, the transition probabilities from the
word pronunciation nets, and word transition probabilities. Listening experiments
showed that the efforts gave rise to more colloquial and natural-sounding speech.

Hawkins et al. (1998) and Ogden et al. (2000) use knowledge-based syntactic
and phonological information in a speech synthesis system called PROSYNTH. The
information is used to model segmental-phonetic and prosodic pronunciation and
to select concatenation units or generate parameters for parametric synthesis. The
information is organised in a hierarchical structure with the linguistically motivated
levels intonational phrase, accent group, foot, syllable, syllable constituent (onset,
rhyme), rhyme constituent (nucleus, coda) and phoneme. The units at each level
have different types of information attached to them. For the syllable, the informa-
tion attributes include strength, which takes the values strong and weak, and weight,
taking the values heavy and light. For the phoneme, the attributes are phonological
features.

2.2.7 Pronunciation Modelling in HMM Synthesis

A Markov chain is a weighted finite-state atomaton, i.e., a set of interconnected
states where the probabilities of transitioning from each particular state to another
are different. A Hidden Markov Model (HMM) used for phoneme recognition has
states corresponding to parts of phonemes, represented by parameters derived from
a speech signal. Such a model can be used to convert an input speech stream
into a string of phonemes through converting the speech stream into a series of
observations, i.e., a series of parameterised samples of the signal. When the signal
has been converted into a series of observations, it can be calculated which is the
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most likely way for the model to generate the observation sequence, i.e., which is the
most probable path trough the chain with weighted transition probabilities given
the series of observations. When the most probable path is known, a sequence of
phonemes can be derived by back-tracking through the model.

Yoshimura et al. (1999) describe HT'S, a Hidden Markov Model synthesis system
where speech is generated from HMMs and in which the spectrum, fp, and duration
are simultaneously modelled. Context-dependent phone HMMs (models for single
phones using five states corresponding to different parts of the phone) are built
taking a large set of contextual attributes into account. Separate HMMs are built
for spectrum and pitch, and state duration is modelled by Gaussian distributions.

In the original system for Japanese speech, the contextual factors considered
were information about 1) the number of morae contained by the sentence, 2) the
position of the breath group in the sentence, 3) the number of morae in the preceding,
current and succeeding breath group, 4) the position of the current accentual phrase
in the current breath group, 5) the number of morae in the preceding, current
and succeeding accentual phrase, 6) the accent type of the preceding, current and
succeeding accentual phrase, 7) the Part of Speech of the preceding, current and
succeeding word, 8) the position of the current phoneme in the current accentual
phrase, and 9) the identity of the preceding, current and succeeding phoneme.

Tokuda et al. (2002) used HTS for implementing a synthesis voice for English.
For the English version, the set of contextual factors was extended. In the imple-
mentation for English, contextual factors connected to five types of linguistic units
were considered. Connected to the phoneme unit was information about 1) the
identity of the preceding, current and succeeding phoneme, and 2) the position of
the current phoneme in the current syllable.

Connected to the syllable unit was information about 1) the number of phonemes
in the preceding, current, and succeeding syllable, 2) the accent of the preceding,
current, and succeeding syllable, 3) the stress of the preceding, current, and suc-
ceeding syllable, 4) the position of the current syllable in the current word, 5) the
number of preceding and succeeding stressed syllables, respectively, in the current
phrase, 6) the number of preceding and succeeding accented syllables, respectively,
in the current phrase, 7) the number of syllables from the previous to the next
stressed syllable, 8) the number of syllables from the previous to the next accented
syllable, and 9) the identity of the vowel in the current syllable.

Connected to the word unit was information about 1) the Part of Speech (auto-
matically obtained ‘guess’) of the preceding, current and succeeding word, 2) the
number of syllables in the preceding, current and succeeding word, 3) the position
of the current word in the current phrase, 4) the number of preceding and succeed-
ing content words, respectively, in the current phrase, and 5) the number of words
from the previous to the next content word.

Connected to the phrase unit was information about 1) the number of syllables
in the preceding, current and succeeding phrase, 2) the position in a major phrase,
and 3) the TOBI end tone of the current phrase. Connected to the utterance unit
was information about the number of syllables in the current utterance.
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The HTS system has also been implemented for Swedish by Lundgren (2005).
It was unfeasible to create separate models for all combinations of context factors
for any of the implementations, since the amount of training data needed would be
too extensive. Further, it may not even be possible to collect a speech database
containing all combinations of factors. To overcome this problem, context factors
were clustered.

The HTS approach does not explicitly model phone-level pronunciation. How-
ever, phone-level pronunciation is modelled implicitly in that phonetically more or
less salient spectral properties and durationally longer or shorter segments (and
more or less salient pitch characteristics) are selected depending on the specific
context factors.

Prahallad et al. (2006) take pronunciation variation modelling in HMM synthesis
a step further and suggest five-state HMM phoneme models allowing either all
possible interconnections between states or all possible connections in the forward
direction. Such phoneme models showed better log likelihood scores when applied
to forced recognition (where the phoneme sequence is known, as in the speech
synthesis case) of affected readings of short stories. The better scores indicated a
better fit to the data than when standard HMM phone models, where all states
must be passed in left-to-right order, were used. An additional context factor was
also introduced in the duration models, the number of times the current word had
been mentioned in the discourse (for content words).

2.2.8 Pronunciation Variation in Swedish

There is a considerable corpus of studies on the variation in pronunciation of
Swedish words uttered in context from a phonetic perspective. These studies are
mostly detailed phonetic studies, but some are interesting also from a more phon-
ological perspective. For example, Lindblom (1963) investigated the process of
reduction of Swedish vowels resulting from increasing speech rate. Ohman (1967)
investigated the coarticulation properties of Swedish dental stops in vowel context
(vowel-consonant-vowel syllables). Engstrand (1988) investigated the articulatory
effects of stress and speaking rate in Swedish vowel-consonant-vowel syllables. Eng-
strand and Krull (1988) and Engstrand (1992) investigated phonetic variation in
natural Swedish discourse.

Both segmental-phonetic studies, as those described above, and prosodic-
phonetic studies have been reported. Some examples of studies aimed at prosodic
aspects of pronunciation are Garding (1967), in which juncture and syllabifica-
tion in various styles of connected Swedish speech was investigated, and Horne
et al. (1995), reporting investigations of final lengthening at prosodic boundaries in
Swedish continuous speech.

In addition to the above mentioned studies oriented towards sub-phonemic and
supra-phonemic of pronunciation variation in Swedish, a number of studies on pro-
nunciation variation in Swedish on the phone-level have been carried out. Examples
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of such studies are Garding (1974); Eliasson (1986); Bruce (1985, 1986) and Bannert
and Czigler (1999).

Garding (1974) presents a rule system for transforming canonical phonemic
representations (describing a maximally detailed careful pronunciation of a word)
of consonant clusters at word boundaries into representations corresponding to a
fast speech pronunciation. In this study, lists of examples chosen to include all
consonant clusters at word boundaries possible in standard Swedish (described by
Sigurd 1965) were recorded at different speech rates and phonetic transcripts of
these recordings were used to derive pronunciation rules.

Bannert and Czigler (1999) studied variations in consonant clusters using a lar-
ger corpus of recorded speech. The corpus included both read-aloud examples of
the same type as the Garding (1974) speech data and speech of a more spontaneous
type. Among other things, Bannert and Czigler report the frequency of occurrence
of every type of consonant cluster they find in the spontaneous speech corpus and
the word boundary, compound boundary, and other morphological boundary con-
text of each cluster. They also report the frequencies of all the different types of
elision and assimilation processes (devoicing and fricativisation) they found in the
corpus.

Eliasson (1986) presents some common types of phonological processes describ-
ing the differences in pronunciation between words spoken in isolation and words
spoken in context, and between compound constituents spoken in isolation and
spoken in the context of their compound word, respectively. The main focus is on
retroflexation (postalveolarisation). In central standard Swedish and several other
Scandinavian dialects, combining a unit ending with an /1/ in its isolated form
with a unit beginning with a dental consonant in its isolated form, gives rise to
retroflexation of the dental consonant and /1/-dropping. The process is recursive
for all dental in direct succession, with some exceptions.

Bruce (1986) discusses omissions of vowels and syllables in everyday speech
pronunciation as compared to canonical pronunciation. According to Bruce (1986),
omission phenomena are governed primarily by the syllable-bound rhythmical or-
ganisation of spoken language. The author proposes a set of rules compiled through
working with (listening, transcribing) different types of speech material. The rules
were tested using a read-aloud sample text containing many words with possible
elisions encountered in earlier work with speech data.

Many descriptions of Swedish from different phonology-related perspectives not
focusing on pronunciation variation are, of course, also available. Since the work
described in this thesis involves linguistic annotation of many different kinds, much
of this work has been used as references. These descriptions of Swedish will be
discussed in the following chapters in association with the description of annotation
relating to their particular subjects.
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2.3 A Tentative Rule System for Phonological Reduction

Inspired by the results from the above mentioned studies on pronunciation variation
in Swedish, Jande (2003a,b) constructed a tentative rule system for transforming
canonical phonemic representations of words into representations corresponding to
a fast speech rate. The rule system was used to create synthetic speech stimuli used
in an assessment experiment.

Nine words resulting in a wide range of rule applications were selected and each
word was placed in a carrier sentence. The sentences were converted into phono-
logical pronunciation representations using a canonical pronunciation lexicon. The
canonical pronunciation representations were then processed by the rule system,
resulting in a set of reduced pronunciation representations. Both the canonical and
the reduced form of each sentence were synthesised using a diphone synthesiser.
Three different speech rates were produced for each sentence variant, low (the sys-
tem default rate), medium (1.3 times the default rate) and high (1.7 times the
default rate).

The sentences were presented in pairs to a group of subjects, with each sentence
of a pair having the same target word and the same speech rate, but differing with
respect to reduction. The subject’s assignment was to select the most natural-
sounding sentence from each pair. The experiment showed that the reduced stimuli
were generally perceived as more natural for the medium and high speech rates while
there was no significant difference in perceived naturalness between the reduced
and the canonical stimuli for the low speech rate. It was further shown that the
preference bias in favour of the reduced pronunciations increased with increasing
speech rate.

Some sentences broke the general pattern and were preferred by a majority of
the subjects either in their reduced form or in their canonical form, irrespective
of the speech rate. Post hoc word frequency estimations from a newspaper text
corpus revealed that the words always being preferred in their reduced form were
high frequency words, while words always preferred in their canonical form were
low frequency words. Since word predictability has been shown to affect word pro-
nunciation in several previous studies, the word frequency is a possible explanation
for certain words breaking the pattern. However, since only a few words were
studied, there is no way to be certain what made some stimuli break the pattern.
Whatever the cause, the results still support the notion that other things than only
phonological context and speech rate play a role for the pronunciation of a word.

Thus, to conclude, this first study showed that a general reduction rule system
can be used to increase the perceived naturalness of speech synthesis at high speech
rates. It also suggested that more context variables than phonological context must
be included in a model of pronunciation in discourse context.
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2.4 Summary

In this chapter, some basic concepts relating to pronunciation modelling have been
defined and a background to the pronunciation modelling research area has been
presented. An experiment using a tentative phonological rule system for adapting
synthetic speech to higher speech rates was summarised. The experiment showed
that reduction rules can be used to increase the perceived naturalness of speech
synthesis at high speech rates. However, the results suggested that more context
variables than phonological context must be included in a model of pronunciation
in discourse context.

The next chapter will describe the creation and structure of the CENTLEX lex-
icon database, a machine-readable lexicon containing canonical pronunciation rep-
resentations, which are used as the basis for the pronunciation modelling approach
described in this thesis.



Chapter 3

Pronunciation Lexicon
Development

The point of departure for the data-driven pronunciation modelling method de-
scribed in this thesis is a set of context-independent pronunciation representations
that correspond to phonemic descriptions of the type that can be found in a pronun-
ciation lexicon. For the method to be successful, it is important that the phonemic
pronunciation descriptions are of high and consistent quality. For this reason, a part
of the pronunciation modelling research reported in this thesis has been aimed at
developing a canonical pronunciation lexicon for Swedish. Considerable effort has
been put into the development of this lexicon, which has been named CENTLEX.

A high quality pronunciation lexicon is essential for many areas of speech and
speech technology research and for most speech technology applications. CENTLEX
has been built to be a central lexicon database for the Department of Speech, Music
and Hearing at KTH and the Centre for Speech Technology (CTT) and to meet
the specific demands of the phone-level pronunciation modelling work which is the
focus of this thesis as well as general demands from speech technology research and
application development. CENTLEX is built as a relational database, and for the
lexicon to function as a central resource, tools for facilitating access and continuous,
cooperative editing of the lexicon database have been developed.

For the reader interested in lexicon development, the book Lexicon Development
for Speech and Language Processing (Van Eynde and Gibbon, 2000) gives “a sur-
vey of methods and techniques for structuring, acquiring and maintaining lexical
resources for speech and language processing” (in the words of the publisher). An-
other book, The Structure of the Lexicon: Human versus Machine (Handke, 1995)
can also be used as a reference for work on machine-readable lexica.

23
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3.1 CentLex: A Central Lexicon Database

The department of Speech, Music and Hearing (TMH) and the Centre for Speech
Technology (CTT)! at KTH have been involved in a large variety of projects over
the years and various applications have been developed at TMH and within CTT.
Many of these projects and applications have entailed the development of lexical
resources. To facilitate access to the lexical information available at TMH/CTT,
the lexical data have been mapped onto a common format and brought together in
a central lexical database, CENTLEX.

The main ideas behind the CENTLEX database are that all lexical data used
in reasearch and application development is stored centrally, so that the data is
immediately and easily accessible for all researchers at the department and for
all partners involved in the Centre. Lexicon-related work performed in different
projects can be easily integrated with the central lexical resource, and the results
immediately available for all users. Standards for mapping between the CENTLEX
format and several commonly used formats have been developed to facilitate in-
formation sharing.

3.2 Information Included in the Lexicon

CENTLEX is a full-form lexicon, with each entry minimally containing an ortho-
graphic word form and a grammatical analysis (Part of Speech and morphology).
An entry can also have an arbitrary number of phonemic representations, ordered
by their probability of use. Each phonemic representation may be enriched with
information about the intended context of the representation (e.g. reduced form or
foreign language). Information about the source language is added e.g. for proper
names, since orthographically identical names may be pronounced differently de-
pending on the native language environment of the person bearing the name. An
entry also contains information about the probability of the particular grammatical
analysis, given the orthographic word (estimated from a large automatically tagged
text corpus).

3.2.1 Formats

Grammatical analyses (Part of Speech and morphology) in CENTLEX are in the
format used in the suc corpus (Ejerhed et al., 1992). Pronunciation representations
are stored in a special CENTLEX meta-format similar to the Swedish Technical
Alphabet (STA), presented in Appendix A, tables A.1 and A.2. The CENTLEX
meta-format differs from the STA format in that the retroflex consonants that are
part of the central standard variety of Swedish, but not of all variants of Swedish,
are not part of the meta-format.

LCTT is supported by VINNOVA (the Swedish Agency for Innovation Systems), KTH, and
participating Swedish companies and organisations.
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An orthographic sequence of an <r> and a dental consonant is in most cases
pronounced as a retroflex consonant in central standard Swedish. However, in
southern standard Swedish, the same sequence would be pronounced as an /v/
followed by a dental consonant. STA was developed for representing the central
standard Swedish pronunciation, while the CENTLEX representations are common
to the language varieties.

Thus, what would be pronounced as a retroflex in central standard Swedish is
represented by an /1/ followed by a dental consonant in CENTLEX. What would
be pronounced as a sequence of retroflex consonants in central standard Swedish is
represented by an /1/ followed by a sequence of dental consonants.

When creating an actual pronunciation lexicon from the CENTLEX meta-format,
the representation can be interpreted literally, as an /r/ allophone followed by a
dental consonant or sequence of dental consonants, if a southern standard Swedish
lexicon is desired. However, if central standard Swedish pronunciations are the
desired output, the /1/ followed by a sequence of dental consonants can easily be
converted into a sequence of retroflex consonants. A special star symbol (*) can be
introduced to symbolise that the conversion should not be performed at conversion
from the CENTLEX meta-format to a representation matching a central standard
Swedish pronunciation (this can be the case e.g. for names with ‘foreign’ origin).

The CENTLEX phoneme inventory includes a set of xenophone symbols, so that
loan words and names of ‘foreign’ origin can receive representations closer to the
original language pronunciation than what is possible with only the more restricted
set of phonemes used more generally in Swedish. Table B.1 in Appendix B shows
the xenophone symbols used in CENTLEX. For further information on xenophones
in Swedish, cf. e.g. Eklund and Lindstrém (2001) and Lindstrém (2003), which
report investigations on the use of xenophones in Swedish and the implications of
xenophones for speech technology applications.

Mappings from the CENTLEX meta-format have been developed for a set of
other pronunciation representation formats. Some examples are the Swedish IPA
(Engstrand, 1999) format, the SUO format—the format of Svenska Spraknimndens
Uttalsordbok, the pronunciation dictionary of the Swedish Language Council Garlén
(2003), and the original STA format (cf. Table A.1). Mappings to several
application-specific representation formats have also been developed, e.g. to the
formats used by the Infovox/Acapela Group synthesis voices Ingmar and Emma,
by the L&H+ Swedish speech synthesis, by the Loquendo Swedish speech synthes-
iser, and by the Nuance Swedish automatic speech recogniser, respectively. Further
a mapping to a STA-similar format used for ASR with HTK (the Hidden Markov
Model Toolkit) has been developed.

If a lexicon is to be generated e.g. for a specific speech synthesis system, the
meta-format is mapped to a form that the system can handle. This mostly involves
mapping xenophone symbols to their nearest equivalent present in the specific di-
phone or unit selection database.
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3.3 Awvailable Lexical Resources

As mentioned, CENTLEX incorporates lexical resources developed at the Depart-
ment of Speech, Music and Hearing at KTH and the Centre for Speech Technology
over the years.

The lexical resources constituting the backbone of the CENTLEX database are
the KTH text-to-speech lexicon, developed during many years and used e.g. in the
KTH text-to-speech system (Carlson and Granstréom, 1976), the Swedish ONOMAS-
TICA proper name lexicon (Carlson et al., 1990; Gustafson, 1995a,b, 1996; Trancoso,
1995) and the Swedish DRAGON lexicon (Reimers et al., 1995) and various word
lists and text data available at the Department of Speech, Music and Hearing at
KTH.

For creating the DRAGON lexicon, the 120,000 most frequent words (ortho-
graphic forms) were selected from a 166 million word text corpus? with approxim-
ately 1.8 million unique word forms. The text corpus included mostly newspaper
text, but also novels, law text, parliament protocols, public information, etc. The
grapheme-to-phoneme rules of the KTH text-to-speech system were used to sup-
ply phonemic pronunciation representations for the words, and the representations
were then manually checked and corrected when necessary. Some word units not
deemed appropriate for the lexicon were discarded and the final lexicon contains
110,587 word units with manually checked pronunciation representations.

The ONOMASTICA lexicon contains 184,760 names with pronunciation repres-
entations. From these names, 5,967 are place names, 10,459 are first names, 39,245
are street names, 122,524 are family names and 6,565 are titles.

For the creation of CENTLEX, the Stockholm-Umea Corpus, suc (Ejerhed et al.,
1992), was used as one of several information sources for selecting and ordering
pronunciation representations for specific entries and for verification of grammatical
analyses. The specifics of this process are described in Section 3.6.

3.4 Tools for Generating Lexical Information

A morphological analyser called TWOL, building on the free PCKiMMO? system
(SIL International, 1995; Antworth, 1990, 1995), was used for producing gram-
matical analyses and pronunciation representations for the words in the lexica and
word lists mentioned above. The special thing about TwoOL is that it produces
phonological pronunciation representations from morph pronunciation representa-
tions (Magnuson et al., 1990). TwoOL has also been extended with proper name
pronunciations (Gustafson, 1996).

2Punctuation marks are included in this word count. The punctuation marks amounted to
20,5 million tokens.

3The PCKIMMO analyser is an implementation of Koskenniemi’s two-level morphology (Ko-
skenniemi, 1983; Karttunen, 1983).



3.5. Analysis Format Conversion 27

The grapheme-to-phoneme rules of the KTH text-to-speech system (Carlson and
Granstrom, 1976) have been utilised in the development of the lexical resources in-
cluded in CENTLEX and have also been used in the further extension of CENTLEX
to suggest pronunciation representations when no other pronunciation representa-
tion sources were available.

3.5 Analysis Format Conversion

The next section (Section 3.6) describes the initial integration of lexical data, form-
ing the basis of the CENTLEX database. More data has been added at later stages,
with methods specific for the data integrated with CENTLEX at the particular data
additions. The TWOL system has, however, been used in most cases and thus the
mapping, described in this section, between the TWOL grammatical analysis format
and the suc format used in CENTLEX is of general interest for the lexicon devel-
opment efforts described in this chapter.

Although the grammatical analysis formats in some cases are organised in dif-
ferent ways for TWOL and SUC, respectively, it is in most cases possible to find a
one-to-one conversion between the formats. However, it is not always possible to
make an unambiguous mapping from TWOL to suC. Below, some mapping problems
that arise are briefly discussed together with the solutions employed.

In general, there is a greater use of ‘unspecified tags’ in the TWOL grammatical
analyses than is allowed for well-formed SUC analyses. For example, TWOL analyses
for nouns can contain ‘unspecified tags’ for the gender, number and definiteness
morphological parameters. For well-formed SUC noun analyses, there can be no
‘unspecified tags’. The solution to this problem is to split the analyses, so that a
TWOL analysis N NEU DEF,INDEF PL NOM with the ‘unspecified’ definiteness tag
DEF,INDEF is converted into the two SUC analyses NN NEU PLU IND NOM and NN
NEU PLU DEF NOM?. A TWOL analysis containing more than one ‘unspecified tag’
not allowed in SUC is split to create all possible well-formed sUC analyses. Thus, a
TWOL analysis containing two non-approved ‘unspecified tag’ instances creates four
SUC analyses and a TWOL analysis containing three non-approved ‘unspecified tag’
instances creates eight SUC analyses.

TWOL has two separate Part of Speech (PoS) tags for adverbs, ADV and AD-A.
The latter tag denotes adverbs modifying adjectives only. Since the suc format
does not have a corresponding tag, the ADV and the AD-A tags are collapsed into
the single suc adverb tag, AB. SUC has a special tag for interrogative/relative
adverbs, HA. This tag has no corresponding tag in the TWOL tag system and to
compensate for this, the word forms of TWOL-generated adverb analyses are looked
up in the SUC corpus. If the word has a HA analysis present in the SUC corpus, the
translation algorithm simply uses the SUC tag.

In suc, the participle is treated as a Part of Speech, while it is treated as a
subclass of verbs in TWOL. However, the participles have a special morphological

4The suc tag set is described in Table C.1 in Appendix C.



28 Chapter 3. Pronunciation Lexicon Development

tag in TWOL and are thus easily identifiable. TWOL has a morphological parameter
with tags differentiating active and so called -s forms of verbs (the -s form mostly
signals a passive voice, but may also signal medial or reciprocal meaning or be an
active form). This morphological parameter is not included for participles in the
suc system and is simply excluded for participles during TWOL-to-SUC conversion.

The TWOL analysis format does not include a special verb particle tag, while
suc does. To compensate for this, if there is a verb particle analysis available in
suc for a certain orthographic word form, a verb particle analysis is created for the
word.

The suc format includes many subgroups of pronouns having separate PoS tags,
while the TWOL format includes only one pronoun PoS tag. The TWOL pronoun
analyses can be divided into several categories depending on the morphological
information. There is, however, not enough information in the TWOL tag strings to
enable a division into as many categories as are present in the suC format. Thus,
sucC corpus lookup is employed to guide the conversion from TWOL to SUC format
also in this case. The conversion of a TWOL pronoun analysis into the suc format
can mean changing the PoS from pronoun to determiner (the suc PoS category
WH-determiner, HD, is tagged as a pronoun in the TWOL format).

An unspecified subjective/objective form tag appears in suc, while there is no
correspondent in the TWOL input. The SUC corpus lookup can guide the conversion
algorithm on when to merge TWOL analyses into one SUC analysis and when to
change a subjective form tag or an objective form tag into an unspecified tag.

TwoL has no special PoS tag for possessive pronouns, while suC does. However,
TWOL has a morphological genitive tag for pronouns. All pronouns in the genitive
in TWOL are translated to SUC possessives.

The third person possessive pronouns (in the suc format) are tagged radically
differently in TWOL and SUC, respectively. There is only one possible analysis for
the group in suc, while there are several possible analyses in the TWOL format.
There are no special characteristics in the tag sequences to indicate a third person
possessive pronoun analysis in the TWOL tags and none of the tags match in any
case in TWOL and suC. This seems to be due to differences in the way the words are
interpreted. In these cases, since we are dealing with a small, closed set of words,
the analyses of all words of the particular PoS classes are listed in the SUC manual
(Ejerhed et al., 1992). The suc analyses literally ‘from the book’ can thus be used
in the translation (given the orthographic word form and the fact that the TWOL
PoS is ‘pronoun’).

All interrogative/relative possessive pronouns (vems, vilkens, vilkets, vilkas, and
vars, all translating into ‘whose’) are tagged HS DEF in SUC and in the same way
as other pronouns in TWOL. All TWOL pronoun analyses for the closed set of words
listed above are simply converted into the suc HS DEF tag sequence.

Ordinal numbers are tagged as adjectives in the TWOL analyses, but have a
separate RO POS analysis in SUC. However, instead of a comparison tag, they have
an ordinal number indicator, <O>, and are thus easy to convert into SUC ordinal
number analyses. All morphological parameters except case (the only morphological
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information occurring for ordinal numbers in the sUC format) are excluded during
conversion.

3.6 Creating CentLex Entries

For the initial integration of data to form the basis of CENTLEX, the ONOMASTICA
names were all tagged as PM NOM (proper name, nominative). They also received a
PM GEN (proper name, genitive) analysis, if ending with an -s, the Swedish genitive
suffix. Each combination of orthographic name form and grammatical analysis was
introduced into CENTLEX as an entry. The pronunciation representation attached
to each entry was collected directly from the ONOMASTICA lexicon, which included
one pronunciation representation per orthographic word.

For the DRACON lexicon and other word lists with manually supplied or checked
pronunciation representations, the entry creation procedure was not quite as simple.
Here, the grammatical analysis of a word was not given and analyses were obtained
by processing the words of the lexica through the TWOL system and subsequently
converting the analyses into the suC format as described in Section 3.5.

Since TWOL generates all analyses that are possible by combining morpholo-
gical constituents from a lexicon, identical analyses can sometimes be created in
several ways. This happens almost exclusively for compounds where different mor-
phological constituents can be combined to form the same orthographical string, as
shown in Example 3.1 (with analysis in sUC format). In some cases, a single stem
word and a compound can have the same orthographic form, as shown in Example
3.2. A third possibility is that different numbers of constituents can be combined
to form a single orthographic form, as shown in Example 3.3°.

sjalvagande PC PRS UTR/NEU SIN/PLU IND/DEF NOM
sjédlv|&gande ‘self-owning’
sjal|vagande ‘soul-weighing’ ex. 3.1

centrum NN NEU SIN IND NOM
centrum ‘centre’
cent | rum ‘cent room’ ex. 3.2

publikdragande PC PRS UTR/NEU SIN/PLU IND/DEF NOM
publik|dragande ‘audience-attracting’
publlik|dragande ‘pub corpse-dragging’ ex. 3.3

In the TWOL output (with analyses converted into the suc format), there can
thus be several identical combinations of orthographic word form and analysis.

5The participle ending -ande has the same orthographic form as the word ande ‘spirit/genie’,
which opens up for noun compound analyses of many words ending with this string (including
examples 3.1 and 3.3).
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However, the information decided on to define a CENTLEX entry was the ortho-
graphic word form and the grammatical analysis, and it is not possible to distinguish
between differently derived entries with these identifiers being identical. Thus, the
decision was made to only create one CENTLEX entry per unique combination of
orthographic word form and grammatical analysis (although this is not a strict
requirement in CENTLEX).

The different ways of arriving at a specific analysis for a particular word may
result in a set of different pronunciation representations, since these are created
from the phonological forms of the morphological constituents. Thus, the decision
to create only one CENTLEX entry per combination of word and analysis required
a strategy for selecting and sorting the different TWOL-generated pronunciation
representations that might occur for an entry.

The different sources of a particular analysis are, although mostly all theoretic-
ally possible, not equally probable. For example, in Example 3.2, the single stem
analysis ‘centre’, is much more probable than the slightly anomalous (except, per-
haps, in a very specific context) compound analysis ‘cent room’. The TWOL system
actually produces a probability score for the combination of source and analysis
given the word. This means that the same analysis from different sources can be
scored differently in the same way as different analyses can be scored differently.

The score is dependent on e.g. the number of compound constituents, and ana-
lyses originating from few source constituents are weighted lower (the lower the
score, the more probable the analysis) than analyses originating from more con-
stituents. During the creation of CENTLEX entries, the score was exploited for
ordering the pronunciation representations when merging identical combinations of
word and analysis to form unique combinations, tentative CentLex entries. The
scores, and the number of compound constituents directly, were used also to ex-
clude the pronunciation representations from the least probable sources when there
were multiple pronunciation representations for the same analysis.

There was only one hand-checked pronunciation representation for each ortho-
graphic word to be included in CENTLEX. This representation might not be the
correct one for all analyses of the word, butthere was no information about which
analysis/analyses of an orthographic word a hand-checked representation was in-
tended to match. TwOL produced both grammatical analyses and pronunciation
representations specific to each analysis, but since the automatically generated pro-
nunciation representations were known to be less accurate than the hand-checked
representations, it was nevertheless of interest to exploit the high quality of the
manually checked data. Thus, for the creation of the initial version of CENTLEX,
a procedure had to be developed for optimally selecting and ordering the pronun-
ciation representations for an entry.

When the orthographic words collected from different sources had been pro-
cessed through the TWOL system, the grammatical analyses of the TWOL output had
been converted into the suc format, and identical combinations of word and ana-
lysis had been merged into unique combinations (tentative CENTLEX entries) with
pronunciation representations ordered according to the TWOL score for the original
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combination of word, analysis and source, the procedure for creating CENTLEX
entries and attaching pronunciation representations to the entries could be em-
ployed. This procedure is described in Section 3.6.1 below.

3.6.1 Entry Creation Procedure

First, the question of whether an entry should be created from a particular TWOL-
generated analysis was addressed®. Since not all analyses could be manually
checked, the decision was taken to accept a tentative entry (combination of an
orthographic word and a grammatical analysis) as a CENTLEX entry if the com-
bination either occurred in the SUC corpus or in a large, automatically tagged
newspaper corpus. For combinations occurring in neither corpus, decisions about
whether the combination should be included in CENTLEX were made manually by
the author (using some simple script tools to speed up the process).

Second, the questions about which pronunciation representations should be as-
sociated with an entry and in what order, were addressed. If there was a match
between the hand-checked pronunciation representation for the orthographic word
and one of the automatically generated pronunciation representations of the tentat-
ive CENTLEX entry, the hand-checked representation was used as the first represent-
ation in the CENTLEX entry. If there were more (non-matching) TWOL-generated
pronunciation representations’, these were also associated with the entry in the
order in which they occurred in the tentative entry.

The fact that the same pronunciation representation occurred in both the hand-
checked lexicon and the TWOL-generated lexicon made it highly probable that the
hand-checked pronunciation representation was intended to match the particular
analysis of the word and that this was the most commonly occurring pronunciation
representation for the entry. However, other pronunciation representations may
also be valid for the entry.

If there was no match between the hand-checked pronunciation representation
and a TWOL-generated representation, auxiliary information had to be used to
determine the pronunciation representation association. Three cases could be iden-
tified:

Case 1. The current TWOL analysis was the only TWOL analysis for the word
in question. It is assumed that the hand-checked pronunciation representations
are of higher quality than the automatically generated ones. In case 1, the hand-
checked pronunciation representation was thus assumed to have a higher probability
of being a correct representation for the entry than any of the TwOL-generated
representations. Both the hand-checked and the TwoOL-generated pronunciation

6TwoL generates all analyses possible from combining morphological constituents in such a
way that the resulting orthographic form matches a particular orthographic word and that general
rules for word construction are satisfied. TWOL analyses may thus be erroneous or anomalous,
cf. examples 3.1 to 3.3.

"For most tentative entries, there was only one TWOL-generated pronunciation representation
to match the hand-checked representation against.
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representations were included for the entry. The hand-checked representation was
chosen to be the first representation and the TWOL-generated representations were
added in the order in which they occured in the tentative entry (if there were more
than one TWOL-generated pronunciation representation). Example 3.4 illustrates
case 1 (z and y denote pronunciation representations, x # y).

Current TWOL analysis pronunciation: y
Hand-checked pronunciation: x ex. 3.4

Case 2. The current TWOL analysis was not the only one for the word and
there was a pronunciation representation for another TWOL-generated analysis that
matched the hand-checked representation. In this case, the probability of the hand-
checked representation being the correct one for the current analysis is low. Thus,
the TWOL-generated pronunciation (or pronunciations, in the order in which they
occurred in the tentative entry) was (or were) used for the entry, and the hand-
checked representation was not included. Example 3.5 illustrates case 2 (z and y
denote pronunciation representations, x # y).

Current TWOL analysis pronunciation: y
Other TWOL analysis pronunciation: =z
Hand-checked pronunciation: T ex. 3.5

Case 3. The current TWOL analysis was not the only TWOL analysis for the
word in question, but the hand-checked pronunciation representation did not match
a pronunciation representation of any TWOL analysis. The fact that the hand-
checked representation did not match any TwoOL-generated pronunciation repres-
entation was likely due to the fact that the representation had been edited by hand.
It was, however, not known whether the hand-checked representation was meant
to match the current analysis or not. Since there was no indication of whether the
hand-checked representation was the correct one or not, the best bet was to place
the hand-checked representation first (since this is likely the most common pronun-
ciation for the word form) and to also include the TWOL-generated representation
or representations. Example 3.6 illustrates case 3 (z and y denote pronunciation
representations, x # y).

Current TWOL analysis pronunciation: y
Other TWOL analysis pronunciation: y
Hand-checked pronunciation: T ex. 3.6

3.7 Database Structure

The lexical information is stored in an SQL database with separate tables for dif-
ferent types of information. Each lexicon entry has a unique index and this index
is used to relate the different types of information to the entry. In Figure 3.1, an
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relEntryWord defWord
entryld | wordId wordId | word
—16642) | 12971 12971 | apa
16643 12971
16644 12971
relEntryTag defTag defTagType
entry | tag tag | tag tag tag tag tag
Id Id Id Type Type | Type | Type
Id /\\ Id Order
—{ 16642 | 4 4 1 | NN N PoS |1
16642 | 5 5 2 UTR
16642 | 6 6 3 SIN
16642 | 7 7 4 IND
16642 | 8 8 5 NOM
relEntryTrans defTrans
entryld | transId | fransOrder \ transId | trans
—{ 16642 8216 “ |1 N 8216 "A:PA

Figure 3.1: Ezample showing the structure of the CENTLEX database.

example of how information is related in the database is shown. The example does
not include all information available in CENTLEX. The information of an entry is
related to the entry as shown in the first row of tables in Figure 3.1. In the example,
each unique orthographic word form receives a unique index in the defWord table,
and the word is related to an entry index via this word index in table relEntryWord.
Information about the probability of the entry given the orthographic word is re-
lated to the entry in a similar way in a table called relEntryProb.

In the second row of tables in Figure 3.1, it is shown how tags are related to
an entry. Each tag is of a specific type, either it is a Part of Speech tag or it
is a morphological tag of a certain type. The tag types are defined in the table
defTagType. Each type has an order, the order in which it occurs in a SuUC tag
string. It is possible to add tags of different types (ordered or unordered) to the
table, although presently only Part of Speech tags and morphological tags occur.

Even though a pronunciation representation can be related to more than one
entry, the order of pronunciation representations is unique for a specific entry,
as shown in the last row of tables in Figure 3.1. Language tags and comments
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are stored in a table similar to the table defTransOrder table and related to
the combination of entry index (entryId) and pronunciation representation in-
dex (transId) in a table similar to the relTrans table. However, while there can
be only one transOrder per combination of entryId and transId, there can be an
arbitrary number of language tags and comments related to a single pronunciation
representation for a specific entry.

3.8 Availability and Continuous Development

An interface to the database on the internal web of the Department of Speech,
Music and Hearing at KTH makes it possible to search the lexicon and to generate
purpose-specific lexica with the set of information requested on several different
output formats. Figure 3.2 shows the search interface and the result of searching
the word apa ‘ape/monkey’. Figure 3.3 shows the lexicon generation view, where
lexicon information and format can be specified. The lexicon can be generated
based on a specified input word list, or it can be based on some search criterion,
e.g. all proper names. The database has been built to support project tags, so that
it will be possible to check out a lexicon containing the entries or words associated
with a specific project.

CentLex - Kongqueror [=mif]
Location Edit View Go Bookmarks Tools Settings Window Help

@r CentlLex
| \&& |TMH/CTT Central Lexicon Database

[»]

Help

lapa ~APA NN UTR_SIN_IND_NOM
2apa ~APA VB IMP_AKT

Japa ~APA VB INF_AKT

b

Figure 3.2: The CENTLEX Web interface—the results of searching the word apa. The
highest ranking entry with this orthographic word is a noun analysis, ‘ape/monkey’. Apa
can also be used as a verb in the imperative or the infinitive in reflexive constructions such
as apa sig ‘act like a monkey’, lit. ‘ape onself’. Swedish has two word stress patterns, or
accents. In the CENTLEX database, accent Il primary stress is denoted by the ~ symbol.
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Figure 3.3: The CENTLEX web interface—lezicon generation view. When the interface
is used for creating a purpose-specific lexicon based on CENTLEX, the group of entries
and the types of information to be included in the lexicon can be selected. There are also
various formatting options.
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Selected users also have the possibility to edit the lexicon via the web inter-
face, to stimulate continuous lexicon expansion and improvement of existing data.
Changes are logged on a format enabling changes to be reversed. The web inter-
face is not suited for large-scale changes of the database, so a stand-alone annota-
tion/correction tool has been developed for lexicon development on a larger scale.
This tool is described in Section 3.8.1.

The editing tools allow the lexicon to be incrementally built and the latest ver-
sion of the lexicon is always available at a central location. As discussed above,
some of the information first included in the database has been automatically gen-
erated and the information was initially integrated with automatic methods. The
data thus has to be checked with respect to quality, which is done continuously.
Subsequently added information is, however, mostly information which has been
manually obtained or checked. Each lexicon entry is annotated with information
about whether it has been manually checked/corrected, by whom and when, to
separate information of different quality.

3.8.1 The CentLex Edit Tool

An annotation/correction tool has been developed for lexicon development on a
larger scale. This tool stores information on a CENTLEX import format, so that
it can be easily incorporated with the database. Figure 3.4 shows the CENTLEX
Ebp1T Tool interface.

-, _ CentLex Edit Tool test.txt IT”E”_’?
File
Clone entry | First | Prev | Mext | Last | Delete entry from db | Delete entry from file |
Goto entry no I _I &utosynthesise
1/31: apa

Po3 HH _.I

Morphology UTR_SIM_IND_HOM — |

Add transcription |

|'aPa languagefcomment I

Figure 3.4: The CENTLEX Edit Tool interface.

The CENTLEX EDIT tool has been developed mainly by the author, building
on a skeleton application written by Harald Berthelsen at Sodermalms Taltekno-
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logiservice (STTS). The tool has been continually improved in accordance with
suggestions from the CTT CENTLEX project group (cf. Section 3.9) and users at
Acapela Group and CTT.

The input to the tool can be a simple word list (addition mode) or a list of
rows containing all information connected to an entry (check mode), or any subset
of information minimally containing an orthographic word. If a list of words is
to be included in CENTLEX, grammatical analyses, pronunciation representations,
comments, etc. can be added manually. If any type of information has been auto-
matically generated, the information can be manually checked and corrected and
missing information added. A set of entries can be collected from CENTLEX and
checked and corrected using the editing tool.

Using the KTH text-to-speech system (Carlson and Granstrom, 1976) integrated
into the CTT toolbox®, the CENTLEX EDIT tool suggests pronunciation represent-
ations based on the orthographic word forms. The user can listen to synthesised
versions of the pronunciation representations, choosing from a list of diphone voices
or a formant synthesiser.

An arbitrary number of pronunciation representations can be added and an
arbitrary number of language tags and comments can be attached to each repres-
entation. Pronunciation representations and language tags and comments can also
be deleted. All pronunciation representations are parsed and the user is warned
if the representation is not a valid CENTLEX pronunciation representation. It is
not possible to advance to the next entry or to save the file until all pronunci-
ation representations are on the valid format, as to avoid adding erroneous data to
CENTLEX.

The user can choose from a list of all well-formed morphological tag strings for
each valid Part of Speech. The list of valid morphological tag strings is dynamically
updated to match the selected Part of Speech. Entries can be added or deleted from
the current list of entries. If a set of entries has been checked out from the CENTLEX
database for editing, the user can mark an entry for deletion from the database, if
necessary. An auxiliary computer program reads the CENTLEX EDIT tool output
format (CENTLEX input format), converts it into a sequence of SQL statements and
updates the database. During this process, the program also performs a format
integrity check.

3.9 Co-Operation

The work on CENTLEX has partly been conducted in co-operation with others. The
initiative to building CENTLEX was taken by Rolf Carlson from the Department of
Speech, Music and Hearing at KTH and the Centre for Speech Technology (CTT).
The main part of the development has been conducted by the author, initially in
co-operation with Jens Edlund at the department.

8TCL/SNACK tools for speech technology
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Later, CENTLEX developed into a project within the CTT and a special pro-
ject group was formed, with members from the Department of Speech, Music and
Hearing at KTH and participating companies and organisations. The most act-
ive partners have been the Swedish Library of Talking Books and Braille (TPB),
Acapela Group, Phoneticom, S6dermalms Talteknologiservice (STTS) and Dolphin
Audio Publishing/Labyrinten.

The project group has discussed the CENTLEX standards and e.g. made de-
cisions on the phoneme set. Project participants have also been involved in aug-
menting the lexical information and in compiling mappings from the CENTLEX
meta-format to different commonly used pronunciation representation formats.

Acapela Group has provided a set of the most frequent entries in a large news-
paper corpus missing from CENTLEX. The entries were complete with manually
checked grammatical analyses and pronunciation representations. Kjell Gustafson
(Acapela Group/CTT) has been one of the most active project group participants
and has been involved in e.g. developing the CENTLEX xenophone set and in the
beta-testing of tools developed for lexicon work. Kjell Gustafson has also manually
checked and corrected a set of words with automatically generated grammatical ana-
lyses and pronunciation representations prior to their integration with CENTLEX.

3.10 Applications

Thus far, the CENTLEX database has been used as a lexicon in an experimental
speech synthesis system (used in various research-oriented applications at the
department of Speech, Music and Hearing at KTH) and in a large vocabulary
speech recognition system. CENTLEX has also been used for training grapheme-
to-phoneme conversion rules for commercial speech synthesis and as a lexicon for
commercial speech synthesis applications. It has further been used as a reference in
the development of a system for production of talking books with synthetic speech
for visually impaired and dyslectic university students. Finally, CENTLEX has been
used for annotation in research projects aimed at context-sensitive prosody predic-
tion and phone-level pronunciation prediction, the latter being the main focus of
this thesis.

3.11 Summary

In this chapter, the development of CENTLEX, the central lexicon database for
the Department of Speech, Music and Hearing at KTH and the Centre for Speech
Technology (CTT), has been described. The lexicon was designed to meet the
specific demands of the phone-level pronunciation modelling project which is the
focus of this thesis, as well as general demands from speech technology research and
application development. Tools for facilitating access and continuous, co-operative
editing of the lexicon database have been developed.
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The next chapter will present the result of an evaluation of the coverage of
CENTLEX over a collection of texts of different types and of the accuracy of the
pronunciation representations included in the lexicon.






Chapter 4

Pronunciation Lexicon Evaluation

This chapter gives a more detailed account of the contents of CENTLEX and reports
the results of evaluations of the coverage of CENTLEX over a variety of text types
and of the quality of the pronunciation representations included in CENTLEX.

4.1 Lexicon Contents

To obtain an unchanging version of CENTLEX to be used during the evaluation of
the coverage and accuracy described in sections 4.2 to 4.5 below, the database was
dumped to a text file. This ‘frozen’ version of CENTLEX contained 410,326 entries
and 332,626 unique word forms. Out of these word forms, 56,130 occurred in more
than one entry (i.e., had more than one grammatical analysis). A set of 12,902
entries had more than one pronunciation representation attached to it. Table 4.1
shows the number of entries having more than one pronunciation representation,
grouped by number of representations.

Table 4.1: The number of CENTLEX entries having more than one pronunciation rep-
resentation, grouped by number of pronunciation representations.

Number of representations 2 3 4 5 6 7 8 9 >
Number of entries 11,760 953 141 25 17 2 3 1 | 12,902

Not all entries had a pronunciation representation. More precisely, there were
23,099 entries for which there were no pronunciation representations. These entries
were mostly irregular compounds, abbreviations and foreign names collected from
a tagged text corpus. The entries lacking pronunciation representations were not
analysable by TWOL, i.e., TWOL supplied neither an analysis nor a pronunciation
representation for the word forms of the entries.

The KTH text-to-speech system (Carlson and Granstréom, 1976) could be used
for generating pronunciation representations for the words, but since the words
are mostly irregular forms not following normal Swedish phonotactic rules, it is

41
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hypothesised that automatically generated pronunciation representations would be
of low standard. Thus, before such pronunciation representations are included in
CENTLEX, they need to be manually checked and corrected. When tese words are
manually checked, some of them will probably turn out not to be suitable for the
lexicon and may thus be excluded.

Table 4.2 shows the distribution of entries over different Parts of Speech. As
can be seen, the proper names constitute the largest Part of Speech group. This
is on the account of the ONOMASTICA lexicon, included in CENTLEX, containing
only personal names and place names (both tagged as proper names, PM).

Table 4.2: The distribution of CENTLEX entries over different Parts of Speech.

Part of Speech Part of Speech tag Number of entries
Proper name PM 196,094
Noun NN 128,955
Verb VB 28,573
Adjective JJ 27,481
Participle PC 23,537
Adverb AB 2,797
Foreign word Uo 1,609
Interjection IN 245
Pronoun PN 235
Cardinal number RG 215
Preposition PP 166
Verb particle PL 88
Conjunction KN 67
Ordinal number RO 60
Possessive pronoun PS 54
Determiner DT 53
WH-adverb HA 39
Subjunction SN 30
WH-pronoun HP 16
Possessive WH-pronoun HS 5
WH-determiner HD 4
Infinitival marker 1E 3
> 410,326

Since ‘foreign word’ is not an actual Part of Speech, it has been decided to avoid
this class in CENTLEX. However, the foreign word PoS tag (UO) occurs in the data
used to build CENTLEX and there are currently UO entries in CENTLEX.

In a lexicon, it is better to specify how a specific ‘foreign word’ is used in
Swedish (as a loan word) than to use a ‘foreign word’ PoS tag. However, since a
tagger trained on SUC is used in many applications, it may be useful to keep also
the UO tags in the lexicon (i.e., to create multiple entries for loan words). If a
specific word cannot be generally considered a loan word in Swedish and it is not
a proper name, it should be excluded from the lexicon.
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CENTLEX currently includes cardinal numbers and ordinal numbers (in text
form, not in numeral form). Since numbers is not a closed set and can be easily
handled by rules, it would perhaps be better to let rules supply the pronunciation
representations for these, once they have been recognised as numbers (e.g. by a
tagger). However, not all applications involve a tagger and it may be useful to have
pronunciation representations for the most commonly occurring cardinal numbers
(RG) and ordinal numbers (RO) stored in the lexicon. In any case, it is not harmful
to have the forms in the lexicon, so there is no reason to remove the RG and RO
entries that are already in CENTLEX. There are some archaic cardinal number
forms in CENTLEX and these may also be useful to have stored in the lexicon.

There is only one infinitival marker in standard Swedish. Nevertheless, there are
three infinitival markers in CENTLEX—there is the standard form att and a form
which can be used when representing a colloquial speech form in text, a. There
is also a form at in CENTLEX. This is probably a misspelled att which has still
received the IE tag in some of the text resources used to build CENTLEX. It is highly
likely that at is a common misspelling of att and it could be argued that this is a
reason to keep the misspelled form in the lexicon (and giving it a special ‘misspelled’
tag). Currently, there is no standard for how to handle common misspelled forms
of words in CENTLEX.

4.2 Coverage and Accuracy

If the intention is to use a lexicon for providing the pronunciation representations
for the words encountered in a text, e.g. when the text is converted into speech
using speech synthesis, it is interesting to know the approximate share of words in
the text for which a lexicon can provide a pronunciation representation. It is also
interesting to know the share of correct pronunciation representations in the set
of provided representations. Since text-to-speech conversion is one of the intended
uses of CENTLEX, the coverage and accuracy of CENTLEX has been investigated.

In this context, coverage is thus the share of words (or combinations of a word
and a grammatical analysis) covered by the lexicon, i.e., the share of units where the
lexicon can provide a pronunciation representation. The accuracy is the share of ac-
curate pronunciation representations from the total of the representations supplied
by the lexicon.

The coverage of CENTLEX is calculated across a set of text corpora to give a
hint of what the coverage will be for different text types. A randomly selected
subset of the corpus has been manually checked by the author and by another
experienced linguist /phonetician (Kjell Gustafson, CTT/Acapela Group) to give an
estimate of the accuracy. The experts corrected the erroneous entries encountered,
which means that the evaluation could also be used to improve the lexicon. The
evaluation statistics reported are, of course, based on the state of the lexicon prior
to this improvement.
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The pre and post improvement versions of the randomly chosen sets of lexicon
entries also allow more detailed studies of the lexicon accuracy. For example, the
types of discrepancies between the two versions and the presence of systematic
errors (which can be corrected automatically) have been investigated.

4.3 Calculating Coverage

The coverage of CENTLEX over a set of text corpora has been assessed. Table 4.3
gives an overview of the corpora used in the coverage evaluation. The size of each
corpus is described by three measures: tokens—the word count, i.e., the number of
word tokens included in the corpus (punctuation excluded), entry forms—the num-
ber of CENTLEX entry forms, i.e., the number of different combinations of full form
word and grammatical description (Part of Speech and morphology) included in the
corpus and type—the number of word types (different full-form words) included in
the corpus.

Table 4.3: Text corpora used in the CENTLEX coverage evaluation.

Corpus | Origin Text type Tokens Entry forms Types
DN Newspapers News text 81,928,359 1,632,273 1,407,071
TPB Books Student literature 9,343,445 325,444 289,481
GOV Internet Public information 3,943,147 46,961 41,565
RD Internet Public information 3,902,653 91,529 83,732
EU Internet Public information 51,367 8,987 8,425
JK Internet Public information 787,012 33,704 30,676
DOM Internet Public information 320,636 20,359 18,702
FMN Internet Public information 383,809 17,874 15,958
ALL Miscellaneous Miscellaneous 100,660,428 1,793,810 1,543,128

Dagens nyheter (DN) is a daily morning newspaper and Expressen is a daily
tabloid. The DN corpus consists of printed text from DN 1992-1995 and printed
text from Fxpressen 1990-1995.

The Swedish Library of Talking Books and Braille (TPB) is a State library in
charge of e.g. supplying talking book student literature for dyslectic and visually
impaired students. The TPB corpus is a collection of scrambled sentences from
university student literature dealing with a variety of subjects. A randomly selected
percentage of sentences from each book converted into a talking book by TPB has
been added to the TPB corpus. The sentences are kept in their original form, but
stored in random order in the corpus.

The cov corpus is the publicly available Swedish text from the website of the
Swedish government, www.regeringen.se. The RD corpus is the publicly available
Swedish text from the website of the Swedish parliament, www.riksdagen.se. The
EU corpus is the publicly available Swedish text from the website of the European
parliament www.europarl.eu.int (changed to www.europarl.europa.eu after the site
was downloaded).
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Justitiekanslern (JK) ‘Chancellor of Justice’ is the Swedish Attorney Gen-
eral and the JK corpus is the publicly available Swedish text from the website
of the Chancellor of Justice, www.jk.se. The DOM corpus is the publicly available
Swedish text from the website of the Swedish court authority and Swedish courts,
www.dom. se.

Fastighetsmdklarnamnden (FMN) ‘the Real Estate Broker Agency’ is a govern-
ment authority for questions regarding registration and supervision of real estate
brokers. The FMN corpus is the publicly available Swedish text from the FMN web-
site, www.fastighetsmaklarnamnden.se. The texts originating from from websites
were downloaded in June 2006.

4.3.1 Creating the Text Corpora

The sentences from student literature included in the TPB corpus and the websites
of the European and Swedish parliaments, the Swedish government and different
government authorities are all examples of texts available as synthesised speech.

The TPB corpus was provided by the Swedish Library of Talking Books and
Braille (TPB) and the books from which the sentences in the TPB corpus originate
have been converted into talking books with synthetic speech by TPB. All texts
downloaded from the Internet were downloaded (and cleaned from hypertext mark-
up, java script code etc.) by PHONETICOM, a company specialising in talking
websites. PHONETICOM provides talking website solutions for the downloaded sites.
As partners in the Centre for Speech Technology (CTT), PHONETICOM and TPB
have access to CENTLEX and use the lexicon in their work.

All texts were tokenised and tagged with the TnT part-of-speech and morpho-
logical tagger (Brants, 2000) trained by Megyesi (2001, 2002a) on the SUC corpus
(Ejerhed et al., 1992). The DN corpus had already been tokenised and tagged in
this manner for a different project (Rydin, 2002) and the tagged version of this
corpus was re-used in the current evaluation.

The tagged texts were cleaned from non-Swedish text on a sentence basis (ex-
cluding quotes in foreign languages etc.) by excluding the entire sentence if more
than 30% of the words were tagged as foreign words by the tagger® or if more than
30% of the words occurred in one of three respective lists of common English, French
and German words. The English list contained 9,379 common English words, the
French list contained 1,178 common French words and the German list contained
3,776 common German words.

The HTML documents downloaded from a website often included several versions
of the same page, containing the same or approximately the same information. No
attempts have been made to control the uniqueness of the pages downloaded. Web
pages from a particular site may contain some part that is common to all or most
pages, e.g. an address. Frequently occurring strings particular to a specific website

L As mentioned, foreign word is included as a special ‘Part of Speech’ tag in the SUC corpus
and thus for the tagger trained on suc.
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have been excluded when manually detected. However, no systematic search for
such strings has been conducted.

4.4 Coverage Results

As mentioned, the coverage is calculated as the share of words and as the share of
CentLex entry forms, respectively, from a corpus for which CENTLEX can provide at
least one pronunciation representation. Whether the pronunciation representation
is correct or not is not assessed here. The quality assessment reported in Section
4.5 will address the accuracy issue.

The coverage is calculated both over words and over CENTLEX entry forms (the
combination of full form word and grammatical analysis). Since the CENTLEX
entry forms are derived from automatically generated tags, it should be noted that
the tagger used has been reported to produce 6.45% errors when tagging with the
full set of Part of Speech and morphological tags (Megyesi, 2001, 2002a), as in the
current case. Further, the 6.45% error rate was on text more similar to the text
the tagger was trained on than the text in the current text corpora (a tenfold cross
validation experiment). Thus, the CENTLEX entry form type and token estimations
should be seen as rough estimates of coverage rather than actual coverage over the
corpora.

4.4.1 Coverage per Corpus

Table 4.4 presents the coverage of CENTLEX over the different text corpora and for
the combined text from all corpora (ALL). When coverage is calculated over all text
corpora, values are recalculated treating the collections of texts as a single corpus.
This may affect the hapax legomenon status (cf. below) of certain word units and
it may also affect the assignment of words to different frequency groups (cf. below).
Since the DN corpus includes more than 80% of the tokens in the combined text
corpus, coverage values for the combined corpus are close to those of the DN corpus.

It should be noted that the DN corpus constituted a part of the news text
material included in the set of texts used to construct the DRAGON lexicon, now
part of CENTLEX. This may mean that the coverage of CENTLEX over the DN
corpus is not directly transferable to the news text genre, but is most likely an
over-estimation for the genre.

A hapaz legomenon is a word or a CENTLEX entry form occurring only once in
the corpus. Swedish is a compounding language, with many lexicalised compound
words. However, compounding can be seen as part of the grammar and previously
unseen compounds frequently occur in both news text and literature. Many of
the hapax legomena found are temporary ‘grammatical’ compound constructions.
Other sources for hapax legomena are misspellings, temporary abbreviations etc.

If we assume that the bulk of hapax legomena are due to mistakes and grammat-
ical constructions, the probability of these units occurring ever again is very low,
and the usefulness of having these units stored in a lexicon is questionable. The
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set of possible entries for a lexicon is not finite and there has to be some threshold
for probability of occurrence for including a unit into a lexicon for the lexicon size
to be manageable (from the viewpoint of being able to control the quality of the
lexicon entries).

In the CENTLEX case, this means that most hapax legomenon units found in
the evaluation text corpora will be of the sort that is not desired in the lexicon. To
give an idea about the impact of hapax legomenon units on the coverage values,
a coverage statistic calculated with hapax legomena excluded from the corpora is
presented in Table 4.4 within brackets after the value based on all tokens. The
coverage statistics for CENTLEX entry form types and word types increase signific-
antly when the hapax legomena are excluded, while the coverage values for tokens
are only marginally increased, since each hapax legomenon type by definition only
occurs once.

Table 4.4: Coverage (per cent) of CENTLEX over a set of text corpora, including cover-
age statistics based on all CENTLEX entry types and words, respectively, and based on the
corpora with hapax legomena excluded (-hl).

CENTLEX entry form Word
Corpus Types (-hl) Tokens (-hl) Types (-hl) Tokens (-hl)
DN 11.56 (24.99) 94.05 (95.13) 11.91 (25.21) 95.06 (95.98)
TPB 34.72 (59.27) 94.98 (96.54) 36.54 (60.83) 95.79 (97.12)
GOV 56.82 (63.97) 91.18 (91.36) 61.60 (68.17) 93.80 (93.95)
RD 54.09 (66.98) 94.96 (95.53) 55.37 (68.25) 96.22 (96.74)
EU 78.22 (88.85) 93.35 (95.89) 79.00 (89.40) 94.09 (96.43)
JK 61.84 (74.22) 94.55 (95.47) 62.95 (74.57) 95.36 (96.16)
DOM 62.40 (73.87) 87.90 (89.05) 63.57 (75.11) 91.83 (92.94)
FMN 65.50 (76.75) 91.72 (92.57) 67.77 (78.14) 92.58 (93.28)
ALL 10.75 (23.03) 94.04 (95.00) 11.10 (23.30) 95.11 (95.92)

The share of CENTLEX entry form types and word types not in the lexicon grows
as a function of corpus size. Since the bulk of word tokens in a text will always
be a relatively closed set of common words that will not change as a corpus grows,
the share of infrequent types will grow with increasing corpus size. If coverage is
measured for a lexicon including only entries which are commonly accepted lexical
items and no temporary compounds and text-specific terminology, the coverage of
types will thus always decrease with the size of the corpus over which the coverage is
calculated. The token coverage is thus the interesting property of the lexicon, since
it is less affected by the size of the corpus over which the coverage is calculated,
while the type coverage values should be regarded as references.

Across all corpora, 94.0% of the CENTLEX entry forms and 95.1% of the words
in the texts can receive a pronunciation representation if CENTLEX is used as the
only source for pronunciation representations. As previously discussed, this is only
interesting in combination with an assessment of the pronunciation representation
accuracy and such an assessment is presented in Section 4.5.
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4.4.2 Coverage per Corpus and Frequency Group

Although the type coverage values are not very interesting when measured across
entire text corpora, the type coverage is interesting when less frequent CENTLEX
entry forms or words are disregarded and we are left with only mid to high frequency
units—i.e., the types of units that are interesting to store in the lexicon. To be able
to study the coverage of CENTLEX entry forms and words in different frequency
groups, a procedure for dividing the corpus into a high frequency group, a mid
frequency group and a low frequency group was developed.

Under this procedure, the CENTLEX entry forms and words in a corpus are as-
signed to frequency groups by ordering the entry forms and words, respectively, after
descending frequency. The high frequency group is then formed by assigning entry
forms/words to the group, starting with the most frequent entry form/word, while
the share of corpus tokens covered by the entry forms/words in the group is less
than 50%. When 50% of the corpus token coverage is exceeded, entry forms/words
are instead assigned to the mid frequency group. Units are assigned to the mid
frequency group while the corpus token coverage is less than 90%. When 90% is
exceeded, the remaining entry forms/words are assigned to the low frequency group.

0.02

0.011 1

Share of types

0 0.5 0.9 1
Share of tokens covered
Figure 4.1: Share of CENTLEX entry form types in the combined text corpus (sorted

by decreasing frequency) plotted against share of corpus tokens covered by the types. The
frequency group thresholds are marked by dotted lines.

Figure 4.1 illustrates this procedure. The y axis shows the share of (frequency
sorted) CENTLEX entry form types of the combined text corpus and the x axis
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shows the share of the corpus tokens covered by the types. The separate corpora
have distributions similar to the distribution of the combined corpus.

Table 4.5: The number of types in the three frequency groups over the different corpora.

High frequency types Mid frequency types Low frequency types
Corpus | Entry form Word Entry form Word Entry form Word
DN 250 205 33,987 28,545 1,598,036 1,378,321
TPB 159 131 19,842 16,650 305,443 272,700
Gov 197 170 6,470 5,407 40,294 35,988
RD 111 95 6,029 5,145 85,389 78,492
EU 150 130 3,762 3,428 5,075 4,867
JK 123 107 4,877 4,235 28,704 26,334
DOM 120 106 4,088 3,517 16,151 15,079
FMN 94 82 2,677 2,304 15,103 13,572
ALL 245 201 32,798 27,436 1,760,767 1,515,491

Since high frequency types per definition cover more tokens than low frequency
words, there will be few entry form/word types in the high frequency group, while
there will be many types in the low frequency group. For the combined corpus, there
are 245 CENTLEX entry form types in the high frequency group, covering about
50% of the entry form tokens in the corpus. The number of types in each frequency
group is shown in Table 4.5 and the exact shares of tokens in the frequency groups
is shown in Table D.1 in Appendix D.

Table 4.6: Type coverage over text corpora (per cent) in three frequency groups.

High frequency types Mid frequency types Low frequency types
Corpus | Entry form Word Entry form Word Entry form Word
DN 99.20 100.00 94.19 95.76 9.79 10.17
TPB 100.00 100.00 95.24 96.17 30.75 32.87
GOV 94.42 98.24 87.05 90.31 51.78 57.11
RD 97.30 100.00 94.41 96.02 51.19 52.65
EU 98.00 98.46 88.52 89.26 70.01 71.26
JK 97.56 99.07 91.96 93.34 56.57 57.92
DOM 88.33 94.34 85.71 88.43 56.30 57.56
FMN 93.62 93.90 89.20 90.54 61.13 63.75
ALL 99.18 100.00 94.11 95.78 9.18 9.55

Table 4.6 shows the type coverage over the three respective frequency groups
and Table 4.7 shows the token coverage over the frequency groups. As discussed
above, in the high and mid frequency groups, both type and token coverage values
are interesting, since the types found in these frequency groups are mostly of the
sort that are wanted in a lexicon. However, in the low frequency group, the type
coverage values depend on the size of the evaluation corpus and do not reflect
properties of the lexicon that are interesting in the current context.
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As can be seen from tables 4.6 and 4.7, 100% of the word types and word tokens
in the high frequency group are covered by CENTLEX for the combined corpus. For
CENTLEX entry forms, the corresponding coverage values are 99.2% and 99.8%,
respectively.

Table 4.7: Token coverage over text corpora (per cent) in three frequency groups.

High frequency tokens Mid frequency tokens | Low frequency tokens
Corpus | Entry form Word Entry form Word Entry form Word
DN 99.80 100.00 97.38 98.32 52.02 57.32
TPB 100.00 100.00 97.63 98.57 59.32 63.68
GOV 97.14 99.05 90.51 93.38 64.12 69.25
RD 99.32 100.00 94.80 96.58 73.82 75.94
EU 99.18 99.35 91.85 93.03 70.22 72.07
JK 99.30 99.74 95.32 96.32 67.80 69.62
DOM 91.52 96.13 89.64 93.14 62.85 65.10
FMN 95.83 96.06 91.82 92.96 70.83 73.68
ALL 99.80 100.00 97.17 98.27 52.66 57.98

The DN and TPB corpora are larger and contain text on various subjects, while
the Internet corpora are smaller and highly specialised. These facts are reflected in
the coverage values for the high and mid frequency groups of these corpora. There
is a larger share of the high and mid frequency entry forms and words that are not
covered by CENTLEX in the corpora based on texts downloaded from the Internet?.

One cause of this is that there is much site-specific terminology, which is perhaps
better handled by site specific lexica than by a general pronunciation lexicon such
as CENTLEX, although some of the terms not included in CENTLEX are of general
interest and thus could be included in the lexicon.

A cause of the low entry form coverage in relation to word coverage in the mid
frequency groups of the Internet corpora is that the Internet corpora include texts
with special hypertext properties, such as hypertext lists of links. The tagger has
not been trained on this type of text and often misclassifies many times highly
frequent units, such as hypertext links included on many pages, because of their
anomalous context. If the tag is incorrect, the entry form will, of course, not be
found in CENTLEX, although the correctly tagged entry exists in the lexicon.

4.5 Accuracy

As mentioned, the coverage of a lexicon is only interesting in association with an
assessment of the quality of the information in the lexicon. This section reports an
evaluation of the accuracy of the pronunciation representations in CENTLEX.

2The coverage for the combined corpus can still be 100%, since the high frequency group of
the combined corpus is not the intersection of the high frequency groups of the individual corpora,
but created using the same algorithm used for the separate corpora, but on the entire set of texts.
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Of the 245 entries in the high frequency group from the combined text corpus
(cf. Table 4.5), 243 (99.18%) occurred in CENTLEX. The pronunciation represent-
ations for these entries were manually checked and corrected (when necessary) by
two trained phoneticians. Samples matching the high frequency entries in number
(243 entries) from the mid frequency group and from the high frequency group,
respectively, were checked and corrected in the same manner.

The samples were collected using random sampling without replacement, to
ensure that the same entry could not be chosen more than once. For the high
frequency group, all entries have thus been checked, while for the mid and low
frequency groups, only small samples have been checked. The statistics for the mid
and low frequency groups are thus accuracy estimates, while the statistics for the
high frequency groups constitute the actual accuracy for the group. However, as
will be discussed in Section 4.5.4, noise associated with the use of an automatic
tagger affected the results.

An entry can have an arbitrary number of pronunciation representations at-
tached to it and the representations are ordered according to their estimated fre-
quency of use. In the analysis presented here, only the highest ranking pronunci-
ation representation for each entry is considered. This is the pronunciation that
would in most cases be used in a speech synthesis application, if there is no other
information than orthographic word form and an automatically obtained Part of
Speech tag to base the selection of pronunciation representations on.

However, there may not be a Part of Speech tag available for the words of a
text in a particular application using speech synthesis. If no grammatical analysis
is available, the best way to minimise the number of mispronunciations is to al-
ways select the highest ranking pronunciation representation of the highest ranking
entry®. To investigate the accuracy in the absence of PoS tags, the highest rank-
ing pronunciation representation of the highest ranking entry was also manually
checked and corrected.

In the high frequency group, the entries under investigation were always the
highest ranking entries given the word. For the 243 randomly selected entries from
the mid frequency group, there were 27 entries that were not the highest ranking
entry given the word and among the low frequency entries, there were 40 entries
not the highest ranking.

4.5.1 Discrepancy Types

During manual checking and correction of the 243 high frequency words and the
randomly selected words from the mid and low frequency groups, it was obvious that
a simple correct/incorrect dichotomy was hard to establish. Instead, discrepancies
from the manually supplied pronunciation representations were divided into three
types: formal, different and erroneous.

3Since the entries have information about their probability given the orthographic word, entries
sharing an orthographic word are mutually ranked.
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The representations assigned to the formal discrepancy group were of the kind
that would not affect the performance of an ASR system having the representation
in its lexicon, and that would give no or only minor, sub-phonemic, effects in a
speech synthesis setting. The most commonly occurring discrepancy of this type
was an extra compound boundary.

Example 4.1 shows an entry from the low frequency group assigned to the formal
discrepancy category because of an extra compound boundary. The pronunciation
representation in its original form and in its corrected form, both in the CENTLEX
internal format (modified STA, cf. Table A.1 in Appendix A), are presented in the
example. In the pronunciation representations, a hy denotes a compound boundary.

The first compound constituent bistand ‘development assistance’ is etymologic-
ally a compound consisting of a prefix and a noun and from a diachronic perspective,
it could be argued that bistand is a compound. However, in modern usage, the word
would not be considered a compound. The inserted compound boundary does not
affect the pronunciation of the word.

Example 4.2 shows an entry from the low frequency group assigned to the formal
discrepancy category because of an misplaced compound boundary. In this example,
the [t] (T) should be aspirated when the compound boundary is correctly placed,
but unaspirated for the pronunciation representation with the misplaced boundary
and this may have an impact in a speech synthesis setting.

bistandsinsatser ‘development assistance contributions’

NN UTR PLU IND NOM

Formal discrepancy: B"I:hySTANDShyINhyS ‘ATSEOR

Corrected: B"I:STANDShyINhyS‘ATSEOR ex. 4.1

minnestal ‘commemorative speech’ NN NEU SIN IND NOM
Formal discrepancy: M"INEOhyST‘A:L
Corrected: M"INEOShyT‘A:L ex. 4.2

The representations assigned to the different discrepancy group were also not
considered erroneous. The most common type of discrepancy of the different cat-
egory was that words with the common endings -iskt and -igt were represented by
a reduced form, and not by the canonical form. This is due to a conscious decision
made to adapt the pronunciation in lexica included in CENTLEX to running speech.
However, for CENTLEX, it was decided to use the canonical form (defined as the
most detailed pronunciation possible in practice, the ‘citation form’) as the first
representation in the lexicon.

In a speech synthesis setting or an ASR setting, the reduced form would probably
be appropriate more often than the canonical form, and a reduced form can be
included in the list of pronunciation representations in cases where simple rules
cannot supply these forms. Since reduced form pronunciation representations are
(or will be) tagged with a special reduced tag, it is easy to select the reduced form
instead of the highest ranking (canonical) form. Depending on the application,
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reduced forms can be chosen always when available, for function words only, or
depending on specified context criteria.

In short, the different discrepancy is not an error from a practical perspective,
although the pronunciation representation does not strictly follow the agreed upon
standard for CENTLEX. Example 4.3 shows a discrepancy of this kind collected
from the randomly selected entries from the mid frequency group.

samiskt ‘sami’ JJ POS NEU SIN IND NOM
Different discrepancy: S’A:MIST
Corrected: S’ A:MISKT ex. 4.3

Another type of discrepancy that is included in the different category is when
the pronunciation representation is an acceptable one, but another pronunciation
is judged to be more common. In some cases, the more common pronunciation was
actually present in the list of pronunciation representations for the entry, and in
these cases the error was an error in the order of the representations (as assessed
by the phoneticians checking the entries).

Pronunciation representations placed in the erroneous discrepancy group are
representations that are incorrect and would give an erroneous pronunciation if
used in a speech synthesis setting. The particular error or errors of a representation
can be more or less grave and of different types. The error types encountered were
erroneous stress position, erroneous word accent and erroneous phoneme string.
Example 4.4 shows a phoneme string error from the low frequency group (the vowel
length is incorrect). This is a word of foreign origin, but there were also words with
Swedish origin in the erroneous group, as shown in Example 4.5, collected from the
mid frequency group. In this case, there is a word accent error (* denotes accent I
primary stress and and " accent II primary stress).

gentilt ‘stylish’ JJ POS NEU SIN IND NOM
Erroneous discrepancy: SJANGT’ILT
Corrected: SJANGT’I:LT ex. 4.4

duger ‘s good enough’ VB PRS AKT
Erroneous discrepancy: D"U:GEOR
Corrected: D’U:GEOR ex. 4.5

4.5.2 Discrepancy Statistics

The results from the investigation of pronunciation representation accuracy are
summarised in Table 4.8. In the set of randomly selected low frequency entries,
there were altogether 31 discrepancies. That is, there were 31 entries for which the
highest ranking pronunciation representation differed from the manually corrected
representation in some way. Out of these discrepancies, four were formal discrep-
ancies, eleven were different discrepancies and 16 were erroneous discrepancies.
Out of the erroneous discrepancies, eleven were names of foreign origin, three were
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names of Swedish origin (one first name, one family name and one nickname) and
the remaining two discrepancies were a noun and an adjective, both well-established
loan words of French origin (the adjective was gentilt, shown in Example 4.4).

Table 4.8: Discrepancies found in the three groups of manually checked entries, presen-
ted as the number of entries with the highest ranking pronunciation representation differing
from the manually corrected representation and as the share (per cent) of entries with a
discrepancy.

High frequency Mid frequency Low frequency
Discrepancies  Share | Discrepancies Share | Discrepancies Share
Formal 2 0.82 1 0.41 4 1.65
Different 11 4.53 10 4.11 11 4.53
Erroneous 0 0.00 4 1.65 16 6.58
> 13 5.35 15 6.17 31 12.76

In the group of checked mid frequency entries, there were 15 discrepancies, of
which one was a formal discrepancy, ten were different discrepancies and four were
erroneous discrepancies. Out of the erroneous discrepancies, one was a family name
of foreign origin, one was a first name of Swedish origin, one was a noun and one
was a verb (duger, shown in Example 4.5).

Among the high frequency entries, there were 13 discrepancies, of which two
were formal discrepancies and eleven were different discrepancies. There were no
discrepancies classified as erroneous. All but one of the different discrepancies
were common function words having a reduced pronunciation representation as
the highest ranking representation. In most cases, the canonical version was also
included in the set of pronunciation representation for the entry.

4.5.3 Accuracy without Access to the Grammatical Analysis

As mentioned, there may not be a grammatical tag available for the words of a text
in a particular application using speech synthesis and in such cases, the highest
ranking pronunciation representation of the highest ranking entry with a specific
orthographic word is the representation that will probably be selected for the word.

In an evaluation of the accuracy without access to the grammatical analysis,
i.e., when the orthographic word is the only criterion used to select a pronunciation
representation, there are three questions that can be asked:

1. In how many cases is the pronunciation representation correct? for the ran-
domly selected entry?

2. In how many cases is the pronunciation representation correct for the entry
to which it is associated?

4For a representation to be correct in this context, it must be the most commonly occurring
canonical representation for the entry.
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3. In how many cases is the pronunciation representation the most commonly
occurring one given the orthographic word?

The answers to questions 2 and 3 may differ if the ranking of analyses given the
word is judged to be incorrect in one or more cases. Since the evaluation method
involves randomly selecting 243 particular entries from the mid and low frequency
group, it is mainly these entries that are of interest in the current context and the
focus has thus been put on question 1.

To answer this first question, each of the 27 mid frequency entries and the 40 low
frequency entries that were not the most probable ones given their orthographic
word had their highest ranking pronunciation representation substituted for the
highest ranking representation of the highest ranking entry given the word. It
turned out that this introduced no changes; the pronunciation representations were
the same for the randomly selected entry and for the highest ranking entry in
all cases. Thus, the number and types of discrepancies were the same as those
presented in Table 4.8 and that table can serve also as the answer to the first
question presented above.

Since the manually corrected pronunciation representations were the same for
both the randomly selected and the highest ranking entries in all cases, the answer
to question 2 above can also be answered with the values presented in Table 4.8.
The third question was not explicitly addressed, but it is considered highly unlikely
that there are entries that should attain higher ranks for the orthographic words
checked and that these entries should be pronounced differently from those checked.
Thus, with all probability, we can consider also question 3 answered by Table 4.8.

4.5.4 High Frequency Entries not in CentLex

There were two entries in the high frequency group from the combined text corpus
that did not occur in CENTLEX and it was of interest to investigate why the entries
were missing from the lexicon. The results of this investigation showed that there
was a discrepancy between the standard used for grammatical analyses in CENTLEX
and the standard used for the version of suc, on which the tagger was trained.

The tag scheme described in Ejerhed et al. (1992) and used for CENTLEX was
used for suC version 1.0. However, the tagger is trained on a later and only partly
documented (and thus not easily re-usable) version of suc (Kallgren, 1998). In
this version, the set of well-formed tag strings has been updated. Thus, the version
of the SUC corpus on which the tagger used to tag the text corpora was trained
includes tag sequences that are not listed as well-formed in Ejerhed et al. (1992).
From looking at the tag strings occurring in the later version of suc, it seems that
the differences in tag schemes are not large. The main thing that has happened
between the versions is that the set of well-formed tag strings has been extended
to accommodate some special cases not covered by the original set of well-formed
tag strings. Unfortunately, words with special grammatical properties are almost
exclusively high frequency words.
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For example, one of the two high frequency entry forms missing from CENTLEX
is not a well-formed SUC tag sequence, according to Ejerhed et al. (1992). This
entry form is flera ‘several’ JJ POS UTR/NEU PLU IND NOM (cf. Table C.1 in
Appendix C for an explanation of the tags), and since this is a special adjective
only occurring in the indefinite form this is a reasonable analysis. However, in
CENTLEX the analysis JJ POS UTR/NEU PLU IND/DEF NOM, which is a well-
formed tag sequence, according to Ejerhed et al. (1992), is used instead. The
difference in strategies for tag assignment in the SuC corpus (on which the tagger
is trained) and CENTLEX is thus responsible for part of the missing entry types in
CENTLEX.

The other of the two high frequency entry forms missing from CENTLEX is egen
‘own’ JJ POS UTR SIN IND/DEF NOM—also not a well-formed SuC tag in Ejerhed
et al. (1992). However, in this case it is more unclear why the new tag has been
introduced. The adjective egen in singular is always indefinite and there is a special
definite form egna. The analysis JJ POS UTR SIN IND NOM, included in CENTLEX,
thus seems to be the only reasonable analysis.

From looking at the set of grammatical tag strings occurring in SUC and com-
paring them to the well-formed suC tags presented in Ejerhed et al. (1992), it seems
unlikely that the discrepancy in tag sets between the tagger and CENTLEX affects
more than a few entry form/word types. However, since the words involved are
relatively frequent, there may be a significant number of tokens affected, mostly in
the mid frequency group.

Further, as previously discussed, automatic tagging will not give 100 per cent
correct results. The particular tagger used produced 6.45% errors (looking at the
entire tag sequence) in a tenfold cross validation experiment (Megyesi, 2001, 2002a)
and the error rate is probably higher over the text corpora used in the CENTLEX
coverage and accuracy evaluations.

There are thus several sources of noise present in the data used for calculating
the entry form coverage and the values presented must be interpreted as rough
estimates, not only for the text types/genes investigated, but also for the particular
corpora used. In contrast, the word coverage values, both regarding types and
tokens, are not affected by these noise sources and are thus the actual coverage
values for the corpora. However, when generalising to text types/genes, they are
of course still estimates.

4.6 Strategies for Increasing Coverage and Accuracy

The main work with the CENTLEX database has been to combine different lexica on
different formats and of different types into a single lexicon, to build the database
and tools for accessing and editing the lexicon database. Some work has also
been aimed at increasing the coverage of the lexicon and at improving the quality
of the lexicon. The evaluations presented above showed that the coverage and
accuracy are generally high, but that there is some room for improvement. The work
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on improving CENTLEX has only begun and is expected to proceed continuously
henceforth.

The high frequency words investigated in the evaluations were manually cor-
rected and the corrections have been used to update CENTLEX. It would take
relatively little time and effort to go through all entries with function word tags
not included in the high frequency group and make sure that the pronunciation
representations are correctly ordered and that reduced forms are tagged with a
special reduced tag. Further, the text corpora created for the evaluation can be
used for extending CENTLEX with words from the mid frequency range. Missing
entries from this range could be automatically transcribed and manually corrected
relatively fast.

4.7 Summary

In this chapter, evaluations of the coverage of CENTLEX over a set of different text
types and of the accuracy of the pronunciation representations in CENTLEX have
been presented. The average coverage over the texts was 94.0% of the CENTLEX
entry types (combinations of an orthographic word and a grammatical analysis)
and 95.1% of the orthographic words.

The evaluation of pronunciation representation quality showed that among high
frequency entry types, no pronunciation representations were obviously erroneous,
although some differed from the agreed upon CENTLEX standard. Among mid
and low frequency entry types the estimated shares of erroneous pronunciation
representations were 1.7% and 6.6%, respectively.

CENTLEX can be seen as a model of the canonical pronunciation of words in
central standard Swedish. The next chapter will present the speech data used for
discourse context-dependent pronunciation modelling and some of the annotation
methods employed for this pronunciation modelling effort. The canonical pronun-
ciation representations from CENTLEX are used as the basis for much of the an-
notation.






Chapter 5

Annotation Method

A requirement of the data-driven approach taken to pronunciation modelling is,
of course, data. In the current approach, the data consists of the annotation of
spoken language, where the annotation is aimed at describing the discourse context
of a phoneme from high-level linguistic variables such as speaking style, down to
the articulatory feature level. It is important to have data that is accurate and
also to have a sufficient amount of data. Mainly automatic methods are used for
annotation, to make annotation fast in comparison to manual annotation and, thus,
making it practically possible to obtain a sufficient amount of data. The price of
using automatic methods is that the result may not always be as accurate as the
result of manual annotation would have been. This chapter describes the speech
data used for the work on pronunciation modelling presented in this thesis and the
system and methods used for annotating the speech data.

5.1 Speech Data

The speech data used for the pronunciation modelling research described in this
thesis consists of three speech databases: the VAKOS database, a RADIO INTER-
VIEW database and a RADIO NEWS database.

Table 5.1: Speech databases.

Database Origin Type

VaKoS Recording for phonological study Elicited informal monologue
RaADIO INTERVIEW  Radio broadcast Elicited formal dialogue
RaDIO NEWS Radio broadcast Scripted formal monologue

The VAKOS database was originally constructed by Bannert and Czigler (1999)
for a phonological study of variation in consonant clusters. The RADIO INTERVIEW
database and the RADIO NEws database consist of recordings originating from
Sveriges radio (Swedish public service radio) and have previously been used in the

99
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GROG project, which was aimed at modelling the structuring of speech in terms of
prosodic boundaries and groupings, cf. Carlson et al. (2002).

Table 5.2: The distribution of speech from different speakers in the VAKOS database.
Speakers 1-10 are informants for a phonological study.

Speaker Duration (s) Number of Words Number of Phonemes
1 647 1,642 6,082
2 629 1,593 6,145
3 624 1,548 6,081
4 623 2,003 6,994
5 622 1,517 5,964
6 618 1,408 5,617
7 617 1,442 5,604
8 600 1,217 5,000
9 599 1,619 6,112
10 586 1,187 4,478
) 6,165 15,176 58,077

The VAKOS database is a set of elicited monologues; ten speakers talk about
some suggested topic or topics to a recording assistant (who is silent). About
ten minutes from each speaker is included in the database. The VAKOS database
includes some manual annotation at different levels. The parts of the annotation
re-used for the purpose of pronunciation modelling are the orthographic transcripts,
the word-level segmentation, prosodic boundary annotation, focal stress annotation,
and annotation of word fragments (interrupted words), and filled pauses.

Table 5.3: The distribution of speech from different speakers in the RADIO INTERVIEW
database. Speakers 11 and 12 are interviewees, speakers 13 and 14 are interviewers and
speaker 15 is a radio announcer.

Speaker Duration (s) Number of Words Number of Phonemes
11 1,230 3,081 12,638
12 1,080 3,418 13,750
13 331 1,060 4,523
14 297 1,028 4,249
15 20 27 159
> 2,958 8,614 35,319

The RADIO INTERVIEW database is a set of two 25-minute radio broadcast in-
terviews, each including speech mainly from three speakers, the interviewee and two
interviewers. The interviewees are experienced public speakers (politicians) and are
allowed to answer questions in length, rarely being interrupted. The RADIO NEWS
database includes two radio news broadcasts, including speech from altogether three
studio news announcers and eight reporters. Only studio environment recordings
are included in the RADIO NEWS database. The radio broadcast databases include
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orthographic transcripts and manual annotation of prosodic boundaries originating
from the GROG project. For one of the interviews, focally stressed words were also
annotated in the GROG project. This information was re-used in the annotation
for pronunciation modelling purposes.

Table 5.4: The distribution of speech from different speakers in the RADIO NEWS data-
base. Speakers 16—18 are news announcers and speakers 19-26 are news reporters (recorded
in a studio environment).

Speaker Duration (s) Number of Words Number of Phonemes
16 189 428 2,294
17 159 420 2,121
18 107 269 1,297
19 T 195 960
20 71 155 830
21 55 177 814
22 54 163 740
23 47 122 584
24 45 109 517
25 41 113 529
26 31 72 362
> 876 2,223 11,048

All speech data are digital studio recordings sampled at 16 kHz. Table 5.1
gives a brief overview of the speech data and Tables 5.2-5.4 give the details of the
distribution of speech from different speakers in the respective databases.

5.2 A Multi-Layer Annotation System

The annotation used for pronunciation modelling is organised in six layers: 1)
a discourse layer, 2) an utterance layer, 3) a phrase layer, 4) a word layer, 5)
a syllable layer, and 6) a phoneme layer. The layers are segmented into units,
which are linguistically meaningful and can be synchronised to the speech signal.
The segmentation of each layer is strictly sequential, i.e., every part of the signal
belongs to some unit at all layers and there is no overlap between units within a
layer.

Durational boundaries are inherited from higher order layers to lower order
layers, so that a discourse boundary is always also an utterance boundary, a phrase
boundary, a word boundary, a syllable boundary and a phoneme boundary. The
layers are thus hierarchically ordered so that a higher order unit serves as the
parent of all lower order units within its segmental bounds. An arbitrary amount of
information can be supplied for each unit in each layer. Figure 5.1 shows an excerpt
of a sound file with some aligned example annotation. In Figure 5.1, phonetic
transcripts are in the Swedish Technical Alphabet (STA) format. Table A.1 in
Appendix A shows the STA symbols and their IPA equivalents.
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Figure 5.1: Annotation layers with example annotation aligned to the speech signal.

Since the layers are hierarchically ordered and the units in each layer are se-
quentially ordered, the annotation is organised as an hierarchical tree structure
in six levels superimposed on a duration-based segmental structure. The time di-
mension can thus be excluded, so that the annotation is disconnected from the
signal and forms a proper duration-independent tree structure. Figure 5.2 shows
the annotation in Figure 5.1 as a tree structure.

elicited monologue

Figure 5.2: The annotation in Figure 5.1 as a tree structure.

The most important feature of this system of annotation is that information
can be unambiguously inherited from units on higher layers by units on the layers
below. A unit can thus pass on its information to all the units within its bounds
in the lower order layers. Consequently, information connected to syllable, word,
phrase, utterance and discourse layer units, respectively, as well as to the phon-
eme layer units, is accessible from the phoneme layer. This is important since the
pronunciation models will use phoneme-sized units as input. Sequential context
information, i.e., properties of the units adjacent to the current unit at the respect-
ive layers, is used at model induction together with information connected to the
current units. Having the information stored in different layers enables easy access
to the sequential context information.
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5.3 Segmentation

The annotation process begins by a segmentation of each annotation layer into
its respective type of unit. The next step is to retrieve, calculate or estimate
the information to be associated with each unit. With some minor exceptions,
automatic methods are used for segmentation, however with manual supervision to
improve accuracy at some intermediate stages.

In the current context, each VAKOS monologue, each radio interview and each
radio news broadcast is considered a separate discourse and an utterance is defined
as a discourse turn uttered by a single speaker. This means that a monologue
discourse is treated as a single utterance. For dialogues, the discourses were manu-
ally segmented into utterances. During utterance segmentation, pauses between
utterances are included in the utterance to the right.

The speech data used is in one channel, and thus, the speech from different
speakers cannot be separated if overlapping in time. The annotation system could
be extended to accommodate overlapping speech. However, some of the information
included in the annotation are measures calculated from automatically obtained
fo extracts and phoneme durations (cf. sections 5.4 and 5.5 below) and automatic
phonetic transcription based on the signal is employed (cf. Section 5.7). It is neither
possible to calculate signal-dependent measures nor to estimate phone labels based
on the signal for overlapping speech with any degree of certainty.

Thus, the overlapping parts of the speech signal are treated as special non-
analysable units. During segmentation, overlapping speech between utterances is
given the special utterance unit tag <owverlap>, but no other information is associ-
ated with the unit. An <owerlap> utterance unit is extended to the nearest word
boundary, so that the entire word is included in the <overlap> utterance unit, even
if the word is only partially overlapped.

Overlapping speech within an utterance (i.e., where the utterance has started
before the overlap and continues through and after the overlap) is not annotated
on the utterance layer (it is on the word layer, however). The speech segments
annotated as overlapping on the utterance layer are given <overlap> tags also at the
word layer and a <junk> tag on the phoneme layer, but otherwise no information
is included for lower order layers.

In the RaDIO NEWS database, there are some instances of speech overlapping
with music. The parts of the speech overlapping with music are also annotated
with <overlap> tags. The amount of overlapping speech in the speech data used
is very low, and only a very small part of the data is affected.

Automatic segmentation begins at the word level. Automatic speech recognition
can be used to facilitate orthographic transcription. However, for the currently
used databases, the orthographic string, including annotation of filled pauses and
non-speech sounds, has been manually supplied. The orthographic annotation was
included in the databases used and thus inherited from the VAKOS and GRrROG
projects. Only minor corrections were made during the work on pronunciation
varaition reported in this thesis. Special consideration was taken to supplying an
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accurate word sequence, since the automatic alignment is highly dependent on the
orthographic string.

Manually obtained word layer segmentation followed the VAKOS database and
one of the radio interviews. The other radio interview and the RADIO NEWS
database were segmented into word units using the NALIGN automatic aligner
(Sjolander, 2001; Sjolander, 2003; Sjolander and Heldner, 2004), with forced word
boundaries at utterance boundaries. Manual correction of the word layer segment-
ation is performed, since all succeeding annotation depends on this segmentation.
Manual supervision at this level is relatively fast, and increases in the word layer
segmentation accuracy give large improvements in accuracy in successive annota-
tion.

The phrase layer is segmented using the SPARK parser (Aycock, 1998) with
a context-free grammar for Swedish constructed by Megyesi (2002b,a) operating
on a string of tags produced by the TnT part-of-speech and morphological tagger
(Brants, 2000) trained by Megyesi (2001, 2002a) on the suc corpus (Ejerhed et al.,
1992). Only phrase chunk information is used and the phrases are aligned to the
signal using the word boundaries. The parser was created for parsing written text,
but it is robust and produces parses also for tagged orthographic transcripts of
spoken language.

During phrase layer segmentation, only maximal phrases are considered. A noun
phrase can include modifiers of different types, e.g. nouns, adjective phrases and
prepositional phrases. The entire maximal projection of the noun phrase is counted
as a single phrase and the identity and boundaries of any constituent phrases are
ignored. Similarly, conjoined adjective phrases (e.g. ‘very interesting and nice’) are
counted as a single adjective phrase.

Some word units do not belong to any phrase chunk (mostly conjunctions).
For phrase segmentation purposes, these words are given a no phrase tag and are
treated as one-word phrases. Verb phrases are not included in the analysis. Verbs
are instead parts of either a verb cluster or an infinitive phrase. A verb cluster is
a single verb or a continuous sequence of verbs belonging to the same verb phrase
(e.g. ‘would have been’) and an infinitive phrase is a verb in the infinitive proceeded
by an infinitive particle. The infinitive phrase may contain adverb phrases and/or
verb particles, e.g. ‘to go out’. The full set of phrase types produced by the parser
can be seen in table 6.3 in the next chapter.

The phoneme layer is segmented word-by-word using the word boundaries and
canonical phonemic pronunciation representations as input to the automatic aligner.
The phonemic representations are collected from the CENTLEX pronunciation lex-
icon (cf. chapters 3 and 4; Jande, 2006), if the word occurs in the lexicon. Words not
occurring in the lexicon receive phonemic representations generated by a grapheme-
to-phoneme conversion algorithm included in the RULSYS text-to-speech system
(Carlson and Granstrom, 1975, 1976; Carlson et al., 1982). The speech databases
contain some instances of interrupted words (i.e., parts of words). In the cases where
these are not correctly handled by the grapheme-to-phoneme rules, the phoneme
representations are corrected manually, for consistency.
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On the phoneme layer, the synchronisation of units to the signal is more ab-
stract than on the higher order layers; not all phonemes in the canonical phonemic
representations have overt correspondents in the speech signal, but they neverthe-
less will have a duration in the annotation. As will be seen in Section 5.4, the
abstract nature of the phoneme boundaries is exploited in phoneme duration-based
measures.

The most sonorant phone of the syllable constitutes the nucleus of the syllable.
A minimal syllable consists of a nucleus phone only. However, a syllable may also
contain a sequence of phones preceding the nucleus, the syllable onset, and/or a
sequence succeeding the nucleus, the syllable coda. Syllable boundary allocation is
based on the phonotactic constraints of the language. For central standard Swedish,
these constraints have been described by Sigurd (1965). Onset and coda sequences
in Swedish syllables follow the sonority hierarchy (cf. e.g. Jespersen, 1904) with some
exceptions. However, there is no single standard for syllable boundary allocation
in Swedish. Several strategies have been proposed (cf. e.g. Sigurd, 1965; Garding,
1967).

The strategy chosen for the current annotation was to use lists of phonotactically
allowed onset and coda consonant sequences based on Sigurd (1965) and Elert (1970,
pp. 89-90) to exclude impossible syllable boundaries. When it is allowed to place
the syllable boundary at more than one location in a consonant sequence between
two vowels, the coda of the first syllable is maximised if the vowel is a short stressed
vowel, and the onset of the second syllable is maximised otherwise. Further, syllable
boundaries are forced at word boundaries and at compound constituent boundaries
(compound boundaries are included in the phonemic representations collected from
the pronunciation lexicon or generated by RuLsys). The syllable boundaries are
synchronised to the signal using the phoneme boundaries.

Some units with special characteristics have been introduced at the word layer
to ensure that parts of the signal that are not speech (or non-analysable speech)
can be annotated. The special unit types are <overlap> (overlapping speech),
<pause> (including pauses, inhalation and exhalation sounds), <non-speech> (in-
cluding laughter, smacks, clicks, coughs and hawking sounds etc.), and <filled
pause> (e.g. ‘hesitation’ sounds resembling /o/, /ei/, fom/, /3:m/ or /m/). The
information supplied for normal word units is not included for these units. Within
the boundaries of one of the special word layer units, a <sil> (for pauses) or a
<junk> special phoneme unit is used and no additional annotation is supplied on
the phoneme and syllable layers.

5.4 Mean Phoneme Duration Measures

As previously discussed, speech rate is an important factor for the phonetic real-
isation of words. Speech rate can be defined e.g. as the number of phonemes per
time unit, which is the inversion of mean phoneme duration. In the current speech
annotation, several measures of mean phoneme duration are calculated, including
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measures of mean Z-normalised phoneme duration. When normalised, duration
values can be zero. Hence, converting the mean normalised phoneme duration to
a speech rate measure may in these cases give rise to infinite speech rates as an
artefact of the normalisation process. For this reason, the mean phoneme duration
measures are used in the annotation rather than speech rate measures. Mean phon-
eme duration is measured globally, over the entire discourse, and locally over each
utterance, phrase, word and syllable.

5.4.1 Phoneme Durations

The mean phoneme duration measures are based on the automatic segmentation of
the phoneme layer, conducted through automatic alignment of canonical phonemic
representations of words to the speech signal. Mean phoneme duration is thus
an abstract measure and coincides with the more concrete measure mean phone
duration when all phonemes in the phonemic representation are realised. The
measure thus constitutes an estimate of what the mean phone duration would be
if all phonemes in the canonical pronunciation representation were realised over a
certain unit of fixed duration.

Mean phone duration cannot be used for prediction, since the phone string is
the variable to be predicted by the pronunciation model. The exact number of
phones is thus not known in advance when the model is used. The abstract nature
of the mean phoneme duration measure is likely to make it a strong predictor of
phone-level pronunciation; high speech rate is generally a good predictor of phonolo-
gical assimilation and reduction processes and mean phoneme duration emphasises
sections of the speech signal with high speech rates more than a measure corres-
ponding to phones per time unit. It will also emphasise sections of the speech signal
with high speech rates more than measures corresponding to syllables or words per
time unit. As will be discussed in Chapter 10, Section 10.2, for the mean phoneme
duration measure to be usable in the absence of a speech signal, a prosodic model
estimating the durations of phonemes (and hence, of units on higher order layers)
is necessary.

During the phone layer segmentation discussed above, the aligner had the ad-
vantage of being forced to align the phonemic representation of a word to the part
of the signal between the manually supplied word boundaries, which makes the
alignment very close to optimal. This is important for the mean phoneme duration
measures over the syllable to be reliable.

5.4.2 Duration Normalisation

Different phonemes have different inherent durations (cf. e.g. Elert, 1964) and addi-
tionally, central standard Swedish has phonologically long and phonologically short
vowels. The duration of a phoneme is also dependent on e.g. the phoneme context.
Further, central standard Swedish has a complementary distribution of phoneme
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duration. Simply put, in a closed syllable (containing a coda consonant or conson-
ant cluster), a long vowel will always be followed by a short consonant and a short
vowel will always be followed by a long consonant or a consonant cluster, although
length is not generally regarded as a phonological property of the consonant.

Further, vowels in stressed syllables are generally longer than vowels in un-
stressed syllables. These differences may be regarded as variation in speech rate on
the local level: the stressed syllable is pronounced more slowly than the unstressed
syllable. However, here it is assumed that this difference is not primarily a speech
rate difference, and hence the difference is treated as a property of the vowel: the
vowel in stressed position is inherently longer than the vowel in unstressed position.

Neither inherent length nor phonological length/complementary length have
anything to do with speech rate. A one-syllable word with a phonologically long
vowel may have a longer duration than a word with a phonologically short vowel.
However, this does not reflect a difference in speech rate between the words. If
mean phoneme duration is calculated over larger units, such as the phrase or the
utterance, differences due to inherent length and phonological length will to a large
degree even out. However, when speech rate is calculated locally over words and
syllables, they mostly will not.

For this reason, measures based on normalised phoneme duration are included
in the annotation alongside measures based on absolute phoneme duration. During
normalisation, the duration of each phoneme token is related to the mean duration
of the particular phoneme type using the normal transformation (cf. Equation 5.1,
where Z is the normalised duration value, x is the phoneme duration, u is the mean
duration of the phoneme type over the database and ¢ is the standard deviation
of the phoneme duration for the type). During normalisation, phonologically long
phonemes (including consonants) are separated from phonologically short phon-
emes, and vowels serving as nuclei in stressed syllables are separated from their
phonologically identical counterparts in unstressed syllables.

T —p
g

Z= eq. 5.1

5.4.3 Measures Calculated

A variant of the mean phoneme duration measure included in the annotation is
the mean vowel duration. For this measure, all segments except vowels are ignored
under the assumption that the perceived speech rate may be better modelled by
vowel duration alone than by general segment duration.

The mean phoneme duration measures and the mean vowel duration measures
are calculated both from duration on a linear scale and from duration on a logar-
ithmic scale. Since small differences in speech rate probably have larger effects on
phone-level pronunciation when the speech rates compared are high than when the
speech rates are low, the relative size of small differences in duration is increased
through transferring the phoneme durations to the logarithmic scale (loge).
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To sum up, there are measures based on all phonemes and on vowels only; there
are measures based on absolute duration and on normalised duration; and, finally,
there are measures calculated on a linear time scale and on a logarithmic time
scale. All combinations of variants are calculated, resulting in a total of eight mean
phoneme duration measures.

5.5 Pitch Dynamics and Pitch Range Estimation

Pitch movement is correlated with emphasis; much pitch movement over a particular
unit makes the unit stand out from its surroundings and signals that the unit is
emphasised. Emphasis is also correlated with segmental pronunciation, in such a
way that the pronunciation tends to be more similar to the canonical pronunciation
for emphasised words than for non-emphasised words. This means that there is a
correlation between pitch dynamics and phone-level pronunciation. The measures
described below are included in the annotation to make use of this correlation.

The EsPs pitch extraction algorithm incorporated in the SNACK Sound Toolkit
(Sjolander, 2004; Sjolander and Beskow, 2000) is used to extract the pitch contour
from the speech data in 10 ms frames. The pitch extraction algorithm requires an a
priori pitch range to be specified and it proved beneficial to use different ranges for
different speakers. Dividing the speakers into two pitch register groups was sufficient
for adequate pitch contours to be extracted (as determined by audio-visual manual
assessments of random samples of the speech signal using the WAVESURFER speech
tool (Sjolander and Beskow, 2000). A high register (90-600 Hz) group and a low
register (60-300 Hz) group were thus defined and each speaker manually assigned
to the most appropriate group. Using the extracted pitch contours, measures of
pitch range and pitch dynamics (‘liveliness’), respectively, are calculated over each
utterance, phrase and word unit.

Pitch range is defined as the difference between the largest pitch maximum
and the smallest pitch minimum contained by a unit. The first and the last voiced
sample of the unit, over which the pitch-based measures are calculated, are counted
as extreme values. Pitch dynamics measures are based on the absolute distances
of maximum and minimum points or plateaus from a base frequency. Two base
frequencies are used: 1) the median pitch over the unit and 2) a base frequency
estimating liveliness variation as perceived by human listeners.

Observations made by Traunmiiller and Eriksson (1995a) suggest that the best
correlation with human perception of liveliness variation is when the base frequency
is located ~1.5 standard deviations below the mean pitch of the speaker. Thus, the
base frequency estimating human liveliness perception, f3, is calculated separately
for each speaker with equation 5.2, where Z 7 is the mean fundamental frequency
of a speaker over the available recordings (i.e., the mean of the voiced pitch samples
obtained by the pitch extraction algorithm) and oy, is the standard deviation of
the speaker’s fj.
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= Zf, — 1.50’f0 eq. 5.2

The absolute distances of maximum and minimum points or plateaus from the
respective base frequencies are summed up over a unit, and based on these sums,
two different pitch dynamics measures are calculated for each base frequency. First,
the sums are divided by the number of minimum or maximum points or plateaus
contained by the unit, to obtain a measure of pitch dynamics differentiating between
units with pitch extremes with large average deviations from the base frequency and
units with pitch extremes with small average deviations from the base frequency.

Equations 5.3 and 5.4 show how the pitch dynamic measures divided with the
number of extreme points ( fgp50 and fg X respectively) are calculated. In these
equations, E is the extreme point count over a unit, f is the frequency of the i:th
extreme point, pso is the median (the 50th percentile) and f3 is the Traunmiiller-
Eriksson base frequency.

SE L 1fE — psol
[epse = FFF— eq. 5.3

SE e - 1l
FE

£y = eq. 5.4

Second, the sums are divided by the number of (non-zero) pitch samples con-
tained within the unit, resulting in a measure differentiating between units with fast
average pitch movement and units with slow average pitch movement. Equations
5.5 and 5.6 show how the pitch dynamic measures divided with the number of pitch
samples contained by a unit, S, are calculated. The measures are denoted fg’pm

and fi Ix respectively.

E
i1 i — psol

S eq. 5.5

d _
f87p50 -

E e
—lel |£f fol eq. 5.6
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Equal differences in pitch measured in Hz are not perceptually equivalent across
different pitch levels. Hence, three scales constructed to mirror the response of the
human auditory system (psychoacoustic scales) are used for measuring pitch in
addition to the linear Hz frequency scale. The three psychoacoustic scales used are
the MEL scale (Stevens and Volkman, 1940), the equivalent rectangular bandwidth
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(ERB) scale (More and Glasberg, 1983; Hermes and Gestel, 1991) and the semitone
scale.

The MEL scale and the semitone scale are aimed at mimicking the way in
which human listeners perceive differences in pitch height. Equal distances in Mel
or semitones are thus perceived as equal by humans across pitch registers. The ERB
scale is designed to mimic the frequency selectivity of the human auditory system
and an equal ERB-rate will give an equal perceived prominence of pitch move-
ments for speakers of different pitch registers (Nooteboom, 1997). The semitone
scale has been shown to give the best results in terms of perceptual equivalence of
pitch distance by e.g. Traunmiiller and Eriksson (1995b) and Nolan (2003). The
pitch sample values are converted to the three respective scales using equations 5.7
through 5.9, where f is the (fundamental) frequency in Hz.

Mel = 1127.01048 loge (1 + =) eq. 5.7
700
ERB-rate = 16.7 log1o (1 + L) eq. 5.8
165.4
Semitone = 12 logo L eq. 5.9
100

Pitch range is thus estimated on four different scales, resulting in a total of four
different pitch range measures. There are two different measures of pitch dynamics
focusing on either average deviation from the base frequency or the average speed
of pitch movements. Each of these measures is estimated from two different base
frequencies and on four different scales, resulting in a total of sixteen different pitch
dynamics measures.

5.6 Word Predictability and Related Measures

The predictability of a word has been shown to be important for the realisation of
the word (cf. e.g. Fosler-Lussier and Morgan, 1999; Jurafsky et al., 2001). Many
variables influence the predictability of a word in context. Measures related to word
predictability included in the annotation described here are collocation frequency,
word repetitions, lexeme repetitions, the position of the word in a phrase, Part of
Speech, the position of the word in a frequent collocation and global word frequency.
A special measure termed word predictability is also included in the annotation.
The word predictability statistic is the weighted combination of trigram probab-
ility, bigram probability and unigram probability, as shown by Equation 5.10. Here,
P, is the word predictability statistic, pe(wp|wn—2,wn—1) is the estimated probab-
ility of a word given the two preceding words (cf. Equation 5.11) and pe(wp |wp—1)
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is the estimated probability of a word given the preceding word (cf. Equation 5.12).
In Equation 5.11, ¢(wp—2, wp—1,wy) is the trigram frequency and c(wy,—9,wp—1)
is the frequency of the bigram preceeding the current word. In Equation 5.12,
c(wp—1,wp) is the bigram frequency and c(wy—1) is the frequency of the unigram
preceding current word.

Py = Aape(wn|wp—2,wn—1) + Aﬁpe(wn|wn71) + Avpe(wn) eq. 5.10

C(wn—Qa Wn—1, wn)

C(wn72 y Wn—1 )

Pe(wn |wp—2,wn—1) = eq. 5.11

C(wnfla wn)

eq. 5.12
c(wp—1) d

pe(wn|wn71) =

The trigram weight (\q) is set to 0.6, the bigram weight (Ag) is set to 0.3 and the
unigram weight (\y) is set to 0.1. The specific weights used are arbitrarily chosen,
but with the main weight on the trigram statistic, which is assumed to be the best
single estimator of word predictability from the three statistics. A combination of
three statistics is used under the hypothesis that this gives a better estimator for
word predictability than using the trigram statistic only (this will often be 0, which
may give an unfairly low predictability estimation) or the bigram statistic or the
unigram statistic only (these use less context and thus are less precise estimators).

Unigram, bigram and trigram probabilities were collected from a formatted ver-
sion of the Goteborg Spoken Language Corpus (GsLc) (Allwood, 1999; Allwood
et al., 2000, 2002). GsLC contains orthographic transcripts of spoken language
from a variety of communicative situations. After formatting, exclusion of some
types of non-word units and convertion of transcripts to standard orthography, the
size of the corpus is approximately 1.3 million words. Probabilities are calculated
utterance-by-utterance by introducing two utterance boundary symbols in between
each two consecutive utterances before calculating trigram statistics and one ut-
terance boundary symbol before calculating the bigram statistics. Simple full-form
word probabilities were used for the unigram probability.

The estimated global word probability is sometimes used as a rough estimator of
word predictability (e.g. in Fosler-Lussier and Morgan, 1999). Since an estimate of
global word probability from GSLC is available, it is included in the annotation. The
position of a word in its phrase or in a collocation affects the predictability of the
word, and the positions of a word in the phrase and in a collocation, respectively,
are included in the annotation as three-way classifications: initial, medial or final,
where initial is the default value used for one-word phrases.

Collocations are, in the current context, defined as trigrams occurring at least
four times in GSLC or bigrams occurring at least three times. Ir would be possible
to improve the list of collocations by adding lezicalised phrases (cf. e.g. Lindberg,
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1999). Most lexicalised phrases will not occur in a corpus very often. However,
the co-occurrence of the words in a lexicalised phrase will generally be very high
and words at the end of a lexicalised phrase will thus be highly predictable from
the preceding words. However, no lexicalised phrase lexicon or detection is used for
the current annotation. Since the lexicalised phrases occur quite sparsely, including
lexicalised phrase detection would probably make very little difference in the current
context.

Two measures of the number of word repetitions are included in the annota-
tion, the number repetitions of the full-form word thus far in the discourse and the
number of repetitions of the lexeme thus far in the discourse. PCKIMMO (SIL Inter-
national, 1995; Antworth, 1990, 1995), the SIL implementation of Koskenniemis’s
two-level morphology system (Koskenniemi, 1983; Karttunen, 1983) with lexica and
rules for Swedish compiled by Ridings (2002)! is used for finding the lemma form
of each word. The combination of the lemma form and the Part of Speech is used
to define a lexeme. For some input, the PCkiMMO/Ridings system cannot produce
a lemma form. The back-up strategy in these cases is to use the full-form word
to define the lexeme. Since only very few and infrequently occurring words do not
receive a lemma form from the system, this strategy works well in practise.

5.7 Automatic Phonetic Transcription

Phonetic identity is the variable to be estimated by the pronunciation models
and hence, the phonetic annotation is used as the key during model training.
Manual phonetic annotation of speech, especially of conversational speech, is a time-
consuming and thus expensive task. A system for automatic phonetic transcription
has been built to facilitate the current annotation. The automatic transcription
system is a hybrid phonetic decoder using statistical decoding and a set of a pos-
teriori correction rules. The task of the system is to supply the context-dependent
realisation of each phoneme in the canonical pronunciation representation collected
from a lexicon. The realisation can be () (‘no realisation’). The phone label set is
the same as the phoneme label set and includes 23 vowel symbols and 23 consonant
symbols. There is also a place filler ) label in the phone label set that occupies a
phoneme position with no realisation in the phonetic string.

5.7.1 Background

Automating the task of phonetic transcription and alignment as far as possible
is important for any project involving phonetic transcription of spoken language
data. A number of automatic phonetic transcription systems have been reported.
Mostly, the systems have a two-fold task, segmentation and labelling, in contrast
to the auto-transcription system used for the annotation described in this thesis,

1Based on the PAROLE lexicon used in the Swedish part of the LE-PAROLE project, cf. To-
porowska Gronostaj (2005).
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which is a labelling system only (the system actually produces both labels and label
boundaries, although only the labels are used in the annotation, and thus only the
label part of the output is evaluated).

An automatic phonetic transcription and segmentation system for German
called MAUS (Munich AUtomatic Segmentation system) has been developed at
the Department of Phonetics and Speech Communication (IPSK) at the University
of Munich. This system uses a set of pronunciation variation rules derived from
manually transcribed speech data (Wesenick, 1996) to create graphs representing
all presumed pronunciation variants of an utterance from the canonical phonemic
representation found in a pronunciation lexicon. The graph is used with monophone
HMDMs for Viterbi alignment of the best state sequence to the signal. A rule system
is used to refine the segment boundary allocation (Kipp et al., 1996; Schiel, 1999).
Data-driven pronunciation rule generation and statistical matching was shown to
outperform an knowledge-based rule system (Kipp et al., 1997; Schiel et al., 1998;
Wesenick and Kipp, 1996).

Different corpora and different transcribers yield very different results in terms
of inter-labeller agreement. Kipp et al. (1996) report an average inter-labeller agree-
ment of 93.8% for three labellers and an average system-labeller agreement of 87.9%
for the same data. Using another speech corpus and, presumably, other labellers
Kipp et al. (1997) report an average inter-labeller agreement of 80.4% for three la-
bellers and an average system-labeller agreement of 78.5% for the same data. How-
ever, the low agreement values seem to be due to one labeller’s decisions standing
out. If the deviant labeller is excluded, the values are 82.6% and 80.3%, respect-
ively. All values are based on the best match between phone sequences according
to a dynamic programming algorithm.

The phone HMMs used by the MAUS system are trained on manually segmented
and transcribed speech. Models for automatic speech recognition (ASR) are often
trained on segmentations based on canonical phonemic representations. Since these
are the forms in the recognition lexicon, this is optimal for ASR. However, in auto-
matic transcription, phone HMMs which in themselves model as little as possible
of the pronunciation variation are optimal, since the mismatches between canonical
forms and actually uttered phone sequences in this case is model contamination
(Kessens and Strik, 2001; Schiel, 2004).

There is also an iterative version of MAUS, which adapts pronunciation graph
transition probabilities to the specific target material to be segmented and tran-
scribed (Beringer and Schiel, 1999), and a version adapting the phone HMMs
(Schiel, 2004). Thus, no new training data is required when using the system
on a new speaking style. Further, specific rule sets for different regional variants
of German have been induced from annotated data (Beringer and Neff, 2000b).
Beringer and Neff (2000a); Beringer (2003b) and Beringer (2003a) also report ex-
periments with segmenting and transcribing Japanese and English speech using the
MAUSER system (based on the MAUS system).

Kessens et al. (1998); Wester et al. (1998a) and Wester et al. (2001b) report
compiling a set of five pronunciation variation rules reflecting the most common
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phone-level pronunciation variation in Dutch: /n/ elision, /r/ elision, /t/ elision,
/o/ elision and /o/ insertion. A set of utterances from a spontaneous dialogue
database were selected and at each possible rule application, nine listeners gave a
binary judgement of whether the rule had applied or not, comparing the canonical
form of the word and the actual pronounced phone sequence. An automatic speech
recognition system in forced recognition mode was used to make the same decision
by choosing between all possible pronunciations of each word according to the rules.
The average inter-listener agreement for this limited task was 82% and the aver-
age ASR-listener agreement was 78%. Kessens et al. (2000b,a) report data-driven
rule generation. The data-derived rules generated less pronunciation variants, but
resulted in somewhat poorer performance.

Binnenpoorte and Cucchiarini (2003) report an experiment with three different
automatic transcription methods. The first method was to simply use canonical
phonemic representations from a lexicon. The second method was applying a set
of static assimilation rules for word boundaries on the canonical representations
(Cucchiarini et al., 2001). In the third method, multiple representations were gen-
erated from the canonical representations with a small set of deletion and insertion
rules. Forced alignment automatic speech recognition was then used to select the
optimal phonetic representation of each word. The transcripts resulting from the
three methods were dynamically aligned and compared to a gold standard compiled
by two phoneticians in consensus. The use of pronunciation modelling improved
the results compared to using the canonical representations. Using forced recogni-
tion resulted in lower substitution and insertion error rates than using static rules.
However, since the recogniser required phone segments of at least 30 ms in dura-
tion, many segments were not detected in spontaneous speech and the elision error
rate was high. This made the over all results of the static rules better than the
forced recognition results. The best automatic transcription results were a 19.4%
phone error rate (PER) for interview type speech and a 26.8% PER for spontan-
eous speech. Four human transcribers showed PERs between 10.1% and 11.0%
for interviews and between 13.4% and 15.7% for spontaneous speech, compared to
the same gold standard (Binnenpoorte et al., 2003; Cucchiarini and Binnenpoorte,
2002). Automatically extracting pronunciation variants from a transcribed train-
ing corpus and using these for forced recognition instead of rule-generated variants
improved the results of the third method slightly (Binnenpoorte et al., 2004).

Demuynck and Laureys (2002); Demuynck et al. (2002) and Demuynck et al.
(2004) report results from experiments on automatic phonetic transcription and
segmentation of Dutch speech. In these experiments, phonetic realisation altern-
atives were collected from a multiple phonemic representation lexicon (including
foreign word lexica for English, German and French). Phonemic representations
of novel compounds and inflections (not present in the lexicon) were generated
with rules from representations of their constituents. Phonemic pronunciation rep-
resentations for words not in the lexicon, and whose constituents also could not
be found in the lexicon, were generated with a grapheme-to-phoneme conversion
decision tree. An assimilation rule system for cross-word phenomena was used
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for generating more alternative pronunciations. The possible pronunciations of
each sentence (according to the system) were described as a pronunciation net-
work (Demuynck et al., 1997). The path through the network (of phones described
by context-dependent HMMSs) best matching the acoustic signal was used to de-
termine the output phoneme string. Compared to a manually corrected phonetic
transcript (based on another automatic transcription algorithm), the transcription
system showed an 8.25% PER for conversational speech. The acoustic models were
trained on read speech with canonical phonemic representations. There was thus
a mismatch between speaking styles between the training data and the conversa-
tional speech test data. Also, the acoustic models were somewhat contaminated,
since canonical representations were used. Finally, the minimal duration constraint
of the context-dependent phone models was 30 ms, while phones in conversational
speech can be considerably shorter.

Torre Toledano et al. (1998) report a PER of 2.65% for a small corpus of
Castilian Spanish spontaneous speech from one speaker, using canonical phonemic
descriptions and rules for alternative pronunciations. Torre Toledano et al. focus on
segmentation and no detailed description of the phoneme sequence detection pro-
cedure is given in the paper. The explanation given for the low PER is the two stage
procedure used. Instead of using context-independent HMMs (which give good time
resolution but poor phoneme sequence resolution), the phoneme sequence is estim-
ated using context-dependent HMMs (which give poor time resolution but good
phoneme sequence resolution). In a second stage, the phoneme boundary positions
are subsequently refined using statistical cancellation of systematic segmentation
errors and a set of fuzzy logic rules.

Vorstermans et al. (1996) used artificial neural nets (ANNs) for segmentation
and classification of phonetic segments. The ANNs were originally trained on a
Flemish continuous speech corpus and the strength of the system was that the ANNs
could easily be adapted to new languages without large or manually segmented
speech databases for the new languages. System performance on new languages
(English, Danish and Italian) was comparable to or better than previously reported
systems trained for a particular language.

Vereecken et al. (1997) report being able to significantly improve the result of
a phonetic transcription system through dividing larger paragraphs into prosodic
phrases using silences, breaths and clicks prior to the automatic annotation. This
system was evaluated on three languages, English, Flemish and Italian.

Chang et al. (2000) report using artificial neural nets (ANNs) to classify each
10 ms frame of the speech signal in terms of articulatory phonetic features and sub-
sequently mapping the features to phonetic segment labels. The system does not
require an orthographic transcript. When tested on a database of excerpts of spon-
taneous American English speech, including mostly addresses and phone numbers,
the system showed an 19.3% PER. Further experiments with this system on Amer-
ican English (Chang et al., 2001) and Dutch (Wester et al., 2001a) spontaneous
telephone speech showed PERs of 38.5% and 32%, respectively. These results were
obtained in spite of a much lower articulatory feature classification error rate for
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frames. Non-phoneme-based descriptions of words were suggested by the authors.

5.7.2 A Gold Standard Transcript

A small sample of the VAKOS speech database was manually transcribed to be
used as a gold standard, using the WAVESURFER speech tool (Sj6lander and Be-
skow, 2000). The first minute of speech from five randomly selected speakers was
transcribed. Transcription stopped at the first word boundary more than 60 s from
the start of the sound file. Altogether, there were 2,765 phoneme positions in the
canonical representations associated with the speech portions transcribed.

During manual transcription, the phone boundaries produced during the auto-
matic alignment of the canonical phonemic representation to the signal were shown
to the transcriber. For manual transcription, the aim was to supply the phone
string that gave the best possible match to the signal, using the available phone
set and to and align the phonetic transcription to the phoneme boundaries, also
in such a way that the closest match to the signal was obtained. The transcriber
was thus forced to used the phoneme boundaries when aligning the phones to the
signal. However, it was possible to use () symbols in the phonetic transcripts, to
signal that a certain phoneme had no overt realisation. The canonical phonemic
representations were shown at manual transcription.

5.7.3 Creating Realisation Lists

As mentioned, in the annotation of the speech data used for the pronunciation
modelling effort described in this thesis, the automatic phonetic transcription was
performed by a hybrid system using statistical decoding and a set of a posteriori
correction rules. A list of possible realisations for each phoneme was derived em-
pirically. Based on studies of pronunciation variation in Swedish (Garding, 1974;
Bruce, 1986; Eliasson, 1986; Bannert and Czigler, 1999; Jande, 2003a,b) and gen-
eral knowledge of the target language, a tentative realisation list with all generally
possible realisations was compiled for each phoneme.

A tentative pronunciation net was then created using these tentative realisa-
tion lists. The SNACK Sound Toolkit (Sjolander and Beskow, 2000) was used for
building a finite state transition network from the pronunciation net and a set of
HMM monophone models (Sjolander and Beskow, 2000; Sjolander, 2003). SNACK
tools were then used for Viterbi decoding (probability maximisation) given the
observation sequence defined by the parameterised speech.

The output best matching phone sequence was compared to a three minute por-
tion of the gold standard and the phone error rate (PER) was calculated. PER is
the share of misclassified phones in per cent. PER is thus calculated with equa-
tion 5.13, where N is the total number of phone classifications performed by the
statistical decoder and E is the number of misclassified phones (as compared to
the gold standard). Since the () symbol is treated as any other phoneme sym-
bol, a phone error can be either a substitution or a deletion. When going from
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a canonical pronunciation-dictionary representation of a word to a representation
corresponding to spontaneous speech, it is extremely rare to find inserted segments
in central standard Swedish and the current transcription system thus does not
handle insertions.

E
PER =100 N eq. 5.13

The realisation lists were updated in several steps to minimise the PER. That
is, realisations whose inclusion in a list gave rise to more errors in the resulting
automatic transcriptions than the errors its inclusion corrected (in relation to the
canonical representation) were excluded. Some minor deviations from this general
rule were made when it was judged that the results would not generalise from the
small sample gold standard to the entire data set. The final list of realisations for
each phoneme is shown in Table 5.5.

Table 5.5: Sets of possible realisations of phonemes.

Cons Realisations Vowel* Realisations Vowel' Realisations
p p ) °

t 0,¢,t a 3, a a a

k 0, k az 9, a, a: a: a, a
b b e 9, € e e

d 0,1,d,d e: e, e e e, er
g 0, g 1 9,1 I I

f 0, f i I, i i L i

v v U 3, U U U

s s, 8 ur 9, U, u: ur U, u:
g g ) 0, e ) )

¢ ¢ B o, 4 ® 6, %
h @, h Y Y Y Y

m m y: 9, Y, y: y: v, y
n n,n, m,n 5 0, 9,0 2 5

) ) o: 9,9,0 or 2, 01
1 0,1, 1 € 0,9, € € €

j 0, € 9,8 ¢ e €, &
1 0, 1 ® 9, & ® EY

t t & 9, &, & ! &, &
q q oe 0, o, ce e oe

1 0,1 @ @, 3 ot e, g:
n 0, @ 0,0, @ @ @

S 0,s el 9, &, el el e, el

*In unstressed syllable, In stressed syllable

The /1/ phoneme is often denoted /r/ for central standard Swedish. However,
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although the realisation of the phoneme as a trill, [r], is possible and occurring, this
is a relatively infrequent realisation. Other allophones, such as the approximant
[1], the tap [¢] or the retroflex fricative [z] are more frequent. There is no phonemic
difference between the realisations and the phonetic alphabet used only includes
one [1] allophone symbol. In this thesis, the allophone [1], judged to be the most
frequent realisation, is used to denote the phoneme class /1/ in the IPA format.

5.7.4 Statistical Decoding

Finite state transition networks representing the possible realisations of a word are
built using the empirically compiled context-insensitive list of possible realisations
for each phoneme (cf. Table 5.5). Figure 5.3 is an example of a finite state transition
network used for the current annotation. In the network, arc labels refer to phoneme
realisations and state labels refer to phoneme positions relative to the word onset.

Statistical decoding is conducted in a word-by-word manner, forcing phoneme
boundaries at the manually annotated word boundaries. The part of the speech
signal corresponding to a specific word is parameterised to form a sequence of ob-
servations using the SNACK sound toolkit (Sjolander and Beskow, 2000; Sj6lander,
2003). Viterbi decoding is used to find the path through the network with the
highest probability of having produced the observation sequence and the corres-
ponding phone sequence (aligned to the signal) is the output of the statistical
decoder. In a post processing step, the phone string is aligned to the phoneme
string using phoneme position indices and @ ‘null’ place filler phones.

V(o) ) RD N d O B0
D OerOamOanOmn0)

Figure 5.3: Finite-state transition network representing the possible realisations of the
word gjorde ‘did’. The phone labels of the HMMs associated with the arcs between the
states of the network are in the STA format (cf. Table A.1). A sequence of two HMMs is
used for the phone [d], the first HMM (RD) representing the occlusion phase and the second
HMM (d) representing the explosion phase. The acoustic models of all plosive consonants
are composed of two separate HMMs.

5.7.5 A Posteriori Correction Rules

The tentative phone string resulting from the statistical decoding process can be
viewed as the result of a set of phonological transformation rules operating on
the canonical phoneme string. A set of a posteriori rules inverting some of these
phonological rules under certain conditions has been developed to correct some
systematic errors made by the statistical decoder. The a posteriori correction rule
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set also includes some phonological rules, e.g. elision rules. This means that the
sets of possible realisations of phonemes resulting from the hybrid system in some
cases were larger than the sets listed in Table 5.5.

Both the phonological rules and the inverted phonological rules can utilise phon-
eme context (including word stress annotation) and tentative phone context. They
can also use estimated phoneme duration and tentative phone duration as con-
text. Some special rules for high frequency function words even use the ortho-
graphy as context. A rule may be duration-independent or duration-dependent. A
duration-independent rule is applied regardless of the estimated phoneme duration
and phone duration and a duration-dependent rule is only applied when the estim-
ated durational context is appropriate. By separating duration-independent and
duration-dependent processes, the a posteriori correction rules are able to utilise
the information from the statistical decoding maximally to improve the phonetic
transcripts.

The rules were compiled using same three minutes of the manually transcribed
gold standard that was used for realisation list development as a development cor-
pus. For each phoneme in the canonical representation, the gold standard phone
and the phone produced by the statistical decoder were compared and each type of
deviation from the gold standard was investigated thoroughly. Rules were written
to minimise PER, however with the restriction that the rules should be generally
applicable.

5.7.6 Transcription System Evaluation

The automatic transcription system was evaluated against a small manually tran-
scribed gold standard, including the first minute of speech from five randomly
selected speakers from the VAKOS database. The gold standard transcripts from
three speakers (2, 5 and 6) were used during correction rule development. The gold
standard transcripts from the remaining two speakers (1 and 4) were used at eval-
uation only. The evaluation results show similar PERs and error distributions for
the evaluation gold standard as for the development gold standard, both generally
and when separating different speakers.

Table 5.6 shows the results from the evaluation. It can be seen that statistical
decoding alone gives a higher phone error rate (PER) than estimating the phonetic
transcript with the phoneme string. However, the errors made by the statistical
decoder are systematic to a high degree and this fact is utilised at correction rule
application. The final hybrid transcription system produces an overall PER of
15.5%, which is an error reduction by 40.4% compared to using the phoneme string
for estimating the phone string.

Since manual transcription is restricted by a relatively small set of phone sym-
bols, some decisions about phone identity are not obvious, most notably many
cases of choosing between a full vowel and a [9]. Defaulting to the system decision
whenever a human transcriber is forced to make ad hoc decisions would increase the
speed of manual transcript checking and correction considerably without lowering
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Table 5.6: Phone error rates (PER) when estimating the phone string with the phoneme
string, the statistical decoder, and the hybrid automatic transcription system, respectively,
and reduction in PER when switching from the phoneme string to the hybrid system output.

Speaker index PERPLoneme PERstatistical PERHybrid Error reduction
2 26.51% 30.96% 14.95% 43.62%
5 21.68% 30.07% 15.21% 29.84%
6 29.47% 27.62% 14.73% 50.00%
1 25.14% 32.82% 13.24% 47.33%
4 27.37% 36.84% 19.12% 30.13%
T 26.01% 31.69% 15.50% 40.42%

the quality of the resulting transcript. It is worth noting that if this strategy had
been used for compiling the gold standard transcript, the PER would have been
somewhat lower. The 15.5% PER is thus a slight under-estimation of the system
performance. Manual correction of the automatically obtained transcripts was not
possible for practical reasons. However, manual correction will most likely result in
more accurate pronunciation models.

5.7.7 Phone Confusions

Tables 5.7 and 5.8 are confusion matrices showing the distributions of realisations
produced by the hybrid transcription system for each gold standard phone (calcu-
lated over the complete set of gold standard transcripts).

As discussed, attempts have been made to reduce each type of confusion with a
posteriori correction rules. However, minimising one type of error mostly increases
errors in the opposite direction. There is thus a trading relation between e.g. [a]-
for-[o] confusions and [o]-for-[a] confusions. The strategy has been to find the set
of rules resulting in the best over-all correspondence between the gold standard
transcripts and the hybrid transcription system output.

The errors remaining in the output of the final hybrid transcription system are
errors that proved hard to avoid. For example, the phones [g] and [j] are often
erroneously elided. These phones are hard for the statistical decoder to detect
and their correct realisation in the automatic transcript depends heavily on the
correction rules. To include the position in the word and in the syllable as context
in the correction rules and to exploit information about word identity more may be
beneficial for reducing these errors further.

For example, [g] should very seldom be elided in word initial position or generally
in syllable onsets. A canonical /g/ is often not realised in suffixes such as -ligt, -

igt and -igen and is also often elided in many function words, e.g. jag ‘I’, nagot

‘something’ and nagon, ‘someone’.
Another type of error apparent from Table 5.7 is that retroflex consonants are

often substituted for their dental counterparts.
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Table 5.7: Consonant confusion matriz for the hybrid automatic transcription system.
FEach row corresponds to a gold standard phone and each column shows the share of times
the transcription system gave the phone output of the column for a particular gold standard
phone. No realisation (B) can be confused with both vowels and consonants. The approzi-
mant [j] has a .03 share of confusions with the vowel [1] and a .03 share of confusions with
the vowel [o]. Otherwise, if row sums are not 1, it is because the numbers are rounded.

phone

0 1.62 .06 .01 .03 .01 .02.02 .02 .02 .01 .06

P 1

t |.04 .95 .01

k 1

b 1

d|.10 .03 .81 .07

g |.29 .71

f |.05 .95

v |.10 .90

s |.01 .99 .01

5 1

% 1

h |.07 91 .02

m|.05 .94 .01

n |.01 .01.96 .01 .02

1 1

1 |.01 .99

j |25 .69

1 (.04 .06 .90

t .40 .20 .40

d 31 12 .56

1 1

n .67 .33

s A1 .89
O pt k bdgfvs fg¢hmmanuyglj it d 1 n s

From table 5.8, it can be seen that the phones [v], [2et] and [ce:] are correctly pre-
dicted by the transcription system over the small gold standard to 100%. However,
as can be seen from Table E.1 in Appendix E (showing the number of instances of
each phone in the gold standard transcript), there are relatively few instances in the
gold standard transcript of one or both vowels from the long-short pairs including
these vowels. It is thus not possible to draw any general conclusions about them.

Table 5.8 also shows that confusions between long vowels and their short coun-
terparts are common. Long vowels are often substituted for their short counterpart
and, although to a lesser degree, short vowels are substituted for their long coun-
terparts. An exception from this general rule is the short vowel [a] and its long
counterpart [az]; an [a:] is never substituted with an [a]. Both [a] and [a:] are fre-
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Table 5.8: Vowel confusion matriz for the hybrid automatic transcription system. Each
row corresponds to a gold standard phone and each column shows the share of times the
transcription system gave the phone output of the column for a particular gold standard
phone. No realisation (0) can be confused with both vowels and consonants. Otherwise, if
row sums are not 1, it is because the numbers are rounded.

phone

0 |.62.06 .01 .01 .02

o |.01.79.09 .02 .02 .04 .03 .01 .01

a .16 .79 .04 .01

a: .02 .98

e 17 .78 .03 .02

e: .03 11 .84 .03

I .14 .80 .07

i .09 .91

U .08 .08 .75 .08

u: .15 .85

<) .05 .90 .05

u .04 .04 .92

Y 1

y: 1

o [.04.08 .82 .05

o: 17 .82

€ .15 .79 .03 .03

€1 .07 .07 .64 .07 .14

ES .20 .10 .50 .20

& 1

fo3) Ry .43

[uX .33 .67

e .22 .78

el 1
D o a ar e e 1 ir U ul e ¥ Y y: 0 Or £ & & +| B g @ @

quently occurring phonemes, which indicates that their separation is not due to
chance.

Vowel length is a phonological feature in Swedish. However, a length difference is
mostly accompanied by a shift in articulatory position. This shift is most noticeable
for the [a]-[a:] pair. The two vowels differ not only in tongue position, but also in
lip rounding. This explains the fact that [a:] is clearly separable from [a] by the
statistical decoder.

A common type of vowel confusion is that between a full vowel and [¢]. The
phones [a], [e], [1], [¢] and [#] are the vowels most often substituted for a [o] and [o]
is often substituted for [a], [1] or [o].

The differences between [g] and [s] and between [ce] and [ce], respectively, are
not phonemic in Swedish, but rather allophonic. The same goes for the long coun-
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terparts of these vowels, [e:] and [ze] and [g:] and [cet], respectively. In the canonical
pronunciation representations used in the current work, the more open allophones
are used in pre-/i1/ position and the more closed allophones are used otherwise.
However, in colloquial speech, a canonical /1/ may be elided while the preceding
vowel keeps its open quality to a higher of lesser degree, indirectly signalling the
presence of an /1/.

This means that there is often a degree of uncertainty for a human transcriber
of how to label a vowel somewhere on a continuous scale between e.g. [ce] and
[ce], preceding an /1/ with no overt realisation. Both the human labeller and the
transcription system is thus operating in a grey area when transcribing these speech
sounds and this may account for the confusions between these allophones with a
more open and a more close articulation, respectively. However, since the number
of instances of these phones in the gold standard transcripts is low, these confusions
may not be as frequent as they appear.

Further, also when an [1] is clearly audible in the speech signal, the [1] sound is
often superimposed on an adjacent vowel or on adjacent vowels in Swedish and dur-
ing the compilation of a representation of pronunciation using a sequential string of
separate phoneme symbols, it can often be debated whether an [1] is present or not.
Both erroneous [1]-for-() and @-for-[1] substitutions are common in the transcription
system output over the gold standard. Table E.1 in Appendix E shows that () and
[1] are high frequency units in the gold standard transcript.

Other frequent substitutions are [1] for [d] and [d] for [1] and this may be due to
the fact that a /d/ is sometimes pronounced as an [1] in reduced speech, especially
for high frequency function words such as den ‘it’, det ‘it” and du, ‘you’ and espe-
cially following a word ending in an /1/ (which often happns, since verbs in present
tense end with an /1/). Once again, there is a gray area between a prototypical [d]
and a prototypical [1] and the scale between the two is continuous.

5.8 Summary

In this chapter, methods used for annotating speech data for discourse context-
dependent pronunciation modelling have been presented. Speech databases, a
multi-layer annotation system and methods employed for segmenting the layers
into their respective utterance types have been described. Annotation is associated
with units in six linguistically motivated layers, 1) a discourse layer, 2) an utterance
layer, 3) a phrase layer, 4) a word layer, 5) a syllable layer, and 6) a phoneme layer.

The methods for calculating mean phoneme duration measures, pitch dynam-
ics measures, pitch range measures and word predictability measures have been
described. Mean phoneme duration measures are calculated over units in all lay-
ers but the phoneme layer. The measures are based on absolute and normalised
duration, respectively, on linear and logarithmic duration, respectively, and on the
durations of all phonemes and on vowels only.
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The pitch dynamics measures are based on the distance between fy peaks and
valleys and either the median fy over the unit for which the measure is calculated or
a base frequency located 1.50 below the mean frequency of the particular speaker.
Pitch range is the difference between the highest fy peak and the lowest fy valley
contained by the unit over which the measure is calculated. The pitch measures
are calculated from pitch measured in Hertz and on several psychoacoustic scales.

Word predictability is defined as the weighted combination of the trigram, bi-
gram and unigram probabilities calculated from the orthographic transcript of a
spoken language corpus.

Further, the development and evaluation of a hybrid system for automatic phon-
etic transcription has been presented. The system uses statistical decoding and a
set of a posteriori correction rules and supplies a context-dependent realisation
of each phoneme in a canonical pronunciation representation. The automatically
obtained phones were generated to be used as keys during pronunciation model
training. Compared to a small, manually transcribed gold standard, the automatic
transcription system produced a phone error rate of 15.5%.

The next chapter gives a detailed description of the information associated with
the units in each layer of annotation, among others, the variables described in this
chapter.



Chapter 6

Information Included in the
Annotation

Values for a set of variables hypothesised to be important for predicting the real-
isation of a phoneme in its discourse context is attached to each unit at each layer
of annotation. This chapter presents the information attached to the units at each
respective layer.

6.1 The Discourse Layer

In the discourse layer, variables which are constant over the discourse are annotated.
A set of ‘inverted speech rate’ measures based on the global mean phoneme duration
is attached to each discourse layer unit. The details of how these measures are
calculated were explained in Chapter 5, Section 5.4. The discourse layer information
also includes four speaking style-related variables: number of discourse participants,
degree of formality, degree of spontaneity and type of interaction. Table 6.1 gives a
summary of the discourse layer annotation.

Table 6.1: Discourse layer annotation.

Variable Values

Number of discourse participants  monologue, two-part dialogue, multi-part dialogue
Type of interaction human-directed, computer-directed

Degree of formality formal, informal

Degree of spontaneity spontaneous, elicited, scripted, acted, read

Mean phoneme duration Several continuous measures, R

The variable number of discourse participants can take one of three different
values: monologue, two-part dialogue or multi-part dialogue. It is hypothesised that
this one, two or many distinction will give a sufficient separation of the dimen-
sions of speaking style originating from the number of discourse participants in the

85
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current context. The categories into which speaking style-related variables can be
divided are by nature rather coarse and the general approach has been to use a
small set of categories. The variable type of interaction simply divides interactions
into human-directed and computer-directed. The variable degree of formality is a
coarse division of discourses into two groups, formal and informal.

Degree of spontaneity is a five-way variable, taking the values spontaneous, eli-
cited, scripted, acted and read. Spontaneous speech is, in this context, defined as
completely free and uncontrolled, while elicited speech is somehow evoked, e.g. by
an interviewer asking questions or a subject being asked to talk about some specific
topic. Elicited speech is, however, not based on some written or spoken script.
Scripted speech may be a subject retelling a written or spoken text, however not
being forced to exactly follow the script. Acted speech is speech closely following
a written script, although with acted emotion. Finally, read speech is the result of
reading a written text aloud in a ‘neutral’ fashion.

The variables and their sets of values are designed to be usable for a wider range
of speech material than that actually used in the models developed. There are thus
discourse layer variables with values not used for the speech data annotated. For
the variable number of discourse participants, only the values monologue and multi-
part dialogue are actually used. Further, for the variable type of interaction only
the value human-directed is used, making the variable currently redundant. For the
variable degree of spontaneity, only the values elicited and scripted are used. This
redundancy of values and variables is due to the fact that the original plan was to
annotate more databases than were actually annotated.

Speech databases available from the GROG project, but not actually used,
were radio entertainment with spontaneous dialogue originating from Sveriges ra-
dio (Swedish public service radio) and talking books of including ‘acted’ readings
of children’s books and ‘neutral’ readings of fact literature originating from the
Swedish Library of Talking Books and Braille. The original plan was to also include
the annotation of recorded speech data from Wizard of Oz and actual dialogue sys-
tem interaction from various dialogue system projects centred at the Department of
Speech, Music and Hearing and the Centre for Speech Technology (CTT) at KTH.
Data is available from four such projects: WAXHOLM, GULAN, AUGUST, ADAPT
(cf. e.g. Gustafson, 2002; Bell, 2003). Finally, annotation of the Swedish map task
corpus SMTC (Helgason, 2006) was planned.

6.2 The Utterance Layer

In the utterance layer, mostly speaker attributes are annotated. Table 6.2 gives
a summary of the utterance layer annotation. Speaker pitch register is a binary
variable that differentiates speakers with a high pitch register (90-600 Hz) from
speakers with a low pitch register (60-300 Hz). This variable may interplay with
measures based on pitch movement.
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Dialogue act classification has been shown to be beneficial for reducing the
word error rate in automatic speech recognition, (cf. e.g. Jurafsky et al., 1997).
For the annotation presented in this thesis, no detailed dialogue act classification is
made. However, a coarse four-way division into utterance types, corresponding to
basic dialogue acts, is used to take the influence of discourse structure into account
in dialogue data. Utterances are classified as belonging to one of the four types
statement, question/request response (a question or an utterance which is not an
explicit question, but still a request for a response), answer/response (an answer
to a question or a response to a request) or feedback. For monologues, the default
utterance type is statement. A set of mean phoneme duration measures over the
utterance and sets of pitch range and pitch dynamics ‘speech liveliness’ measures
(cf. Chapter 5, Section 5.5) are also included in the utterance layer annotation.

Table 6.2: Utterance layer annotation.

Variable Values

Speaker pitch register high, low

Utterance type statement, question/request Tesponse, answer/re-
sponse, feedback

Pitch dynamics Several continuous measures, R

Pitch range Several continuous measures, R

Mean phoneme duration Several continuous measures, R

Speaker age, dialect and social factors all influence spoken language perform-
ance. However, the speakers used for the current pronunciation modelling project
are all part of a very coherent group from the perspectives of dialect, sociolect and
age. The speakers are all university-educated adults below the age of retirement
and they are all speaking the central standard variety of Swedish (or a similar vari-
ety). Pronunciation variation due to dialectal, social and age factors are thus not
modelled in the current effort.

6.3 The Phrase Layer

The possible values of the phrase type variable are shown in Table 6.3. The in-
terpretation of some of these variables is more or less obvious, while other may
require some further explanation. A short explanation of some of the phrase types
are given below. For more information on the phrase types, cf. Megyesi (2002b).
As explained in Chapter 5, Section 5.3, the phrase type verb cluster is a continuous
sequence of verbs belonging to the same verb phrase and and an infinitive phrase
is a verb in the infinitive proceeded by an infinitive particle.

Some word units (mostly conjunctions) do not belong to any phrase. These
units are annotated with a no phrase tag in the phrase type annotation. Only
maximal phrases are considered. A noun phrase can include modifiers of different
types, e.g. nouns, adjective phrases, prepositional phrases. In these cases, the entire
maximal projection of the noun phrase is counted as a single noun phrase and
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the identity and boundaries of the constituents are ignored. Similarly, conjoined
adjective phrases are counted as a single adjective phrase.

A set of phrase length measures are calculated for each phrase unit: the number
of words, syllables, and phonemes, respectively, contained by the phase. Also, a
three-way length label (long, medium, short) based on the syllable count is included
in the phrase layer annotation.

Two measures associated with the prosodic weight of each phrase are calculated:
the number of stressed syllables and the number of focally stressed words included
in the phrase. Focal stress annotation has been manually supplied for the VAKOS
database and one of the Radio Interviews. In cases where no focal stress annotation
is available, an ‘unknown value’ tag has been used. Automatic focal stress detection
built on overall intensity and spectral emphasis (cf. e.g. Campbell, 1995; Strangert
and Heldner, 1995; Fant et al., 2001; Heldner et al., 1999; Heldner, 2003) have been
attempted, but no such system has been used for the annotation described in this
thesis.

Pitch dynamics and pitch range measures are calculated over each phrase as
described in Chapter 5, Section 5.5. Details about the mean phoneme duration
measures are presented in Chapter 5, Section 5.4. The complete list of variables
included in the phrase layer annotation and their possible values are shown in Table
6.3.

Table 6.3: Phrase layer annotation.

Variable Values

Phrase type adverb phrase, adjective phrase, noun phrase, pre-
positional phrase, verb cluster, infinitive phrase,
numeral expression, no phrase

Phrase length (words) Continuous, Z

Phrase length (syllables) Continuous, Z

Phrase length (phonemes) Continuous, Z

Phrase length Label long, medium, short

Prosodic weight (stresses) Continuous, Z

Prosodic weight (foci) Continuous, Z

Pitch dynamics Several continuous measures, R
Pitch range Several continuous measures, R
Mean phoneme duration Several continuous measures, R

6.4 The Word Layer

Since the word is the principal conveyor of meaning in language and also the prin-
cipal syntactic unit, there is a large variety of variables that can be included in the
word layer. The complete list of variables included in the word layer annotation
and their possible values are shown in Table 6.4.
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Table 6.4: Word layer annotation.

Variable

Values

Part of Speech

Morphology (gender)
Morphology (number)
Morphology (definiteness)
Morphology (case)
Morphology (pronoun form)
Morphology (tense/aspect)

Morphology (mood)
Morphology (voice)
Morphology (degree)

Word type

Function word

Word predictability

Global word probability
Position in phrase

Position in collocation

Word repetitions (full-form)
Word repetitions (lexeme)
L-adjacent filled pause
R-adjacent filled pause
L-adjacent interrupted word
R-adjacent interrupted word
L-adjacent prosodic boundary
R-adjacent prosodic boundary
L-adjacent pause

R-adjacent pause

L-adjacent pause duration
R-adjacent pause duration
Word length (syllables)

Word length (phonemes)
Word length label

Focal stress

Dist. to previous focus (words)
Dist. to next focus (words)
Pitch dynamics

Pitch range

Mean phoneme duration

adverb, determiner, wh-adverb, wh-determiner,

wh-pronoun, possessive wh-pronoun,

infinitival

marker, interjection, adjective, conjunction, noun,
participle, verb particle, proper name, pronoun,
preposition, possessive pronoun, cardinal number,

ordinal number, subjunction, foreign word, verb

common, neutre, masculine, unspecified, no value

singular, plural, unspecified, no value
indefinite, definite, unspecified, no value

nominative, genitive, no value

subject, object, unspecified, no value

present, preterite, infinitive, imperative, supinum,

perfect, no value
conjunctive, no value

active, passive/s-form, no value

positive, comparative, superlative, no value

content word, function word

content word, set of function words

Continuous, R

Continuous, R

initial, medial, final

initial, medial, final
Continuous, Z

Continuous, Z

yes, no

yes, no

yes, no

yes, no

strong, weak, no

strong, weak, no

yes, no

yes, no

Two continuous measures, 7Z
Two continuous measures, Z
Continuous, Z

Continuous, Z

long, medium, short

focally stressed, not focally stressed, unknown

Continuous, Z
Continuous, Z
Several continuous measures, R
Several continuous measures, R
Several continuous measures, R
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Part of Speech and morphological information from the tagger (cf. Chapter 5,
Section 5.3) is included in the annotation in the sucC format (Ejerhed et al., 1992).
Morphology is included as a set of tags corresponding to different morphological
dimensions. For morphological dimensions not used in the description of the Part
of Speech of a particular word unit, a no value tag is used.

Based on the Part of Speech tags, a division of words into word types (content
word or function word) is made. All words tagged as nouns, proper names, ad-
verbs, adjectives, participles, cardinal numbers and ordinal numbers are classified
as content words. Words tagged as verbs are classified as function words if they 1)
belong to the closed class of copula verbs (defined by their orthographic form) or 2)
are used as auxiliary verbs (i.e., if they are not the final verb in the verb clusters or
infinitive phrases in which they occur). Otherwise, verbs are classified as content
words. A word tagged as any other Part of Speech is classified as a function word.

A similar variable denoted function word has the entire closed set of function
words and a generic ‘content word’ representation as its possible values. There
are pronunciation variation strategies specific to certain function words and the
function word variable should be a strong predictor of this behaviour.

A set of word predictability-related variables are included in the word layer an-
notation, including a measure simply called word predictability (based on a weighted
combination of trigram, bigram and unigram probabilities), a measure estimating
global word (unigram) probability, the position of the word in the phrase and in a
collocation, respectively, the number of repetitions of the full-form word and of the
lezeme thus far in the discourse. A detailed account of these word predictability-
related measures was given in Chapter 5, Section 5.6.

The presence of a filled pause' immediately succeeding or preceding the current
word may also be of importance for the pronunciation of the current word (cf. e.g.
Jurafsky et al., 1998a). Information about the presence of a filled pause in these two
positions is thus included in the annotation. Interrupted (not articulatorily com-
pleted) words and other types of “disfluencies” have been shown to have an effect
on adjacent words (e.g. Shriberg, 1999; Eklund, 1999). For this reason, information
about the presence of interrupted words immediately succeeding or preceding the
current word is included in the annotation.

Prosodic boundaries are important for grouping coherent subunits in the speech
signal. For listeners, this grouping facilitates parsing the sound stream. Speakers
have a number of parameters at their disposal for signalling prosodic boundaries,
e.g. fo, segment duration, intensity and the use of silent pauses. For example,
Horne et al. (1995); Heldner and Megyesi (2003); and Heldner et al. (2004) have
described how prosodic boundaries can be automatically estimated using fo re-
sets, final lengthening, pauses etc. Gustafson—éapkové and Megyesi (2002) studied
i.a. the correlation between different kinds of perceived boundaries and acoustic
pauses using several types of context, e.g. discourse boundaries, syntactic bound-

LA filled pause is a “hesitation sound” used by a speaker to signal that the utterance will
continue, although the speaker has momentarily stopped speaking, e.g. to think.
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aries and Part of Speech. It would thus be possible to use an automatic prosodic
boundary guesser as a support for annotation. However, for the speech data an-
notated, manual boundary annotation has been supplied and this is the annotation
used. In the annotation, prosodic boundaries can be of two types, strong and weak.
The variables adjacent prosodic boundary (left) and adjacent prosodic boundary
(right) can thus take the values strong, weak, and no.

Tabain et al. (2001) showed a correlation between adjacent boundaries of dif-
ferent types and phonetic realisation. In this study, the effects of boundaries on
phoneme durations and formants were studied. However, it is likely that boundaries
can also be used to predict changes in phone identity.

Information about the presence of pauses adjacent to the current word and
about the duration of adjacent pauses may also be important for predicting the
realisation of the word. Two adjacent pause duration measures are included in the
annotation: absolute duration and normalised duration. The latter measure relates
the pause duration to the mean duration of all pauses in the database and hence, to
the speaking style. The normal transformation or Z normalisation used is shown in
Equation 6.1, where z is the pause duration, p is the mean pause duration over the
data set and o is the standard deviation of the pause duration. If there is no pause,
the absolute pause duration is set to 0. The normalised pause duration depends on
the mean and standard deviation of the pause durations in the data set. Thus, the
minimum normalised pause duration is not an absolute minimum, but specific for
the database. Zero durations (i.e., no pause) are not included when calculating the
mean and standard deviation used for normalisation.

Z::C7,LL eq. 6.1
g

Three word length measures are included in the annotation: a syllable count
(the number of syllables contained by the word), a phoneme count (the number of
phonemes contained by the word) and a three-way word length label based on the
syllable count with the possible values long, medium, and short. The counts are
based on the canonical phonemic word representations.

Focal stress may be an important variable for predicting word realisation, since
placing stress on a word is to make it more salient; to make it stand out from the
surrounding sound stream. In the focal stress dimension, each word is classified as
either focally stressed or not focally stressed. For the VAKOS database and one of
the radio interviews, manual focal stress annotation was available. This information
was included in the annotation. As mentioned in Section 6.3, it would be possible
to use automatic focal stress detection built on e.g. overall intensity and spectral
emphasis (Campbell, 1995; Fant et al., 2001; Heldner et al., 1999; Heldner, 2003)
to facilitate annotation when manual annotation is not available. However, no
attempt has been made to build or use an automatic focal stress detector for the
annotation reported here. Hence, for the remaining speech data, the value of the
focal stress variable is set to unknown.
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Since the realisation of focal stress is largely a question of contrast, the realisa-
tion of a word may be dependent on e.g. the focal stress status of adjacent words,
and the position of the word relative to preceding and succeeding focally stressed
words. Both stressed and unstressed words may be realised differently depending
on their stress context. Thus, the distances to the preceding and to the succeeding
focally stressed word (in number of words) are included in the word layer annota-
tion.

Some measures of pitch dynamics and pitch range over each word unit are
included in the annotation, cf. Chapter 5, Section 5.5. The mean phoneme duration
over the word unit is measured in several ways, cf. Chapter 5, Section 5.4.

6.5 The Syllable Layer

The variables included in the syllable layer annotation are presented in Table 6.5.
Information about the stress and accent of the current syllable is derived from the
phonemic representations. Swedish has two different types of word stress, accent I
and accent II. In central standard Swedish, accent I has a single stressed syllable
while accent II has a primary and a secondary stress. There is also a special
compound accent similar to accent II, with primary stress on the first compound
constituent and a secondary stress on the last compound constituent. The stress
annotation is a simple division between stressed and unstressed syllables, while the
stress type annotation takes the word accent into account, thus making the stress
type classification a division into finer stress type classes.

Table 6.5: Syllable layer annotation.

Variable Values
Stress stressed, unstressed
Stress type no stress, (primary) stress in accent I word,

primary stress in accent II word or compound,
secondary stress in accent II word, secondary
stress in compound

Dist. to prev. stress (syll:s) Continuous, Z

Dist. to prev. prim. stress (syll:s)  Continuous, Z

Dist. to next stress (syll:s) Continuous, Z

Dist. to next prim. stress (syll:s) Continuous, Z

Syllable length (phonemes) Continuous, Z

Syllable nucleus Vowel symbols (cf. Table A.1 in Appendix A)
Position in the word initial, medial, final

Mean phoneme duration Several Continuous measures, R

For example Bruce (1986) and Greenberg (2003) argue for a syllable-centric view
on pronunciation variation. Greenberg (2003) especially points out the prosodic
prominence of the syllable and the ordinal position of phonemes/phones (phonetic
constituents) in the syllable as important factors for phonetic realisation. The
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variables emphasised by Greenberg (2003) are included in the current annotation.
Variables relating to syllable prominence are annotated here, in the syllable layer
(stress, stress type, and distances to preceding and succeeding stresses) and in the
word layer (focal stress). Information about the position of the phoneme in the
syllable is included in the phoneme layer annotation.

The distances to the nearest preceding stressed syllable and to the nearest pre-
ceding syllable with primary stress (measured in number of syllables) are included
in the syllable layer annotation. The distances to succeeding stresses are also in-
cluded. The word stress positions are fixed for Swedish words. However, the real-
isation of word stress is relative to e.g. the stress context. The idea behind including
the distances to previous and succeeding stresses is that this will give a picture of
word stress with higher resolution than information about the stress of the current
syllable alone can give.

Syllable length is measured as the number of phonemes in the canonical phon-
emic representation of the syllable. Syllable nucleus is included in the syllable layer
annotation, since there is a chance that the pronunciation variation pattern of a
syllable is dependent on its nucleus. On the phonemic description level, only vowels
can constitute syllable nuclei in central standard Swedish.

The initial and final syllables of a word are generally less prone to syllable
reduction than medial syllables, which makes the position of the syllable in the
word an important variable to include in the annotation. The position is annotated
as a three-way variable, where each syllable is categorised as either initial, medial or
final. The value used for one-syllable words is initial. The mean phoneme duration
over the syllable is calculated as described in Chapter 5, Section 5.4.

6.6 The Phoneme Layer

The variables in the phoneme layer annotation and their values are shown in Table
6.6. The phoneme identity is represented by a phoneme symbol from the available
phoneme set (cf. Table A.1 in Appendix A). In the segmented phoneme layer,
there may also be <sil> and <junk> labels. These are used for non-speech sounds
and are not treated as phonemes (the models induced from the annotation are not
trained to predict the realisation of <sil> or <junk>, but the labels are provided
as context for the model to predict realisations of proper phonemes, as described
in Chapter 7).

A set of articulatory features describing the phoneme is associated with each
phoneme unit. Five feature dimensions, shared by consonants and vowels, are
used. The sonorant and phonological length dimensions have values shared by
consonants and vowels, while all other feature dimensions have separate sets of
values for consonants and vowels, respectively. The sonorant variable can take the
value yes (for vowels and semi-vowels) or no (for obstruents). Swedish has two
phonological phoneme lengths: long and short. Vowel length is included in the
canonical phonemic representations and consonant length is derived from the vowel
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length. In a syllable with a single coda consonant, the consonant will be short if
the vowel is long and long if the vowel is short (cf. e.g. Elert, 1964). In the current
annotation, onsets and coda clusters are treated as consisting of short consonants.

The manner of articulation/frontness dimension has the possible values stop,
fricative, nasal, approrimant and lateral approximant for consonants and the pos-
sible values front, central and back for vowels. The place of articulation/openness
variable can take the values bilabial, labiodental, alveolar, dental, retrofiex, palatal,
velar or glottal for consonants and close, close-mid, mid, open-mid or open for vow-
els. The woicing/lip rounding dimension has the possible values voiced and voiceless
for consonants and the values rounded and unrounded for vowels.

Table 6.6: Phoneme layer annotation.

Variable Values

Phoneme identity Phoneme set (cf. Table A.1 in Appendix A)

Sonorant yes, no

Phonological length long, short

Manner/frontness stop, fricative, nasal, approximant, lateral approx-
imant, front, central, back

Place/openness bilabial, labiodental, alveolar, dental, retroflex, pal-
atal, velar, glottal, close, close-mid, mid, open-
mid, open

Voicing/lip rounding voiced, voiceless, rounded, unrounded

Position in syllable onset, nucleus, coda

Consonant cluster length Continuous, Z

Position in cluster Continuous, Z

Phone identity Phoneme set (cf. Table A.1 in Appendix A), (

The position of the phoneme in the syllable has been shown to be an important
factor for predicting the realisation of the phoneme (cf. e.g. Duez, 1998). Thus,
information about in which part of the syllable (onset, nucleus or coda) the phoneme
is located is included in the annotation.

For a consonant phoneme, the length of the cluster in which it appears and its
position in the cluster may be important for its realisation. Hence, information
about these variables is included in the phoneme layer annotation. The consonant
cluster length value used for vowels is 0. Only consonants belonging to the same
syllable as the current phoneme are counted as parts of the current cluster. That
is, cluster boundaries are forced at syllable boundaries. The first position in the
cluster is 1 and vowels receive the position value 0.

The phone identities are collected from the phone string supplied by the auto-
matic transcription system. The phone label set is the same as the phoneme label
set, with an additional () label for phonemes with no overt realisation. If the iden-
tity of the current phoneme is represented by a <sil> label or a <junk> label, the
respective label will be used also as the phone identity label. In the phone string,



6.7. Summary 95

these labels only serve as place fillers indicating that the phoneme position is not
occupied by an actual phone.

The accuracy of the phone identity labels could be improved by manually check-
ing and correcting the phone string produced by the automatic transcription sys-
tem. At manual correction, it would be possible to connect several phone units to
a single phoneme unit to describe insertion phenomena (epenthesis). In such cases,
the set of phones associated with a single phoneme position would be treated as a
single multi-phone unit at model training. There will not be many occurrences of
each multi-phone unit to train on, but since epenthesis occurs very infrequently in
central standard Swedish, this does not pose a problem in practise.

6.7 Summary

This chapter has described the information associated with the units at each layer
of annotation. Tables showing the variables included in the annotation of each layer
and the possible values the variables were presented along with short descriptions
of the variables and the motivation for including them in the annotation.

The next chapter will describe how this information is used for creating
phoneme-sized training and validation instances, respectively, for decision tree in-
duction and execution. The creation of decision tree pronunciation models from
the training instances will also be described.






Chapter 7

Pronunciation Model Creation

Using the annotation from the speech databases, pronunciation models can be cre-
ated with different types of machine learning methods. If a model is to be used
for descriptive purposes, it must be transparent, i.e., it must contain information
such that the model can be represented in a format interpretable by a human famil-
iar with linguistic theory. A machine learning paradigm that creates transparent
models and is suitable for the type of data at hand is the decision tree induc-
tion paradigm. A decision tree inducer commonly needs no ad hoc knowledge and
can induce models directly from training data. It is thus easy to use once you
have the data. For these reasons, the decision tree paradigm has been selected for
creating the models reported in this thesis. It has not been tested whether the
decision tree paradigm necessarily produces the best models. Other machine learn-
ing paradigms may be able to create more accurate models or models which meet
certain application-specific demands.

7.1 Decision Tree Induction

A decision tree induction algorithm builds a tree level by level using training in-
stances. Each training instance is a set of attribute values and a classification key.
Induction starts from a root node containing all training instances. A number of
tentative first tree levels are built, one for each attribute, by dividing the data set
into a number of branches corresponding to the number of possible values of the
specific attribute. The instances in the node of a specific branch thus have the same
value on the attribute used for branching.

From the tentative first tree levels, the one that is optimal according to a given
criterion (generally based on entropy minimisation) is selected. The process is then
repeated for each node on the optimal tree level and a new level of nodes is thus
created. When all examples in a node have the same classification or there is an
insufficient number of instances in the node to continue the branching procedure
or when some other stopping criterion is met, the tree is finished. Decision tree in-
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duction algorithms are thus greedy algorithms which always choose locally optimal
sets of branches.

7.1.1 Training and Evaluation Data

For creating the decision tree pronunciation models presented in this thesis, training
instances are compiled from the structured annotation. The training instances are
phoneme-sized and can be seen as a set, of context-sensitive phonemes. Each training
instance includes a set of 516 attribute values and the phone realisation, which is
used as the classification key. The features of the current unit at each layer of
annotation are included as attributes in the training examples. Where applicable,
information from the neighbouring units at each annotation layer is also included
in the attribute sets. For example, the values of the Part of Speech and morphology
variables of the words at positions nt4 are included, n being the position of the
current word in the word layer annotation. The values of the variables of the
phonemes at positions m=+4, m being the position of the current phoneme in the
phoneme layer annotation, are also included. For most other variables, a context
range of £2 is used. Training instances are created for each unit in the phoneme
layer annotation, except for the special units <sil> and <junk>. These units are,
however, used in the phoneme context attributes.

The task of a finished decision tree model is to take instances in the same format
as the training instances and make a decision about the appropriate phone realisa-
tion (which may be 0) of each instance. The model will thus describe phone-level
pronunciation only. The relation between a phoneme and its phone realisation can
be seen as a phonological process. From a phonological point of view, the models
describe processes affecting the presence or absence of phones and processes affect-
ing the broad-phonetic phone identities. However, processes that do not change
the broad-phonetic identities of phones, e.g. nasalisation and devoicing of certain
phonemes in Swedish, are not handled by the models.

7.2 Pruning

Training data generally contain some degree of noise and a decision tree may be
biased toward the particular noise in the data used for inducing the tree (over-
trained). However, once a tree is constructed, it can be pruned to make it more
generally applicable. The idea behind pruning is that the most common patterns
are kept in the model, while less common patterns, with high probability of being
due to noise in the training data, are disregarded. During pruning, a subtree of a
particular node is replaced by a leaf (terminal node) with the most common class
of the leaves governed by the subtree, when some criterion is met. A commonly
used pruning criterion is that pruning should be performed if no deterioration of
accuracy (on the training data) results from pruning. In performing this basic
pruning, following “Occam’s razor,” the simplest model is selected if there are
several models giving the same result.
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Decision trees may also be subjected to some more advanced form of pruning,
e.g. confidence interval pruning. Confidence interval pruning is performed by set-
ting a confidence level, which is used to calculate a pessimistic estimation of the
probability of erroneous classification in a sub-tree and in a tentative replacement
leaf, respectively. If the tentative replacement leaf gives an equal or lower estim-
ated error probability, then pruning is performed by replacing the sub-tree with the
replacement leaf.

7.3 Decision Tree Inducer

A number of freely available decision tree inducer implementations have been eval-
uated (Jande, 2004, cf.) for the purpose of inducing a pronunciation variation from
annotations of speech data. Of the evaluated implementations, the DTREE program
suite (Borgelt, 2004a) could produce the best performing trees when the available
optimisation options for the different implementations were utilised. DTREE also
had the fastest inducer of the implementations tested and there was a useful tree
visualisation tool, DTVIEW (Borgelt, 2004b). The DTREE program suite was thus
selected for the pronunciation variation model induction. Thus, the DTREE pro-
gram suite (Borgelt, 1998, 2004a) was used for inducing the pronunciation models
presented in this thesis.

7.4 Attribute Selection Measure and Optimisation Options

The DTREE inducer can use both attributes with categorical values and attributes
with continuous values. A categorical attribute has a finite number of unordered
values. For categorical attributes, the tree branches into n branches, where n is the
number of values for the attribute occurring in the training data set. Optionally,
the inducer can be set to group categorical values to find the optimal number of
branches. The inducer differentiates between integer and real number continuous
attributes. For continuous values, the inducer finds a single optimal cut-off point
and performs binary branching at this point. The inducer can handle unknown
values for both categorical and continuous attributes.

A set of 30 different attribute selection measures were available for the DTREE
inducer. Also, some optimisation options could be made, e.g. to allow the inducer
to group discrete values to obtain the optimal number of nodes. A test exploring
the effects of different measures for selecting the attributes to be used for branching
and of available optimisation options was conducted. During this test, trees were
created using all combinations of attribute selection measures and relevant optim-
isation options (for optimisation options taking continuous values as input, a range
of sample settings was used). A measure referred to as symmetric information gain
ratio (Lopez de Mantaras, 1991; Borgelt and Kruse, 1998) was shown to yield the
trees with the highest prediction accuracy over all combinations of optimisation
options tested. Many attribute selection measures such as information gain and,
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to a lesser degree information gain ratio (Borgelt, 1998; Borgelt and Kruse, 1998)
have a bias toward selecting categorical attributes with many possible values before
attributes with fewer values, which may give sub-optimal models (Mitchell, 1997).
The symmetric information gain ratio measure compensates for the number of val-
ues and calculates information gain values independent of the number of possible
values of categorical attributes.

The best classification performance was obtained when selecting attributes with
this measure, and allowing the inducer to group discrete values to obtain the optimal
number of nodes at each level, and using the default values for all other optimisation
options. This was thus the setting used for inducing the models evaluated in the
next section.

7.5 Summary

This chapter has described the creation of decision tree models from annotated
speech data. The steps described were the creation of training and evaluation
instances, induction and pruning. The decision tree inducer implementation and
the measure and optimisation options used during induction were also presented.

The training instances are phoneme-sized and can be seen as a set of context-
sensitive phonemes. Each training instance includes a set of 516 attribute values
and the phone realisation, which is used as the classification key. The DTREE
program suite was used with the symmetric information gain ratio measure to
select attributes and with the possibility to group discrete values to obtain the
optimal number of nodes at each tree level.

The next chapter describes a tenfold cross validation procedure for evaluat-
ing models created as described in this chapter and presents the results from the
evaluation.



Chapter 8

Pronunciation Model Evaluation

In this chapter, an evaluation of models of the type described in Chapter 7 is
presented. A tenfold cross-validation procedure is employed for model evaluation.
Under this procedure, the data is divided into ten equally sized partitions using
random sampling. Ten different decision trees are induced, each with one of the
partitions held out during training. The partition not used during training is then
used for validation.

A separate tenfold cross-validation process was performed for data from each
of the three databases (VAKOS, RADIO INTERVIEW and RADIO NEWS) and for
the collapsed data set. Table 8.1 shows the number of training instances and the
number of validation instances used for inducing and validating each created tree.

Table 8.1: The number of training instances and evaluation instances, respectively, for
each tree, for four different training data sets.

Database Number of training instances Number of validation instances
VaKoS 52,263 5,807
RADIO INTERVIEW 31,779 3,531
RADIO NEWS 9,936 1,104
All 93,996 10,444

The prosodic attributes (variables based on pitch and duration measures calcu-
lated from the signal) cannot be fully exploited in e.g. a speech synthesis context.
Thus, it was interesting to investigate the influence of the prosodic information on
model performance. For this purpose, a tenfold series of cross-validation experi-
ments, during which the decision tree inducer did not have access to the prosodic
information, was performed. As a baseline, an evaluation of trees induced from
phoneme layer information only was also performed for each data set.

Thus, twelve different tenfold cross-validation experiments were performed. The
models trained with access to different numbers of attributes were trained on the
same instances, to make the resulting models comparable. That is, the random
division of data into ten partitions was performed once for each data set, and the
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same partitions were used in each of the three experiments with access to different
numbers of attributes. The attribute set including all information is denoted at-
tribute set A, the set with prosodic attributes excluded is denoted attribute set B
and the set with only phoneme layer attributes is denoted attribute set C.

Each tree created for the cross-validation experiment was pruned using a set of
confidence intervals ranging from 0.01 to 0.99. For trees induced using symmetric
information gain ratio, the confidence interval used did not affect the resulting tree
and all pruned versions of a tree were thus the same. Hence, each data set gave rise
to ten pairs of trees, each pair containing a pruned tree and the original, unpruned
tree. Although referred to as unpruned, the original trees had been subjected to
basic pruning, as explained in Section 7.2.

From each pair of trees, the optimal tree was selected to be used in the evalu-
ation, where optimal was defined as producing the lowest phone error rate (PER)
on the validation data set. If the pruned and the unpruned version of a tree pro-
duced equal PERs on the evaluation data, the pruned version was selected as the
optimal tree.

8.1 Baselines

The results of the pronunciation models in terms of prediction accuracy can be
compared to the results from estimating the phone string with the phoneme string.
The phoneme string is the simplest baseline used. However, since there may be
assimilation processes always occurring at word boundaries when words are put to-
gether, the phonemic representations for isolated words collected from a lexicon may
not be a fair baseline. To explore this possibility, some phonological sandhi rules
(word boundary rules) were constructed to adapt the phonemic representations for
isolated words to their phonemic context.

In the sandhi rule system, three place assimilation rules were included: a recurs-
e rightward retroflex assimilation rule (the [+retroflex] feature of a consonant to
the left of a word boundary will recursively spread rightwards to [+dental] conson-
ants to the right of the word boundary), a leftward bilabial assimilation rule (the
[+Dbilabial] feature of a consonant to the right of the word boundary will spread
to an /n/ to the left of the word boundary, changing it to an /m/) and a leftward
velar assimilation rule (the [+velar] feature of a consonant to the right of the word
boundary will spread to an /n/ to the left of the word boundary, changing it to an
/).

Also included in the sandhi rule system were a leftward voice assimilation rule
(the [+/-voice] feature of a plosive consonant to the right of the word boundary
will spread to a plosive with the same place of articulation to the left of the word
boundary) and a double consonant elision rule (a consonant to the right of the
word boundary will be elided if the same consonant occurs to the left of the word
boundary).
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The rules are applied in a strict order, but each rule can be set to either on or off,
so that the effects of all combinations of rules resulting from either applying or not
applying each rule can be explored. The combination of rules giving the adapted
phoneme strings with the highest prediction accuracy (over the entire data set) is
used as the second baseline.

When exploring the combinations of rules, specific rules were used rather than
rules on the general format presented above. For example, the voice assimilation
rule can affect three pairs of plosives, /p/-/b/, /t/-/d/ and /k/-/g/ and both the
[+voice] feature and the [-voice] feature can spread leftwards. Thus, the voice
assimilation rule is split into six rules, which can then be applied (or not applied)
separately.

As mentioned, a third baseline used is the result of pronunciation models
trained with access only to attributes originating from the phoneme layer annota-
tion. This baseline can be used to show the effect of including variables above the
phoneme layer when modelling pronunciation in discourse context. To sum up, the
tree baselines used are:

e The phoneme string
e The phoneme string adapted with sandhi rules

e The output of models trained on phoneme layer attributes only

8.2 Phone Error Rates

Table 8.2 summarises the results from the cross-validation experiments. On average,
we get a phone error rate (PER) of 8.2% when training on 90% of the collapsed
data set and allowing the decision tree inducer to use all available information (type
A tree). Using the phoneme string to estimate phone realisations gives a PER of
20.4%, which means that phone errors can be reduced by 60.0% by using an average
pronunciation variation model instead of a phoneme string collected directly from
a lexicon.

Table 8.2: Mean and standard deviation of phone error rate (PER) for sets of decision
trees. Means are presented in per cent and standard deviation in per cent units. Fach mean
and standard deviation is based on the ten optimal trees resulting from one of the twelve
tenfold cross-validation experiments. Attribute set C contains only attributes from the
phoneme layer, set B contains all non-prosodic attributes and set A contains all available
attributes.

Database Set A Set B Set C

T g T o x o
VAKoS 9.08 0.31 14.99 0.33 15.53  0.49
RADIO INTERVIEW 891 0.34 12.43 0.70 13.48 0.54
RADIO NEWS 9.24 0.72 10.70  0.95 11.53 0.93
All 8.17 0.25 13.18 0.36 14.15 0.38
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Applying phonological sandhi rules to adapt the phonemic representations for
isolated words to their context did not give rise to any large changes in the PER
produced by the phoneme string. All combinations of applying or not applying
each rule in the rule set described in Section 8.1 was tested. The combination
of rules giving the largest decrease of PER compared to using the original
phoneme string lowered the PER only 0.6 per cent units from 20.4% to 19.8% (the
change is, however, statistically significant, p<0.01, using the McNemar test). The
phonological sandhi rule set giving rise to a reduction of PER is shown in Figure 8.1.

Ca_’@/_#wca
n_’I.]/_#wk
n—m/__ #y[+bilabiall
ng/k#w_
k—g/g#w__
Ca_’@/_#wca

Figure 8.1: The set of phonological sandhi rules giving rise to a reduction of phone error
rate. In these rules, #w denotes a word boundary and Cq denotes a specific consonant.
The double consonant elision rule is applied first and then re-applied when all other rules
have been applied.

As can be seen from Table 8.2, we get a reduction of PER from 14.2% to 8.2%
when switching from a model trained on phoneme level information only (type C
tree) to a type A tree. This is an improvement by 42.2%, as can be seen in Table
8.3.

8.3 Data Size and Speaking Style

It is likely that the data presented in Table 8.2 reflects the fact that both the
amount and the type of training data affects the performance of the models induced.
Neither models trained on the VAKOS database nor models trained on the RADIO
NEwWs database have the lowest PER of the models trained on separate databases,
although the VAKOS database has the largest number of training instances and
the RADIO NEWS database has the most formal, strict type of speech. Instead, the
models trained on the RADIO INTERVIEW database show the lowest PER (for type
A trees). The RADIO INTERVIEW database has the advantages of having relatively
formal speech in comparison with the VAKOS database, relatively few speakers,
and many more training instances than the RADIO NEWS database.

Further, we can see from Table 8.3 that the improvement arising from making
more attributes available for the decision tree inducer is greater for the VAKOS data
than for the RADIO INTERVIEW data and for the RADIO NEWS data. Models trained
on the VAKOS database are thus more dependent on prosodic information and
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Table 8.3: Error reduction (per cent) as a consequence of using trees trained on all
attributes compared to using trees trained on subsets of attributes. Type C' trees are trained
with access only to phoneme level attributes, type B trees are trained with access only to
non-prosodic attributes and type A trees are trained with access to all attributes.

Database Error reduction switching Error reduction switching
from type B to type A trees from type C to type A trees
VaKoS 39.42 41.50
RADIO INTERVIEW 28.33 33.93
Rabpio NEws 13.63 19.87
All 37.97 42.23

generally on information from layers above the phoneme, while the models trained
on the RADIO NEWS database are less dependent on this type of information.

8.4 Phone Confusions

Tables 8.4 and 8.5 are confusion matrices summarising the confusions (errors) made
by the type A trees trained on data from all databases. Tables F.1 and F.2 in
Appendix F show the confusions broken down by source phoneme.

The consonant confusion statistics in Table 8.4 reveal that retroflex consonants
are often confused with their dental counterparts and that [g] is often erroneously
elided. The evaluation of the automatically obtained key transcripts against a
manually supplied gold standard (cf. Section 5.7.7) revealed that these were also
the most prominent consonant confusions made by the automatic transcription sys-
tem. There was the high degree of confusion of retroflex consonants with dentals,
including a 100% confusion of [|] for [1] over the small gold standard transcript (how-
ever, based on 3 occurrences only). There was also the a high degree of confusion
between [g] and 0.

From Table 8.5, it can be seen that when long vowels are confused, it is manly
with their short counterparts and, to a lesser degree, with [s]. Short vowels are
often confused with [s], but also with their long counterparts. The exception is
the short vowel [a] and its long counterpart [az], which are never confused with
each other. This is probably due to the low level of noise in the key transcripts,
especially for [a:], as discussed in Section 5.7.7.

Some confusion involving the allophonic variants [g]-[2e] and [g]-[ce] can also be
seen in Table 8.5. These trends could also be seen in the evaluation of the key
transcripts against the gold standard.

It is thus safe to assume that this noise in the training keys is largely responsible
for the large shares of erroneous classifications made by the decision tree model for
certain phones. This noise also largely accounts for the large shares of confusions
in the model output between [o] and full vowels, between long and short vowels,
between the [€] and [a] allophones, and between the [¢] and [ce] allophones.
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Table 8.4: Consonant confusion matriz for the ten optimal type A trees trained on all
data. Each column shows the share of classifications corresponding to the class shown at
the bottom of the column for the key phone of the row. No realisation (0) can be confused
with both vowels and consonants. Otherwise, if row sums are not 1, it is because the
numbers are rounded.
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In the key transcript, many () realisations should actually have been [g] phones,
many dental consonants should have been retroflexes, many [o] realisations should
have been full vowels, and many short vowels should have been long and vice versa.
As an effect of this, the share of retroflex consonant phonemes realised as dentals,
the share of /g/ phonemes realised as (), the share of full vowel phonemes realised as
[e] and the share of short vowels realised as long and vice versa are unproportionally
large. Since the phoneme identity is an important predictor for the realisation of
the phoneme, the error types found in the key transcript against the gold standard
will propagate to the decision tree model.

A high degree of uncertainty about the identity of a key phone in relation to
the gold standard will give rise to uncertainty about the phone in the decision tree
predictions. It is the degree of confusability that propagates rather than the exact
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Table 8.5: Vowel confusion matriz for the ten optimal type A trees trained on all data.
FEach column shows the share of classifications corresponding to the class shown at the
bottom of the column for the key phone of the row. No realisation (0) can be confused with
both vowels and consonants. Otherwise, if row sums are not 1, it is because the numbers
are rounded.

phone

0 |.75.01 .01 .01 .01

) .89 .03 .01 .04 .01 .01

a .06 .94

a: .01 .99

e .18 .77 .06

[N .03 .03 .94

I .04 .93 .03

i .03 .97

U 17 .74 .09

u: .03 .97

e |.01.01 .92 .05

u .02 .01 .97

Y .98 .02

y: .03 .04 .94

o> |.01.02 .93 .04

o: .08 .92

€ .01 .90 .02 .07 .01

€: .01 .05 .93

ES .07 .09 .71 .13

! .01 .01 .10 .88

e .03 .70 .09 .13 .04

X .06 .94

ce |.06 .02 .01 .86 .06

cer|.01 .01 .04 .94
D o a ar e e 1 ir U ul e ¥ Y y: 0 Or £ & & +| ® g @

error types, but since variation is restricted, the errors in Tables 8.4 and 8.5 will
largely mirror the errors in the confusion matrices for the automatic transcription
system compared to the gold standard (Tables 5.7 and 5.8).

It should be noted, however, that since the same errors are present both in
the training data and in the validation data, the PER calculated for the decision
tree model output is most probably lower than it would have been if the mod-
els had been trained on the automatically obtained transcripts and evaluated by
manually obtained transcripts (unfortunately, no such transcripts besides the small
gold standard are available), although the PER is probably higher than it would
have been if the models had been both trained on and validated against manually
obtained transcripts.

An [|] is erroneously elided by the decision tree models in the majority of cases.
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However, as can be seen from Table G.1 in Appendix G, the [|] phone is very
infrequently occurring in the validation data (and, thus, in the training data). In
fact, the phone only occurs 11 times in the key transcripts from all databases. The
training instances for this phone are thus very sparse and it is not surprising that
the relative error for this particular phone is high. However, since the number of
instances is so low, these errors do not significantly contribute to the PER.

Table 8.6 shows the most frequent phone classification errors made by the trees
as the share of the total number of errors. It can be seen that errors mostly go both
ways. For example, the two most common errors made by the models are erroneous
[1] insertions and erroneous [1] elisions. It can also be seen that the choice between
a [o] and a full vowel is a large source of errors.

Table 8.6: The most frequently occurring phone classification errors.

Occurrences of error Share of total errors Phoney., Phone,,odel

1 566 6.63% 0 1
2 504 5.90% 1 0
3 466 5.46% I d
4 433 5.07% 9 I
5 389 4.56% e 9
6 375 4.39% 9 a
7 320 3.75% a 9
8 294 3.44% 0 d
9 260 3.05% 0 n
10 226 2.65% 0 g
11 178 2.09% g 0
12 173 2.03% d 0
13 144 1.69% 5 o
14 140 1.64% n 0
15 131 1.53% 0 5
16 129 1.51% 9 e
17 125 1.46% d 1
e e

I 9

0 f

18 121 1.42% s s
0 ]

19 114 1.34% 1 it
20 112 1.31% o: 5
21 95 1.11% 0 o
22 91 1.07% € ®
23 86 1.01% 0 h
24 84 0.98% o 5

Further, Table 8.6 shows that the confusions between [g] and §) discussed above
do not only constitute a large proportional error for the [g] phone, but a large
proportion of error type instances. From the total number of errors in the decision



8.5. Attribute Ranking 109

tree output, 2.7% were () realisations erroneously classified as [g] and 2.1% were [g]
realisations erroneously classified as (). Since there are many more instances of ()
than of [g] in the key transcript, it is not obvious from Table 8.4 that there are
more erroneous [g] insertions than erroneous [g] elisions, but this can be seen in
Table 8.6.

The very frequent substitutions of [1] for [d] (466 occurrences) and the relatively
frequent substitutions of [d] for [1] (125 occurrences) reflects the fact that /d/ is
often pronounced [1] in colloquial speech in central standard Swedish and that the
variation in pronunciation is relatively free. The variation is perhaps more idiomatic
than governed by general constraints for the language variety.

The errors in choosing between a [9] and a full vowel are probably not only
actual errors, but also artefacts of free variation. That is, a [9] and a full vowel
may be equally correct in many cases. If the model is used in a speech synthesis
setting, such deviation from the key transcript due to free variation would neither
affect the intelligibility nor the perceived naturalness of the resulting speech. In
cases where the classification is actually erroneous, the error would probably not
affect intelligibility in any critical way. A more serious type of error is erroneous
vowel elision. Erroneous consonant elisions may also in many contexts affect the
naturalness and/or intelligibility. Out of the total number of errors produced by the
ten optimal models trained on all data, as many as 18.6% were erroneous elisions.
However, only 1.6% were erroneous vowel elisions.

8.5 Attribute Ranking

Table 8.7 shows the 36 top ranking attributes over the ten optimal type A trees
trained on the collapsed data set. The layer from which the attribute originates is
used as a prefix in the attribute names. Attributes can refer to the current unit
or to units at +4 positions from the current unit in the specific annotation layer.
Duration measures can be based on the duration of all phonemes or on the duration
of vowels only, they can be based on normalised or absolute phoneme duration, and
they can be based on duration on a log scale.

The ranking in the first column of Table 8.7 is based on the position of the
attribute in the ten type A trees. In this case, the attribute governing the largest
number of subtrees (leaves excluded) will get the highest rank (1). The ranking
method of the second column weights the subtree count with the number of clas-
sifications involving the attribute (over the training data). For this measure, an
attribute involved in many classifications can climb in rank even if it does not ap-
pear in the absolute top of the tree (near the root). The phoneme identity attribute
appears in the top node of all trees. This means that it governs all subtrees and is
involved in all classifications made by the trees. Hence, phoneme identity ends up
at the top irrespective of ranking method.
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Table 8.7: The 36 top ranking attributes for trees trained on all information from all
databases (type A trees), using two different ranking methods.

Subtree rank Subtree - classification rank

1 [ phoneme_identity phoneme_identity

2 | phoneme_identity+1 phoneme_identity+1

3 | word_duration_phonemes_absolute word_duration_phonemes_absolute

4 | word_function_word-1 word_function_word

5 | word_function_word+1 word_function_word+1

6 | phoneme_identity+4 word_function_word-1

7 | phoneme_identity-2 phoneme_identity-1

8 | word_function_word word_duration_vowels_absolute

9 | phoneme_identity-1 phoneme_identity+2

10 | phoneme_identity+2 phoneme_identity-3

11 | phoneme_identity-4 phoneme_identity+4

12 | phoneme_identity+3 phoneme_identity+3

13 | phoneme_identity-3 phoneme_identity-2

14 | word_duration_vowels_absolute phoneme_identity-4

15 | syllable_stress_type syllable_stress_type

16 | syllable_nucleus phrase_duration_phonemes_absolute
17 | word_duration_vowels_normalised word_duration_vowels_normalised

18 | word_duration_vowels_log_absolute syllable_nucleus

19 | syllable_position_in_word phoneme_feature_py+1

20 | phoneme_feature_py+1 syllable_position_in_word

21 | phrase_duration_phonemes_log_absolute word_duration_vowels_log_absolute
22 | phrase_duration_phonemes_absolute word_duration_phonemes_log_normalised
23 | phrase_duration_phonemes_log_normalised phrase_duration_phonemes_log_absolute
24 | syllable_duration_vowels_absolute phrase_duration_phonemes_log_normalised
25 | word_duration_phonemes_log_normalised syllable_duration_vowels_absolute
26 | phrase_duration_vowels_absolute syllable_stress

27 | discourse_duration_vowels_absolute discourse_duration_vowels_absolute
28 | word_part_of_speech-3 syllable_duration_phonemes_absolute
29 | word_part_of_speech+2 phrase_duration_vowels_absolute
30 | syllable_stress word_duration_phonemes_log_absolute
31 syllable_duration_phonemes_absolute word_part_of_speech-3
32 | word_part_of_speech-2 word_part_of_speech-2
33 | phrase_duration_vowels_log_absolute phrase_duration_vowels_log_absolute
34 | word_part_of_speech+3 word_morphology_tense_aspect
35 | word_duration_phonemes_log_absolute word_part_of_speech
36 | word_part_of_speech-4 phrase_duration_phonemes_normalised

8.6 Attributes Used by the Models

Table 8.8 shows the probability of a variable from each of the six annotation layers
showing up at a specific level of the type A decision trees trained on the collapsed
data set. From this table, it can be seen that variables from all layers of annotation
are used by the trees trained on all available information from all databases’.

In fact, from 516 available attributes, as many as 449 were used at least once in
the ten trees. However, the phoneme and word layer attributes are the attributes
most commonly used in the higher levels of the trees. The top ranking utterance
layer attribute shows up at rank 55 using the first ranking method and at rank 43
using the second ranking method. For the first method, the attribute is a phoneme-
based duration measure and for the second method, the attribute is a vowel-based

1Six of the optimal trees were pruned, but four were unpruned (subjected to basic pruning
only).
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duration measure. The top discourse layer attribute is also a vowel-based duration
measure and shows up at rank 27 for both ranking methods.

Table 8.8: The probability (per cent) of a variable from an annotation level appearing
at a specific level (1 being the top node) of the optimal type A trees trained on all data.

Level | Phoneme  Syllable Word Phrase Utterance Discourse >
layer layer layer layer layer layer
1 100.00 0.00 0.00 0.00 0.00 0.00 100.00
2 36.07 10.38 50.82 1.09 1.64 0.00 100.00
3 35.68 4.32 43.51 16.22 0.00 0.27 100.00
4 37.59 5.37 44.63 10.37 1.11 0.93 100.00
5 34.02 4.88 42.99 12.76 3.15 2.20 100.00
6 41.04 3.11 38.67 13.19 2.07 1.93 100.00
7 40.41 3.80 32.49 17.43 3.49 2.38 100.00
8 40.90 5.63 32.83 14.45 4.69 1.50 100.00
9 40.38 3.77 34.10 15.06 5.02 1.67 100.00
10 40.33 0.48 36.99 16.47 3.10 2.63 100.00
11 38.86 5.42 33.73 14.76 5.12 2.11 100.00
12 40.00 3.02 35.85 13.96 6.04 1.13 100.00
13 38.49 4.37 32.94 13.10 9.13 1.98 100.00
14 30.05 5.91 45.81 11.82 5.91 0.49 100.00
15 35.33 3.80 41.30 13.04 6.52 0.00 100.00
16 33.33 6.41 41.03 10.26 7.05 1.92 100.00
17 34.81 2.96 43.70 13.33 2.96 2.22 100.00
18 36.13 8.40 40.34 10.08 3.36 1.68 100.00
19 28.28 5.05 46.46 14.14 4.04 2.02 100.00
20 33.33 6.41 39.74 11.54 5.13 3.85 100.00
21 41.67 1.67 30.00 18.33 6.67 1.67 100.00
22 36.17 4.26 34.04 19.15 4.26 2.13 100.00
23 26.09 10.87 30.43 15.22 15.22 2.17 100.00
24 40.54 2.70 35.14 16.22 5.41 0.00 100.00
25 47.06 2.94 29.41 11.76 8.82 0.00 100.00
26 30.77 3.85 50.00 3.85 7.69 3.85 100.00
27 42.11 0.00 31.58 21.05 5.26 0.00 100.00
28 33.33 0.00 40.00 13.33 6.67 6.67 100.00
29 38.46 7.69 53.85 0.00 0.00 0.00 100.00
30 33.33 0.00 44.44 11.11 11.11 0.00 100.00
31 44.44 0.00 22.22 11.11 11.11 11.11 100.00
32 0.00 0.00 50.00 0.00 0.00 50.00 100.00

The word frequency and word predictability attributes both get relatively low
ranks (word frequency is ranked 67 and 94 by the respective ranking methods and
word predictability is ranked 91 and 133). The relatively weak predictive strength
of these variables may be due to the fact that they are obscured by the function
word variables, who get high ranks and, to a certain degree, contain information
overlapping with the word frequency and word predictability variables. Also, the
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word frequency and word predictability measures are estimated from a corpus of
transcribed speech, relatively small in comparison to standard text corpora. These
measures would probably be improved if supplemented with data from text corpora.

A large variety of the duration and pitch based measures, respectively, are rep-
resented among the variables used by the optimal trees. The first measure based
on pitch shows up at place 44 using the first ranking strategy and on place 47 using
the second ranking strategy. The highest ranking pitch-based attributes are two
different pitch dynamic measures calculated over the phrase. Most of the duration
measures seem to be nearly equivalent in terms of predictive power, with vowel-
based measures working somewhat better over durationally larger units than over
smaller units.

Since higher order layer units are large in terms of duration, it is not possible
to make exact predictions from these units only and attributes from these layers
mostly end up in the lower levels of the decision trees, as a result of the ‘greedy’
induction algorithm used.

8.7 Model Complexity

The ranking of attributes is closer to optimal when using symmetric information
gain ratio than when using other selection measures given the type of training data
used and thus trees are generally smaller after basic pruning when the symmetric
information gain ratio measure has been used to induce the tree. Symmetric in-
formation gain ratio thus gives both better predictions and less complex models
than using e.g. information gain ratio for selecting attributes. For this reason, the
effect of pruning on model performance was small for the decision trees evaluated.
In most cases, pruning affected model performance (on the test data) positively.

Six pruned trees performed better than their unpruned counterparts. On av-
erage over the ten type A trees trained on all data, pruning decreased the PER
only by 0.5%, but decreased the average number of attributes used by the models
by 82.0% (from 302.8 to 54.5). The model complexity thus dropped significantly
as a result of pruning: the average number of nodes decreased by 89.6% (from
4151.9 to 433.1) and the average number of tree levels decreased by 62.2% (from
32.3 to 12.2)%. Using the McNemar test, the difference in PER between pruned and
unpruned models was shown not to be significant.

A pruned model is much simpler than an unpruned model and thus requires less
input attributes to be obtained. Although the McNemar test showed that there is
no gain in predictability associated with pruning, it also showed that there is no
loss of predictability associated with pruning. Hence, a pruned model would be
the choice in an application. However, it should be noted that although a pruned
model uses less attributes than an unpruned model, there are still attributes from
all annotation layers used in the pruned models.

2The node counts include leaf nodes and the level counts include levels containing only leaves.
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8.8 Weighted Phone Error Rates

Since all classification errors do not have equal perceptual impact, the PER measure
may not give an adequate measure of model performance. For example, replacing a
plosive consonant with a vowel will under most conditions give a greater perceptual
impact than replacing a full vowel with a [o]. In representations of pronunciations of
connected speech involving a small set of phone symbols, there are many gray areas
and during manual phonetic transcription, many cases are encountered where ad
hoc decisions about phone identity have to be made. If synthesised with appropriate
prosody, a phone string with a full vowel and a string with a [o], respectively, may
not give rise to any perceived difference with regards to naturalness.

For a certain phoneme, a decision tree model of the type under discussion can
only produce a realisation that it has encountered during training®. Thus, in the
current case, the comparisons of phones from the auto-transcription system (used
as the key in the tenfold cross-validation experiment) and phones produced by the
decision tree model will always be comparisons of relatively similar phones. All
possible phone distances are on average about equal (although context-dependent),
so that the PER measure’s uniform weight of the distances from a phone to all its
possible misclassifications is actually justifiable.

However, although the distances of a key phone to all its possible misclassific-
ations may be about equal, the distance between a certain phone and its possible
misclassifications may not be equal to the distance between a another phone and
its possible misclassifications. For this reason, a weighted PER measure, PER,,,
is introduced. For calculating this measure, each comparison between a key phone
and a model-produced phone classification is weighted with a static phone distance
weight, A (0 < A < 1), resulting in a PER,, < PER.

If the key phone and the model phone are represented by the same symbol, A
will be 0. If a vowel is compared to a plosive consonant, A will be 1. Thus, a 100
per cent PER,, will be the effect of replacing all vowels with plosive consonants
and vice versa. A PER,, close to 100% will always be completely corrupted, while
a PER close to 100% may theoretically still be at least partly understandable (and
it may also be completely corrupted). The PER and PER,, measures thus move
on different scales and cannot be compared.

The actual phone distance weights used for the PER,, measure are based on an
unpublished version of a description of an algorithm for measuring the “phonetic
distance” between written words (Brodda, 1966). The published and the unpub-
lished versions differ mainly in that, in the unpublished version, there is an actual
matrix with estimations of the “phonetic distances” between letters (and letters
and ().

This matrix has been extended and adapted to form a phone distance matrix
for the phone set used in the annotation described in this thesis. The distances

3Since discrete variables can be clustered at model induction, it is possible to induce a model
that for a certain phoneme can produce a realisation never encountered for that particular phoneme
in the training data.
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in the original matrix were based mainly on differences in articulatory features
and on relative distances between tongue positions during articulations of different
vowels. Another strategy for constructing phoneme distance matrices is to base the
distances on phoneme confusions in listening tests. For example Fant et al. (1966)
constructed consonant distance matrices in this manner. Table H.1 in Appendix
H shows the phone distances used in the current evaluation. The distances are
specified on a scale from 0 to 8 and the phone distance weight A is the phone
distance divided by 8.

Table 8.9: Mean and standard deviation of weighted phone error rate (PERw) for sets
of decision trees. Means are presented in per cent and standard deviation in per cent units.
FEach mean and standard deviation is based on the ten optimal trees resulting from one of
the twelve tenfold cross-validation experiments. Attribute set C contains only attributes
from the phoneme layer, set B contains all non-prosodic attributes and set A contains all
available attributes.

Database Set A Set B Set C

T o T o T o
VAKoS 2.63 0.10 4.69 0.12 4.89 0.15
RADIO INTERVIEW 254 0.14 3.73  0.22 4.03 0.17
RADIO NEWS 2.59 0.21 3.02 0.32 3.23  0.29
All 2.32  0.09 4.08 0.12 4.44 0.13

Of course, the perceived difference between two phones depends highly on the
context, e.g. the position in the syllable, the phone duration, the length of the
utterance and the word, whether there are phonotactic or semantic constraints on
replacing one phone with the other, etc. The perceived phonetic distance between
utterances is thus not a simple function of individual phone distances. Simultan-
eously, a pronunciation differing in phone-level realisation from that of a recorded
utterance, all other things being equal, will not always be perceived as an erro-
neous or unnatural pronunciation—a certain degree of variation is allowed. Still,
it is likely that the more fine-grained PER,, measure will give a more accurate
description of model performance and a better estimation of the perceived quality
of the phone string at a hypothetical pronunciation than PER gives.

Table 8.9 shows the mean PER,, and PER,, standard deviations for the twelve
tenfold cross-validation experiments reported above. For models trained on data
from all databases and on all available attributes, the PERy, is 2.3%.

As can be seen from Table 8.10, when using the PER,, as the evaluation measure,
the estimated dependence of the models on information above the phoneme level
and on prosodic variables increases. The reduction in PER associated with making
prosodic variables available for the tree inducer was 37.97% and the reduction
associated with making attributes originating above the phoneme annotation layer
was 42.23% for models trained on all databases. The corresponding reductions in
PERy, are 43.13% and 47.70%, respectively.

Given that the PER,, measure is a better estimator of model accuracy, this
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makes it even more clear that the multi-layer information approach to pronunciation
modelling does indeed improve predictions of phone-level pronunciation in discourse
context, compared to using phoneme layer information only.

Table 8.10: Error reduction based on weighted phone error rate (per cent) as a con-
sequence of using trees trained on all attributes compared to using trees trained on subsets
of attributes. Type C trees are trained with access only to phoneme level attributes, type B
trees are trained with access only to non-prosodic attributes and type A trees are trained
with access to all attributes.

Database Error reduction switching Error reduction switching
from type B to type A trees from type C to type A trees
VaKoS 43.95 46.27
RADIO INTERVIEW 31.94 37.05
RADIO NEWS 14.22 19.84
All 43.13 47.70

8.9 Effects of Noise

The erroneous classifications possible for a phoneme are limited to the set of real-
isations for the phoneme found in the training data (except in some cases where
the decision tree inducer has collapsed phoneme classes). Both training and evalu-
ation data contain up to 15.5% errors on the phone level, as previously discussed
(cf. Section 5.7). Since the phone string is generated by an automatic transcrip-
tion system with a priori restrictions on the possible realisations of each phoneme,
the range of variation is probably less than it would have been if the transcripts
had been produced by a human. It is not immediately obvious whether this has
translated into lower or into higher phone error rates in the cross-validation setting,
than would have been the case if the phones in the training and validation data
had been supplied by a human transcriber.

However, the correspondences between the confusion matrices comparing the
gold standard transcript and the automatically generated key transcript on the
one hand, and confusion matrices comparing the the key transcript and the model
output on the other hand, indicate that the phones, for which there is a large
discrepancy between the gold standard and the key transcript, are the phones for
which there are more discrepancies between the key transcript and the decision tree
model output.

It is thus relatively safe to assume that the restricted number of possible real-
isations of a phoneme used in the automatic transcription system and thus in the
keys used during decision tree model training has affected the PER of the result-
ing models negatively, rather than positively. This suggests that less noise in the
training data (training on manually supplied key transcripts) would produce more
models with lower, not higher, PERs in a cross-validation setting.
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The fact that less noisy key transcripts would probably produce models with
lower PERs in a tenfold cross-validation setting than the current transcripts does
not mean that less noisy key transcripts would give this effect compared to all
types of more noisy key transcripts. For example, if all key phones in the training
and validation data were set to the same symbol, e.g. /p/, trees induced from and
validated against this data could never produce anything else than 100% correct
decisions. This would, however, be in relation to the erroneous keys and have no
practical value.

To sum up, the noise in the training data has probably affected the PERs in
the tenfold cross-validation experiments negatively and access to less noisy training
data would give an improvement not only in model performance in relation to gold
standard transcripts but most probably also in a cross-validation setting.

8.10 Reliability Issues

To test the reliability of the evaluation method, the tenfold cross-validation ex-
periment was repeated two more times with a new randomisation each time. As
presented above, the first tenfold cross-validation run showed a mean PER of 8.17%
and a standard deviation of 0.25 over the ten generated trees trained on all attrib-
utes from all databases. Six of the optimal trees were pruned trees and four were
unpruned trees (trees with basic pruning). The first repetition gave a mean PER of
8.15% and a standard deviation of 0.26. Five of the optimal trees were pruned and
five were not. The second repetition gave a mean PER of 8.16% and a standard
deviation of 0.21 and seven of the optimal trees were pruned.

The results are thus relatively stable over different data randomisations, and it
is safe to claim that a 8.2% PER is an actual mean for the given data in a tenfold
cross-validation setting with randomly partitioned data.

Other issues related to reliability are the facts that trees are trained and eval-
uated on very similar data and that data from the same speakers occur in both
training end evaluation data. It is thus likely that the phone error rates reported
are lower than they would have been if an entire database had been held out during
training and then used as validation data.

To investigate the performance of models for predicting the pronunciation of
speakers not present in the training data, the tenfold cross-validation procedure
was repeated once more. However, this time, instead of randomly choosing ten
per cent of the instances to hold out from training, all instances originating from a
single speaker from the VAKOS database were held out at each run. This meant that
the number of instances held out at each run was not exactly the same, although
the discrepancies were small. The entire RADIO INTERVIEW and RADIO NEWS
databases were always included in the training data set. Thus, the trees were
always trained on more than ten per cent of the available instances and evaluated
on less than ten per cent of the instances.
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Table 8.11: Mean and standard deviation of phone error rate (PER) for sets of decision
trees trained on data from all databases. The two methods used for holding out instances at
training is using random sampling and excluding all instances based on the speech from a
specific speaker (speaker 1-10 from the VAKOS database). The values for the random
method were included in Table 8.2 and are repeated here for comparison. Means are
presented in per cent and standard deviation in per cent units. Attribute set C contains
only attributes from the phoneme layer, set B contains all non-prosodic attributes and set
A contains all available attributes.

Hold-out method Set A Set B Set C

x o T o x o
Random 8.17 0.25 13.18 0.36 14.15 0.38
Speaker 8.51 0.76 14.66 1.83 15.87 1.67

Table 8.11 shows the results of the cross-validation experiment with all instances
originating from a single speaker held out at each run. The results from the proper
tenfold cross-validation experiments using random sampling for holding out in-
stances is also included in the table, for comparison. It can be seen that the average
PERs over the trees created using the speaker hold-out method are slightly higher
the PERs in the original tenfold cross-validation experiment.

The higher standard deviations are probably in part an artefact of the smaller
evaluation set, but it is likely that they also reflect the fact that the different
speakers are idiomatic to different degrees and that their specific pronunciations
thus are differently hard to predict on the basis of the training data from other
speakers of the same language variety.

In using the current pronunciation modelling method, the goal is not to get
100% correct predictions for single speakers. The goal is to get pronunciation
representations that are correct from an average perspective rather than speaker-
specific perspective. In this context, the PER thus is the sum of actual errors and
adaptations from the speaker-specific pronunciation to an average pronunciation.

Very large differences in results between the hold-out methods would have indic-
ated that variation in pronunciation is largely speaker-specific and only to a small
degree general to the language variety. The fact that the differences are small shows
that variation in pronunciation due to discourse context is mainly a language trait,
but that there is also idiomatic variation.

8.11 Gold Standard Evaluation

Although it is hard to speculate about how the model performance would be affected
by more accurate training data, the transcripts generated by the current models can
be evaluated against actual target transcripts. When evaluated against the small
gold standard consisting of five minutes of manually transcribed speech from the
VAKOS database, the optimal type A trees trained on all data produced a PER of
17.7% (PERw = 5.3%), which means that the deterioration in performance when
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using the model instead of the automatic transcription system is only 12.3% (11.2%
deterioration of PERw) and that the improvement using the model instead of the
phoneme string is 32.1% (34.6% improvement of PERw).

8.12 Summary

This chapter has presented a tenfold cross-validation experiment, in which it was
shown that including information from multiple layers can improve the performance
of pronunciation models, most notably for spontaneous speech, where the predictive
power of phonological and grammatical information is relatively low. Attributes
from all layers of annotation were used in the models with the highest prediction
accuracy. The optimal models produced an average phone error rate of 8.2%, which
is an improvement of 60.0% compared to using the phoneme string for estimating
phone-level realisation.

A comparison between models trained only on phoneme layer attributes and
models trained on attributes from all layers showed that the prediction accuracy of
pronunciation models could be improved by 42.2% by including information above
the phoneme level. The multi-layer information approach to pronunciation mod-
elling thus improves predictions of phone-level pronunciation in discourse context
compared to using phoneme layer information only, although phoneme layer attrib-
utes are still the most important predictors.

The next chapter presents a pronunciation model trained on all available data
in detail and discusses rules for the realisation of separate phonemes. Further, the
realisation distribution and prediction accuracy of separate phones are presented.



Chapter 9

Phoneme-to-Phone Conversion

As stated in the introduction to this thesis, modelling pronunciation variation in
discourse context is interesting for the description of a language variety. This
chapter will describe some aspects of pronunciation in central standard Swedish
derived from a model induced from the annotated speech data. The distributions of
realisations for each phoneme, the shares of correct classifications and the phoneme-
to-phone conversion rules employed by the model are discussed.

9.1 The Decision Tree Pronunciation Model

The evaluation based on tenfold cross-validation, presented in the preceding
chapter, suggested that a model trained on all available data and subsequently
pruned is optimal both from a performence perspective and from a model com-
plexity perspective. Hence, this is the type of model used for describing central
standard Swedish from a pronunciation variation perspective.

The results presented in Chapter 8 were based on means of ten trees trained
on 90% of a particular data set and validated against the remaining 10% of data.
Here, a single tree trained on all available data is studied. This final, pruned tree
uses 57 of the 516 available attributes and has 427 nodes (including leaves) in 12
levels.

Tables 1.1 to 1.23 in Appendix I and Tables J.1 to J.23 in Appendix J present
the distributions of realisations produced by the model on the training data for
each phoneme. The tables also show the key phones for each phoneme and the
share of correct classifications made by the model. As mentioned, the values in
these tables are based on classifications made on the training data. Since the tree
was trained on all available data, it could not be validated against data not used at
training. However, the values will still give an idea about the approximate over-all
distribution of phone realisations for each phoneme.

Over the training data, the tree output showed a 7.39% phone error rate, PER,
and a 2.09% weighted phone error rate, PERy, (the corresponding means for the
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trees in the cross-validation experiment were 8.17% and 2.32%). A better model can
be expected simply due to the fact that more training data is used. The relatively
small difference in PER between the model trained on all data and the mean PER
of the corresponding trees trained on 90% of the data is thus probably not only due
to the fact that the training and validation data overlap, but also to the fact that
there was more training data for the former tree.

The unpruned tree (i.e., the tree subjected to basic pruning only), however, is
expected to produce a significantly lower PER when applied to the data from which
it was induced. This was also the case; the unpruned tree showed a PER of only
0.61% using 329 attributes distributed over 4,605 nodes in 33 levels.

As discussed earlier, the PER reflects differences between the key transcript and
the model output and these differences may be due to actual errors, but can also be
a artefacts of a general model. The generalisation obtained through model pruning
excludes most idiomatic variation specific to the speakers on whose speech annota-
tion the model was trained, making the model a more applicable for the language
variety. The generalisation procedure thus contributes to the PER, without giving
rise to actual errors—the general nature is a desired property of the model.

In appendices I and J, each branch from the top node phoneme identity of the
final tree is presented separately as a subtree, in affect showing the rule for con-
verting each phoneme to its respective phone realisation depending on the discourse
context. The tree is split for readability reasons, and the top node of each subtree
corresponds to the same phoneme identity node in the complete tree.

Appendix I shows the subtrees for consonant conversions and discusses the real-
isation rules for each consonant in detail. The shares and frequencies of realisations
are also presented. Appendix J shows the subtrees for vowel conversions. The
realisation of vowels is less dependent on phoneme context and more dependent on
duration-based attributes than the realisation of consonants. The realisation rules
for vowels are in most cases more complex than the rules for consonants and are
not discussed in the same detail as the consonant realisation rules.

Since the individual phoneme-to-phone conversion rules are interesting phenom-
ena from a linguistic-phonological point-of-view, the trees illustrating these rules
are all included in appendices I and J. In this chapter, regularities over different
phoneme-to-phone conversions will also be discussed.

9.1.1 Unseen Contexts

Not all possible contexts are handled by the model, since all possible contexts were
not available in the training data. If an unknown context attribute shows up in
data to be classified by a pronunciation model, the model uses the majority class
of the lowest node for which there is a known context attribute. In the figures in
appendices I and J, only the majority class of each leaf is shown, but the model
has access to the complete distribution of key phones in the training data for each
leaf. From this information, the majority class of a higher node can be calculated.
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For example, in the leftmost branch of the tree model illustrated in Figure 9.1
(also included in Appendix I), a /p/ should be realised as [p] if its right adjacent
phoneme is /p/, /1/ or /a/ and as () if the adjacent phoneme is /d/, /ai/, Joi/, /&/
or <sil> (silence). So, what happens if the right adjacent phoneme for a /p/, for
which the model is to produce a realisation, is in fact an /s/?

Then, the model knows that in the training data, there were 5 instances with
/p/, /1/ or /a/ as their right neighbour and they should all be realised as [p]
according to the key transcript. The model also knows that there were 89 instances
in the training data preceding /d/, /az/, /oi/, /ee/ or <sil> and that 87 of these
should be realised as ) and 2 as [p], according to the key transcript. The total
number of instances for the mother node of these two leafs is thus 94, of which 87
should be realised as (). This makes () the majority class of the mother node and
the realisation assigned to the /p/ in this case.

phoneme_identity

P

word_duration_phonemes_absolute

<0.0527423\ >0.0527423

phoneme_identity+1 phoneme_identity+1
P T,K,B,D,F,V,S,STHMN,L,
D,A:,A:,A3 il T.RA J.R,E0,A,A: EE:LI:0,0:U, P

U:,A,A:,A,A4,A3,0:,sil,junk

Figure 9.1: The realisations of the phoneme /p/ (phoneme representations in the figure
are in STA format).

9.2 General Discussion on Phoneme Realisation

In the pruned decision tree pronunciation model, only 57 of the 516 available at-
tributes are used. However, as was discussed in Chapter 8, many of the attributes
are nearly equivalent in terms of predictive power and depending on the part of
the training data randomly excluded during training, different attributes could be
selected to be included in a model, with very little effect on model performance.
There is thus a degree of chance in the selection of the particular attributes, as
aresult of the fact that there is much redundant information in the set of available
attributes.

There are, however, some variables that are particularly informative. The iden-
tity of the current phoneme and the phoneme context + 4 positions from the current
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phoneme are particularly strong predictors of phone identity, as could be expec-
ted. Also, the function word attribute and the function word context were strong
predictors. Several duration-based measures also proved to be among the top pre-
dictors. It is clear that the mean absolute phoneme duration and the mean absolute
vowel duration over the word were the best duration-based predictors.

9.2.1 Consonants

As can be seen from figures I.1 to 1.23 in Appendix I, mean absolute phoneme
duration is particularly important for determining if a particular consonant should
be realised or elided. The break-off point is similar for most consonants, situated
at about 35 ms. Since there is noise in the key transcript, it cannot be excluded
that this is partly an artefact of properties of the statistical decoder and the a
posteriori correction rules (which, to some extent, use durational properties as
context). However, it probably also reflects an actual break-off point in the speech
rate dimension, where it is no longer possible to realise all phonemes of a word.

The pruned model shows a simplified distribution of realisations for most phon-
emes. There are often only two alternative realisations in the model where there
are three or more alternatives in the key transcript. The distribution of realisa-
tions is mostly biased towards the majority class, which is a natural consequence
of pruning.

The approximants /1/ and /j/ are relatively hard to handle for the model. This
is partly because of the difficulty of the automatic transcription system to produce
accurate keys for these consonant phonemes. However, it also reflects an innate
ambiguous nature of these phonemes—they often merge with adjacent vowels, and
it is very hard to handle this fact in a sequential-segmental description of the
speech stream. An /1/ may also merge with a successive dental consonant to form
a retroflex consonant. The model produced 92.3% correct realisations for /j/ and
only 89.0% correct realisations for /i/.

Other consonants for which the realisations are hard to predict are /d/ and /g/.
Neither the [1] nor the () realisation of /d/ is allowed by the model. This results in
the fact that /d/ gets the lowest share of correct decisions of any consonant, 77.6%.
The phoneme /g/ has many erroneous ) realisations in the key transcript and the
[g] and () realisations are often confused by the pronunciation model. The share of
correct decisions made for /g/ was 79.7%, the second lowest for any consonant.

The relatively infrequent retroflex consonants /|/, /s/ and /n/ also have low
shares of correct realisations in the model output, 90.9%, 88.0% and 80.8%, re-
spectively. The low energy fricatives /f/ and /h/ are relatively often confused with
() and have shares of correct classifications of 93.3% and 91.3%, respectively.

However, in general, the model is better at predicting the realisations of con-
sonants than the realisations of vowels. The share of correct classifications made by
the model for the plosives /p/, /t/, /k/, /b/ and /d/ is around 99%. Also the nasal
/1/ has a 99% correct classification rate. Two other semi-vowels, /m/ and /1/ were
correctly classified in 97.0% of the cases and in 98.2% of the cases, respectively.
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The fricatives /v/, and /s/ and the plosive /{/ also have high correct classi-
fication rates, 98.4%, 97.1% and 97.8%, respectively. The realisations of the high
energy fricatives /fj/ and /¢/ are both correctly predicted by the model in 100% of
the cases.

The remaining semi-vowel, /n/, however, is a phoneme that is especially prone
to be affected by its context, which increases the variability in the data and lowers
the share of correct classifications. The model produced 92.9% correct phone real-
isations for /n/.

9.2.2 Vowels

The realisation of vowels depends heavily on prosodic information. Mean vowel
duration measures are used in high level nodes of the pronunciation model for most
vowels. All syllables and some words (and one-word phrases) contain only one
vowel. Short words are often high frequency words, and thus the realisations of
vowels are often predicted from the duration of the vowel directly. In a speech
synthesis context, much is gained if the phone-level pronunciation can be predicted
from mean durations over larger units! or not using prosodic variables at all. The
mean duration attributes and especially the mean vowel duration measures may
thus not be fully usable if the model is to be used in a speech synthesis context.

However, the values presented in Table 8.2 in Chapter 8 showed that it was pos-
sible to predict the pronunciation in discourse context with tree models not trained
on prosodic attributes. The accuracy was lower than when prosodic attributes were
available during model training, but still significantly higher than when using the
phoneme string to estimate the phone string.

In Swedish, vowels come in pairs, in such a way that there is a phonologically
short and a phonologically long variant of each vowel, although the variants may
also differ in tongue position or lip rounding. The shares of correct decisions made
by the model for different vowels show that the realisations of long vowels are
generally easier to predict than the realisations of short vowels. This in spite of the
fact that there are generally more possible realisations for the long vowels and that
there are more training examples for the short vowels.

The long vowels are more stable in their realisation and were easier to correctly
classify by the automatic transcription system. Thus, there is a greater share of
correct keys for these vowels (cf. tables 5.7 and 5.8 in Section 5.7.7). However, the
fact that the realisation of phonologically long vowels are more predictable may
also suggest that the long vowels are more rule-governed in their realisation, while
there is a higher degree of free variation for the short vowels.

Some vowels occur more frequently than others and the short variant of a pair
is mostly more frequent than the long variant. The exception to this general rule
is when the vowel pair is infrequent, but the long vowel occurs in one or several of

In Chapter 10, a method for using the output of a prosodic model as input to the phone-level
pronunciation model is discussed.
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the most frequent function words. The most clear example of this is the /a/-/z:/
pair, where the long variant is much more frequent than the short variant, since
the long variant occurs in the copula verb dr ‘s’ Table 9.1 presents the number
of instances and the share of correct decisions made by the model for each vowel,
also shown in tables J.1 to J.23 in Appendix J.

Table 9.1: The number of instances and the share of correct decisions made by the model
for each vowel phoneme.

Short vowel Instances Share correct Long vowel Instances Share correct
) 3,956 99.44%
a 7,644 91.55% a: 3,036 98.35%
e 3,353 86.94% e 2,833 89.80%
I 3,600 85.00% iz 1,835 92.81%
U 512 81.05% ur 842 94.30%
e 1,023 86.61% I 1,056 93.18%
Y 450 99.33% y: 126 96.83%
) 4,076 93.20% or 2,306 84.78%
e 1,197 98.50% € 408 94.85%
® 251 62.15% 2 1,429 87.82%
ce 152 97.37% o 262 94.27%
® 356 57.87% ce: 543 90.61%

There are some cases where allophones for what is actually the same phonemic
class are included in the STA phonetic alphabet and thus in the set of phonemes
used in the canonical pronunciation representations. These allophones have thus
been treated as phonemes in the work described in this thesis.

The more open /&/ and /z:/ phonemes are actually pre-/1/ allophones of /e/
and /e1/, respectively. The /ce/ and /oe:/ phonemes are pre-/1/ allophones of /ce/
and /g:/. In (non-canonical) continuous speech, the more open allophones can be
used also when the /1/ has been elided, as a remnant of the /1/ phoneme. The open
allophone can also assimilate to its more close allophone counterpart and the vowel
may be realised anywhere on a continuous scale between prototypical instances of
the allophones.

The phonemes in the front open-mid to mid region of the vowel space thus differ
from the other vowels in several respects and are harder for the model to handle.
It is obvious from the data presented in this chapter, and in appendices I and
J, that certain phonemes are more prone to variable realisation than others, and
that certain phonemes show a more free variation than others. Further, certain
phonemes show more continuous variation than others, which makes the phone
classification ambiguous.

In spite of the prediction problems associated with certain phonemes, the pro-
nunciation models give relatively accurate predictions. Further, with more accurate
training keys and more training data, it is expected that the prediction accuracy
can be significantly increased. Since the model format is transparent, the model
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can also be manually changed and the effects of the changes tested. Thus, the
data-driven and the knowledge-based approaches to pronunciation modelling can
easily be combined using the decision tree paradigm. Where a sufficient amount of
data is available, the models can extend linguistic knowledge and in cases where
data is sparse, linguistic knowledge can be used to improve the models.

9.3 Summary

In this chapter and appendices I and J, a decision tree pronunciation model has
been presented in detail. Rules for the realisation of separate phonemes have been
discussed, as well as the realisation distributions and the prediction accuracies for
the phonemes. A general discussion dealing with common patterns of classes of
phonemes was also included in this chapter.

It could be seen that certain phonemes are more prone to variable realisation
than others, i.e., certain phonemes show a more free variation than others and
certain phonemes show more continuous variation than others, which makes the
phone classification of these phonemes ambiguous. For these phonemes, it is harder
for a pronunciation model to give correct realisation predictions. The realisations of
certain other phonemes are hard to predict since the phonemes are infrequent and
suffer from data sparsity problems to a higher degree than more frequent phonemes.
However, in general, the model produces highly accurate predictions.

The next chapter will briefly discuss how pronunciation variation models of the
kind described in this chapter and the preceding chapters 7 and 8 can be used in
a speech technology application: speech synthesis. The next chapter also discusses
the fact that the annotation methods and annotation described in chapters 5 and
6 can be used irrespective of particular pronunciation modelling paradigms.






Chapter 10

Pronunciation Modelling in Speech
Synthesis

Using pronunciation models to predict the phone-level realisation of words in actual
speech databases, as was the case in the cross-validation experiment described in the
previous chapter, means that there is a single ‘correct’ realisation of each phoneme.
In a speech synthesis setting, several alternative pronunciations can be equally
natural-sounding. Also, naturalness is dependent on the entire phone string, not on
each segment independently. Listening experiments with speech synthesised using
pronunciation variation modelling are thus necessary to evaluate the performance
of pronunciation variation models in a synthesis setting. This section will discuss
how pronunciation modelling can be used in speech synthesis system to make the
speech sound more dynamic and natural.

10.1 The Need for Natural-Sounding Speech Synthesis

As discussed, the background for the work presented in this thesis is that, in natural
speech, the pronunciation of a word is not always the same. Instead, the pronunci-
ation depends to a large degree on the context in which the word is uttered. This
is also the case in speech generated by state-of-the-art speech synthesis systems.
However, speech generated by present day synthesis systems is much less dynamic
than natural speech and it is not easy to adapt the speaking style of the synthetic
speech to different speaking situations.

Unnatural-sounding speech synthesis may bore or irritate a frequent user in any
context. There are, however, some areas where more natural-sounding and adapt-
able speech synthesis is especially needed, e.g. for people using speech synthesis as
a vocal aid and in language (pronunciation) training systems. Further, dialogue
systems e.g. for booking tickets and checking timetables are getting increasingly
‘intelligent’, with barge-in, bigger vocabularies and better dialogue handling. In-
teraction with such systems is thus becoming increasingly like interaction with
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humans. A system will be perceived of as more coherent if the ‘intelligence’ of the
dialogue system is reflected in the synthetic speech produced by the system.
Visually impaired persons using speech synthesis for reading may choose speed
and clarity before naturalness. Dyslectic users may also prefer clarity before nat-
uralness. However, synthesis at speech rates above the natural range may still be
improved by pronunciation variation modelling, and using a phonetic representation
corresponding to a fast-speaking human may be easier to process than a canonical
(maximally detailed) phonemic representation (cf. e.g. Ogden et al., 2000).

10.2 Annotation and Speech Synthesis

In addition to increasing the speed of annotation, there was also another reason for
using automatic methods when the speech databases used for training pronunciation
models were annotated. This auxiliary reason for using automatic methods was
to ensure that the corresponding information can be supplied automatically in
e.g. a speech synthesis context. The system for annotation was also adapted to
be usable irrespective of the presence of a speech signal. It is thus possible to
separate the annotation from the signal, so that information derived from text
can be represented in the same format as the information in the annotated speech
data. Manual annotation and supervision was used in such a way that it was not
required in a speech synthesis context. For example, in a speech synthesis context,
the orthographic string and utterance boundaries are known and do not have to be
manually supplied.

It is not possible to calculate any exact correspondences to the parts of the an-
notation based on fy contours and phoneme durations in a speech synthesis setting.
However, such variables can be used to harmonise the prosodic values produced
by the prosodic model of a synthesiser with the phone string. For the resulting
synthesis to sound natural, it is important that the prosody and the phone string
harmonise.

10.3 Pronunciation Modelling and Synthesis System Types

The pronunciation variation information is contained in the speech data annotation
and when the information is to be used to improve a speech technology application,
rather than for creating a descriptive or explanatory model, the transparity of
the model used to represent the information is not critical. The annotation and
the annotation methods can thus be used for pronunciation variation modelling in
e.g. speech synthesis in other ways than using decision tree classification models.

The optimal way of integrating phone-level pronunciation modelling into a syn-
thesis system depends on the type of system. A speech synthesis system typically
consists of two parts, a front-end generating parameters which are subsequently
used by a back-end to generate sound, either by using an articulatory or an acous-
tic model or through unit (selection and) concatenation.
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In a parametric synthesiser or a diphone synthesiser, pronunciation modelling
can be used in the front-end for parameter generation. A parametric synthesis front-
end generates acoustic or articulatory parameters to the synthesiser back-end. A
diphone synthesiser front-end generates phonetic strings used by the back-end to
locate the appropriate concatenation units and in the typical case also durations and
fo contours used to adapt the units. In standard parametric or diphone synthesiser
front-ends, there are usually some phonological co-articulation rules operating on
the synthesiser-internal phonological representation of the utterance being synthes-
ised. However, such rules typically only take phoneme context into account. They
may also make use of the function word/content word dichotomy.

A variable size unit selection system has co-articulation built into its concaten-
ation units to a higher or lower degree. The variation in the data is thus implicit
and a canonical phoneme string may be used to represent the speech string both in
the database and at unit selection. Pronunciation modelling is here most efficiently
used at unit selection. The speech data available for concatenation must then be
annotated with context variables important for the phone-level pronunciation. At
unit selection, the units are selected that best match the context criteria determined
by the synthesis front-end (i.e., target costs) as well as concatenation constraints.
Thus, the actual phonetic string is implicit in the speech unit selected. Combina-
tions of context variables giving rise to similar effects on pronunciation will have to
be clustered to make the abstractions necessary to use the speech data optimally
and thus minimise the amount of data needed. To make good variable size unit
selection synthesis of different speaking styles in this manner, speech representing
different styles must be present in the database. The problem of finding optimal
target cost measures with multiple context variables will need to be addressed.

Hidden Markov Model (HMM) synthesis is a type of fixed-size unit selection syn-
thesis. The units are acoustic models corresponding to n-phones. Several context-
specific units of the same n-phone can be created using a context-annotated data-
base at model training. As in the variable size unit selection case, the units may
be segmentally different, although these differences are implicit. An advantage of
HMM synthesis compared to variable size unit selection synthesis is that models can
be clustered and states can be tied using standard methods. Thus, generalisation
from the training data is relatively simple. As for the unit selection case, a canonical
phonemic representation is enough to represent units. Another advantage of HMM
synthesis is that all speech data does not have to come from the same speaker, nor
be recorded under the same conditions, since the models can be homogenized after
training.

10.4 Using Pronunciation Models with an Existing Speech
Synthesis System

Some initial attempts at making an existing diphone speech synthesis system sound
more natural have been made, using a pronunciation variation model of the type
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described in chapters 7 to 9 of this thesis. In the synthesis system used, RULSYS
(Carlson and Granstrom, 1975, 1976; Carlson et al., 1982) is used as the front-
end and MBROLA with the Ingmar voice, created for the commercial INFOVOX 330
synthesis system, is used as the back-end.

One strategy used for generating discourse context-adpapted synthetic speech
was to generate fy contours and phoneme durations through applying the prosodic
model of the synthesiser to a canonical phoneme string and basing the prosodic
attribute values for the pronunciation model on the prosodic output. Based on
these values and attribute values derived from the orthography, the model pro-
duced a new phone-sequence. This sequence was then used to produce the actual
synthetic speech. This strategy harmonises the phone sequence with the synthes-
iser prosody, but the naturalness is largely dependent on the prosodic model. For
more information on prosody modelling for speech synthesis, cf. e.g. Bruce and
Granstrom (1993); Horne and Filipsson (1996); Bruce et al. (1996, 2000); Eskénazi
(1992); Zellner (1994); Frid (2003), and Fant and Kruckenberg (2002).

Another strategy tested was to simulate an optimal prosodic model by re-
synthesising the prosody (fy contour and durations) of extracts from recorded
speech and using the decision tree pronunciation model to produce phone-strings
based on the actual prosody of the recorded speaker (with some adaptations to fit
the synthesis system!). The re-synthesised prosody was used also for producing the
synthetic speech.

This strategy did not produce optimal synthesis, mainly since the diphone data-
base available was not designed for producing highly reduced speech. Some phone
strings produced by the decision tree models were not possible to synthesise because
diphones corresponding to phone sequences not present in canonical speech are not
included in the diphone database. However, in actual speech and in model-produced
phone strings, phones not occurring in sequence in canonical pronunciation repres-
entations may be paired. This problem is mostly caused by syllable elisions and
may be “solved” trough [o] epenthesis.

However, the largest problem was that only very little allophonic variation could
be described using the small set of diphones available. For example, there was
only the choice between a full vowel and a [¢] and to make the synthesised speech
with re-synthesised prosody and model-generated phone strings truly sound natural,
there is a need for allophonic variants in-between full vowels and [o]. There were
also problems with the speech rate; the actual speech rate could often not be re-
synthesised, since diphones had to be of a certain duration for noise not to be
introduced at concatenation.

Among others, Kohler (2000) and Prahallad et al. (2006) discuss the fact that the
linear segmental approach to speech is not always successful at describing connected
speech processes. The changes when going from a maximally detailed pronunciation
of a word to a highly reduced form in connected speech mostly do not appear in

IThe fo was adapted to the base frequency of the synthetic voice and the pitch contour was
smoothed, since too high dfy values introduced noise during synthesis.
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quantal steps, but there is more of a successive lenition where speech sounds become
continuously (however, not necessarily linearly) less spectrally and durationally
salient.

Further, the linear-sequential assumption used in standard phonological and
segmental-phonetic descriptions of speech becomes less and less useful the faster
and less formal the speech under study becomes. In going from citation form
pronunciations to spontaneous continuous speech, certain features of phonemes can
remain and transfer to adjacent phonemes, while units with durational properties
(what is generally conceived of as separate phonetic segments) corresponding to
these phonemes are no longer present (cf. e.g. Jakobson et al., 1963).

To catch this non-segmental property of pronunciation variation, there is a need
for continuous models or more detailed discrete models including allophones de-
scribing various steps between the maximally detailed phone and elision, using
some description below the phone-level. To make truly natural synthetic speech,
it is necessary to include speech of many types, especially spontaneous speech,
in concatenation databases or to develop methods for controlling the variation in
continuous spontaneous speech in other ways.

10.5 Summary

This chapter has discussed how pronunciation modelling can be used in different
types of speech synthesis systems and the problem of the small set of phonemes
included in the phoneme set used for the annotation described in this thesis. To
make speech synthesis sound truly natural, there is a need for having a phoneme set
that can describe a wider range of variation. It is also necessary to include speech
of many types, especially spontaneous speech, in concatenation databases or to
develop methods for controlling the variation in continuous spontaneous speech in
other ways.

The next chapter will briefly summarise each chapter of the thesis and give some
general conclusions.






Chapter 11

Summary and Conclusions

The focus of this thesis has been the modelling of systematic, discourse context-
induced variation in phone-level pronunciation inherent in the central standard
Swedish language variety. The methods used can, however, easily be adapted for
modelling other language varieties and languages. The aim has been to find patterns
common to the language variety while idiomatic variation specific to individual
language users is avoided.

A data-driven approach was used for this task and the work involved annotating
spoken language with linguistic and related information on levels ranging from the
discourse down to articulatory features, and machine learning was used to create
pronunciation models from the annotation. An important part of the work was the
development of an annotation scheme, so that data could be organized in a way
that was theoretically and practically appropriate for the current purposes. Another
important part of the work was the development of methods for data annotation.

The work described in this thesis was partly driven by an interest in human
language processing and the factors involved in how humans choose to alter their
speech over different situations. The work was also partly driven by an interest in
using knowledge about human language performance to improve speech technology
systems, such as synthetic speech.

To accommodate both of these aspects of pronunciation in discourse context,
the decision tree induction paradigm was used for creating pronunciation models.
This paradigm is not impeded by the fact that the data from which a model is to
be induced is of disparate kinds, as it was in the annotation used for the work on
pronunciation modelling described in this thesis. The decision tree paradigm also
produces transparent models, which can easily be transformed into rules.

11.1 Pronunciation Lexicon Development

The point of departure for the data-driven pronunciation modelling method de-
scribed in this thesis was a set of context independent pronunciation representa-
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tions that correspond to phonemic descriptions of the type that can be found in a
pronunciation lexicon. For the method to be successful, it was important that the
phonemic pronunciation descriptions were of high and consistent quality. A part
of the pronunciation modelling research reported in this thesis was thus aimed at
developing a canonical pronunciation lexicon for Swedish.

This machine-readable pronunciation lexicon was called CENTLEX and based
on lexical data resulting from a number of projects at the Department of Speech,
Music and Hearing (TMH) and the Centre for Speech Technology (CTT) at KTH
over the years. However, CENTLEX has been expanded beyond the original data.

Since a high quality pronunciation lexicon is of the essence for many areas of
speech technology research and for most speech technology applications, CENTLEX
was built to be a central lexicon database for the Department of Speech, Music and
Hearing at KTH and the Centre for Speech Technology (CTT). The lexicon was
designed to meet the specific demands of the phone-level pronunciation modelling
project which was the focus of this thesis, as well as general demands from speech
technology research and application development. Tools for facilitating access to
the lexicon and for continuous, co-operative editing of the lexicon database were
developed.

CENTLEX is a full-form lexicon, with each entry minimally containing an ortho-
graphic word form and a grammatical analysis (Part of Speech and morphology).
An entry can also have an arbitrary number of phonemic representations, ordered
by their probability of use. Each phonemic representation may be enriched with
information about the intended context of the representation (e.g. reduced form or
foreign language). Such information is added e.g. for proper names, since ortho-
graphically identical names may be pronounced differently depending on the native
language environment of the person bearing the name. An entry also contains in-
formation about the probability of the particular grammatical analysis, given the
orthographic word (estimated from a large automatically tagged text corpus).

11.2 Pronunciation Lexicon Evaluation

CENTLEX was evaluated for coverage and pronunciation representation quality. At
the time of evaluation, CENTLEX contained 410,326 entries and 332,626 unique
word forms. The coverage of CENTLEX was calculated over some different text
types, tokenised and automatically tagged. The average coverage over the texts
was 94.0% of the CENTLEX entry types (combinations of an orthographic word
and a grammatical analysis) and 95.1% of the orthographic words.

The evaluation of pronunciation representation quality showed that among the
high frequency entry types (defined as the set of the most frequent entry types
covering 50% of the tokens in the texts used for evaluation), no pronunciation rep-
resentations were obviously erroneous, although some differed from the agreed upon
standard. In most cases, the discrepancy was that a reduced form of a function word
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was listed as the highest ranking alternative, although a canonical pronunciation
should be in this position, according to the CENTLEX standard.

Among the mid frequency entry types (defined as the entry types from a
frequency-sorted list covering 50 to 90 per cent of the tokens in the texts) and
low frequency entry types (defined as the remainder of entry types, covering 90
to 100 per cent of the tokens), the estimated shares of erroneous pronunciation
representations were 1.7% and 6.6%, respectively.

The CENTLEX database has been used as a lexicon in an experimental speech
synthesis system and in a large vocabulary speech recognition system. CENTLEX
has also been used for training grapheme-to-phoneme conversion rules for commer-
cial speech synthesis and as a lexicon for commercial speech synthesis applications.
It has further been used as a reference in the development of a system for pro-
duction of talking books with synthetic speech for visually impaired and dyslectic
university students. Finally, CENTLEX has been used for annotation in a research
project aimed at context-sensitive prosody prediction and, of course, in for phone-
level pronunciation prediction as described in this thesis.

11.3 Annotation Method

The data-driven approach to pronunciation modelling required annotation of spoken
language with linguistic and related information, from which a machine learning
algorithm could induce pronunciation models. Speech data of different types was
annotated in six linguistically motivated layers, 1) a discourse layer, 2) an utterance
layer, 3) a phrase layer, 4) a word layer, 5) a syllable layer, and 6) a phoneme layer.
The layers were segmented into their specific unit types and linguistic information
was asssociated with each unit of each layer.

Each monologue, interview and radio news broadcast was considered a separ-
ate discourse. The utterance layer was manually segmented and the word layer
was segmented using an automatic alignment system, forcing word boundaries at
the manually obtained utterance boundaries. The word boundaries were manually
checked and corrected and the alignment system was used to segment the phoneme
layer, forcing phoneme boundaries at the manually checked word boundaries. A
part-of-speech tagger and a parser were used to chunk the word string into phrases
and the phrase layer was segmented by aligning the phrases to the signal using the
word boundaries. The phoneme string was clustered into syllables using rules and
the syllable layer was segmented through aligning the syllables to the signal using
the phoneme boundaries.

Mean phoneme duration measures were calculated based on absolute and norm-
alised duration, respectively, on linear and logarithmic duration, respectively, and
based on the duration of all phonemes and on the duration of vowels only. Pitch
dynamics measures were calculated from the distance between fy peaks and valleys
and either the median fy or a base frequency located 1.5¢0 below the mean frequency
of the particular speaker. Pitch range, a measure defined as the difference between
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the highest fy peak and the lowest fy valley contained by a particular unit, was
also calculated. The pitch-based measures were calculated with pitch measured in
Hertz and on several psychoacoustic scales.

Further, word predictability and related measures were calculated. Word pre-
dictability was defined as the weighted combination of the trigram, bigram and
unigram probabilities calculated from an the orthographic transcripts of a spoken
language corpus.

Phonetic annotation was necessary, since this was used as the key during pro-
nunciation model training. Manual phonetic annotation of speech, especially of
conversational speech, is a time-consuming task and it was not possible to sup-
ply manual phonetic transcripts for all of the speech data used. Instead, a hybrid
automatic transcription system using statistical decoding and a set of a posteri-
ori correction rules was developed for supplying a context-dependent realisation
of each phoneme in the canonical pronunciation representation. The automatically
obtained phones were used as keys during pronunciation model training. Compared
to a small, manually transcribed gold standard, the automatic transcription system
produced a phone error rate of 15.5%.

11.4 Information Included in the Annotation

In the discourse layer, variables which are constant over the discourse were annot-
ated. A set of mean phoneme duration measures and four speaking style-related
variables: number of discourse participants, degree of formality, degree of spon-
taneity and type of interaction were attached to each discourse layer unit. Mean
phoneme duration measures were calculated over the units in each annotation layer,
except the phoneme layer.

In the utterance layer, the variables speaker pitch register and a coarse four-way
division into wutterance types, corresponding to basic dialogue acts, were included in
the annotation. Sets of pitch range and pitch dynamics ‘speech liveliness’ measures
were also included in the utterance layer annotation. Such measures were calculated
over the utterance, the phrase and the word.

The units of the phrase layer were annotated with a phrase type tag and a
set of phrase length measures. In the word layer annotation, Part of Speech and
morphological information was included along with word type information (content
word or function word), the particular function word or a generic ‘content word’
representation, a set of word predictability-related measures, the position of the
word in the phrase and in a collocation, respectively, and the number of repetitions
of the full-form word and of the lexeme thus far in the discourse.

The information included in the syllable layer annotation was the stress and
accent of the current syllable, the distances to the nearest stressed syllables and to
the nearest primary stressed syllables, respectively, the syllable length, the syllable
nucleus and the position of the syllable in the word.
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The variables included in the phoneme layer annotation were phoneme identity,
a set of articulatory features describing the canonical phoneme, the position of
the phoneme in the syllable (onset, nucleus or coda), consonant cluster length and
position in the cluster. The identity of the automatically obtained phone was also
included in the phoneme layer annotation.

11.5 Pronunciation Model Creation

The annotation was used by a decision tree induction machine learning algorithm
to create models describing phoneme realisation in discourse context. The decision
tree paradigm was used since the resulting models are transparent and since the
induction algorithm is not impeded by the fact that the data from which a model
is to be induced are of disparate kinds, as is the case for the annotation described
in this thesis.

Training instances were compiled from the structured annotation. Using the
phoneme as the primary unit, a set of training instances, essentially being context-
sensitive phonemes, were created. Each instance contained information about the
current phoneme, and about the current unit in all higher annotation layers. The
instance also contained information about the sequential context of the current unit
in each layer. In all, each training instance included a set of 516 attribute values
and the key phone realisation.

The particular decision tree implementation used for pronunciation model in-
duction was the DTREE program suite (Borgelt, 2004a). The best classification
performance was obtained when selecting attributes with the symmetric informa-
tion gain ratio measure (Lopez de Mantaras, 1991; Borgelt and Kruse, 1998), and
allowing the inducer to group discrete values to obtain the optimal number of nodes
at each level.

Training data generally contains some degree of noise and a decision tree may
be biased toward the particular noise in the data used for inducing the tree (over-
trained). However, once a tree is constructed, it can be pruned to make it more
generally applicable. The idea behind pruning is that the most common patterns
are kept in the model, while less common patterns, with high probability of being
due to noise in the training data, are disregarded.

11.6 Pronunciation Model Evaluation

In a set of tenfold cross-validation experiments, decision tree models were created
from different types of speech and with access to different subsets of attributes. It
was shown that including information from multiple layers improves the perform-
ance of the decision tree models, most notably for spontaneous speech, where the
predictive power of phonological and grammatical information is relatively low. A
comparison between models trained only on phoneme layer attributes and models



138 Chapter 11. Summary and Conclusions

trained on attributes from all layers showed that the prediction accuracy of pronun-
ciation models could be improved by 42.2% by including information from above
the phoneme level.

Attributes from all layers of annotation were used in the models with the highest
prediction accuracy. The optimal models, trained on all available data and with
access to all attributes, produced an average phone error rate of 8.2%, which is an
improvement of 60.0% compared to using the phoneme string for estimating the
phone-level realisation.

Repetitions of the experiment showed that the results are relatively stable over
different data randomisations and thus that the method is reliable. Experiments
excluding a particular speaker from training and evaluating the model on that
speaker indicated that although there is a minor degree of idiomatic variation,
variation in pronunciation due to discourse context is mainly a language trait.

The attributes involved in predicting the phone realisations in discourse context
were ranked according to their position in the decision trees and according to their
position weighted with the number of decisions they were involved in making (over
the training data). As expected, the identity of the current phoneme was the highest
ranking predictor for both methods of ranking. The identities of the phonemes
at positions + 4 in relation to the current phoneme, the function word attribute
and the mean absolute phoneme duration over the word were other high ranking
attributes.

11.7 Phoneme-to-Phone Conversion

Certain phonemes are more prone to variable realisation than others. That is,
certain phonemes show a more free variation than others and certain phonemes
show more continuous variation than others, which makes the phone classification
of these phonemes ambiguous. For these phonemes, it is harder for a pronunciation
model to give correct realisation predictions. The realisations of other phonemes
are hard to predict since the phonemes are infrequent and suffer from data sparsity
problems. However, in general, the models give highly accurate predictions.

The approximants /1/ and /j/ were relatively hard to handle for the model.
This is partly because of the difficulty of the automatic transcription system to
produce accurate keys for these consonant phonemes. However, it also reflects an
innate ambiguous nature of the phonemes—they often merge with adjacent vowels,
and it is very hard to handle this fact in a sequential-segmental description of the
speech stream. An /1/ may also merge with a successive dental consonant to form
a retroflex consonant. The model produced 92.3% correct realisations for /j/ and
only 89.0% correct realisations for /i/.

Other consonants that were hard to predict the realisations for were /d/ and
/g/. Neither the [1] nor the () realisation of /d/ were allowed by the model, although
both realisations were present in the key transcripts. This resulted in the fact that
/d/ received the lowest share of correct decisions of any consonant, 77.6%. The
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phoneme /g/ had many erroneous () realisations in the key transcript and the [g]
and () realisations were often confused by the pronunciation model. The share of
correct decisions made for /g/ was 79.7%, the second lowest for any consonant.

The relatively infrequent retroflex consonants /|/, /s/ and /n/ also had low
shares of correct realisations in the model output, 90.9%, 88.0% and 80.8%, re-
spectively. The low energy fricatives /f/ and /h/ were relatively often confused
with () and had shares of correct classifications of 93.3% and 91.3%, respectively.
The nasal /n/ is a phoneme that is especially prone to be affected by its context,
which increases the variability in the data and lowers the share of correct classific-
ations. The model produced 92.9% correct phone realisations for /n/. For other
consonants, the model produced between 97 and 100% correct classifications.

The realisation of vowels depends heavily on prosodic information, mostly mean
vowel duration and mean phoneme duration over words and phrases. The shares of
correct decisions made by the model for different vowels show that the realisations
of long vowels are generally easier to predict than the realisations of short vowels,
in spite of the fact that there are generally more possible realisations for the long
vowels and that there are more training examples for the short vowels. This in-
dicates that the long vowels are more stable and rule-governed in their realisation,
while there is a higher degree of free variation for the short vowels.

In spite of prediction problems associated with certain phonemes, the pronun-
ciation models give relatively accurate predictions and with more accurate training
keys and more training data, it is expected that the prediction accuracy can be sig-
nificantly increased. Since the decision tree model format is transparent, the models
can also be manually changed and the effects of the changes tested. Thus, the data-
driven and the knowledge-based approaches to pronunciation modelling can easily
be combined using the decision tree paradigm. Where a sufficient amount of data
is available, the models can extend linguistic knowledge and in cases where data is
sparse, linguistic knowledge can be used to improve the models.

11.8 Pronunciation Modelling in Speech Synthesis

For speech synthesis used as a vocal aid, in pronunciation training systems, and in
‘intelligent’” human-computer dialogue systems, there is a need for more dynamic,
human-sounding speech synthesis. Visually impaired persons using speech synthesis
for reading may choose speed and clarity before naturalness. Dyslectic users may
also prefer clarity before naturalness. However, synthesis at speech rates above the
natural range may still be improved by pronunciation variation modelling and using
a phonetic representation corresponding to a fast-speaking human may be easier to
process than a canonical (maximally detailed) phonemic representation.

The pronunciation variation information is contained in the speech data an-
notation and when the information is to be used to improve a speech technology
application rather than for creating a descriptive or explanatory model, the trans-
parity of the model used to represent the information is not critical. The annotation



140 Chapter 11. Summary and Conclusions

and the annotation methods can thus be used for pronunciation variation model-
ling in e.g. speech synthesis in other ways than using decision tree classification
models. The optimal way of integrating phone-level pronunciation modelling into
a synthesis system depends on the type of system.

In a parametric synthesiser, pronunciation modelling can be used for parameter
generation. In a diphone synthesiser, pronunciation modelling can be used for gen-
erating phonetic strings. A variable size unit selection system has co-articulation
built into its concatenation units to a higher or lower degree. The variation in the
data is thus implicit and a canonical phoneme string may be used to represent the
speech string both in the database and at unit selection. Pronunciation modelling is
here most efficiently used at unit selection. The speech data available for concaten-
ation must then be annotated with context variables important for the phone-level
pronunciation.

For an HMM synthesiser, several context-specific units of the same n-phone
can be created using a context-annotated database at model training. As in the
variable size unit selection case, the units may be segmentally different, although
these differences are implicit. An advantage with HMM synthesis is that all speech
data does not have to come from the same speaker nor be recorded under the same
conditions, since the models can be homogenized after training.

Some initial attempts at using a pronunciation variation model of the type
described in this thesis for making an existing diphone speech synthesis system
sound more natural were made. It proved hard to incorporate a pronunciation
variation model into the diphone synthesiser, since the diphones units were created
for a pronunciation close to the canonical pronunciation. To make synthetic speech
sound natural, there is a need for e.g. more allophones in-between full vowels and
schwa.

Further, the linear-sequential assumption used in standard phonological and
segmental-phonetic descriptions of speech becomes less and less useful the faster
and less formal the speech under study becomes. In going from citation form pro-
nunciations to spontaneous continuous speech, certain features of phonemes can
remain and transfer to adjacent phonemes, while units with with durational prop-
erties (what is generally conceived of as separate phonetic segments) corresponding
to these phonemes are no longer present.

To catch this non-segmental property of pronunciation variation, there is a need
for continuous models or more detailed discrete models including allophones de-
scribing various steps between the maximally detailed phone and elision, using
some description below the phone-level. To make truly natural synthetic speech,
it is necessary to include speech of many types, especially spontaneous speech,
in concatenation databases or to develop methods for controlling the variation in
continuous spontaneous speech in other ways.
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11.9 General Conclusions

The work described in this thesis was partly driven by an interest in human lan-
guage processing and the factors involved in how humans choose to alter their
speech over different situations. The work was also partly driven by an interest in
using knowledge about human language performance to improve speech technology
applications, such as speech synthesis systems.

The method used to model the phone-level pronunciation of words in discourse
context seems to hold and gives highly accurate predictions, although more accurate
training keys and more training data is expected to significantly increase the pre-
diction accuracy. Since decision tree models are transparent, linguistic knowledge
can also be used directly to improve the models.

Models of the type induced are expected to be usable for creating dynamic and
highly natural-sounding speech synthesis. However, the phone set must be exten-
ded to contain more allophonic variation. If some form of concatenation synthesis
system is used, the speech data used in the particular type of synthesis system must
contain spontaneous speech.
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Appendix A

The Swedish Technical Alphabet
(STA)

Table A.1: The phoneme symbols of the Swedish Technical Alphabet (STA) and their equi-
valents in the International Phonetic Alphabet (IPA). In the annotation used for pronun-
ciation modelling in this thesis, the retroflexr consonants have symbols different from those
in the original STA. These symbols are shown in brackets after the original STA symbol.

Vowels Consonants
STA symbol IPA symbol STA symbol IPA symbol
EO E) P P
A a T t
A: a: K k
E e B b
E: er D d
I 1 G g
I: ir F f
0 U \ v
0: u: S S
U o SJ §
U: gl TJ [
Y Y H h
Y: y: M m
A 5 N n
A: o: NG |
)\ € L 1
K: e: J j
A4 ® R 1
i3 ®r 2T (RT) t
0 e 2D (RD) qd
0: @ 2L (RL) 1
04 e 2N (RN) n
63 cex 2 (RS) s
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The Swedish Technical Alphabet (STA)

Table A.2: The non-phoneme symbols of the Swedish Technical Alphabet (STA).

Symbol  Description

hy Compound boundary marker

’ Accent I stress marker

" Accent II or compound accent primary stress marker
¢ Compound accent secondary stress marker

*

Marker signalling that strings corresponding to multi-character segment la-
bels should be interpreted as two consecutive single-character lables




Appendix B

Xenophones in CentLex

Table B.1: The set of zenophone symbols (‘foreign phonemes’) included in the CENTLEX
pronunciation representation meta-format. In the left hand sub-table, vowel xenophones
are shown, and in the right hand sub-table, the consonant xenophones are shown. FEach
zenophone is illustrated with an example (source language, orthographic word and pronun-
ciation representation in CENTLEX format).

Vow. Example Cons. Example

a: German Bahn B’a:N th English thing th’ING

Av English but B’AvT dh English this dh’IS

Aa English not N’ AaT Z German Sohn Z’A:N

o: English hall H’o:Le Sh English ship Sh’IP

er English bird B’erD zh French Jean zh’A9

A9 French blanc BL’A9 C German Licht L’ICT

09 French non N’09 X German Bach B’AX

E9 French fin F’E9 Lj Italian Oglio PALjA

g9 French brun BRf’ (09 Nj French ligne L’ INj

Ei English mail M’EiLe Jy French lui LJy’I:

Ai English fine F’AiN Le English ball B’o:Le

0i English boy B’0i Re English red Re’EOD

Ie English beer B’IQ Rf French rouge Rf’0:zh

E@ English fair F’E@ W English wet W’ET

ve English poor P’U@ Q German Beamte BEO0Q’AMTEO

Au Swedish aula > AuLA Ts German Zug Ts’0:K

au English brown BRe’auN ch English chin ch’IN

Eu Swedish Europa EuR’0:PA Dz Italian Zacchi Dz’ AKI

Qu English mode M’ @uD dz English James dZ’EiMZ

Ou Finnish Oulu ’0uL.0 Pf German Pferd Pf’E:RfT
Ls English beetle B’I:TLs
Ms English prism PRe’IZMs
Ns English burden B’erDNs
Rs Croatian Krk K’RsK
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Appendix C

The SUC Tag Set

Table C.1:

Stockholm-Umed Corpus (SUC) annotation scheme.

The set of Part of Speech (PoS) and morphological tags used in the
There are also four ‘“unspecified”

morphological tags, UTR/NEU, IND/DEF, SIN/PLU and SUB/OBJ.

PoS tag  Description Morph. tag  Tag type Description
AB Adverb UTR Gender Common
DT Determiner NEU Gender Neutre

HA WH-adverb MAS Gender Masculine
HD WH-determiner SIN Number Singular

HP WH-pronoun PLU Number Plural

HS Possessive WH-pronoun IND Definiteness Indefinite

1E Infinitival marker DEF Definiteness Definite

IN Interjection NOM Case Nominative
JJ Adjective GEN Case Genitive

KN Conjunction SMS Case Compound
MAD Major delimiter SUB Pronoun form  Subject

MID Minor delimiter OBJ Pronoun form  Object

NN Noun PRS Tense/Aspect  Present

PAD Parenthetical delimiter PRT Tense/Aspect  Preterite

PC Participle INF Tense/Aspect  Infinitive

PL Verb particle IMP Tense/Aspect  Imperative
PM Proper name SUP Tense/Aspect  Supinum
PN Pronoun PRF Tense/Aspect  Perfect

PP Preposition KON Mood Conjunctive
PS Possessive pronoun AKT Voice Active

RG Cardinal number SFO Voice Passive/s-form
RO Ordinal number POS Degree Positive

SN Subjunction KOM Degree Comparative
Uo Foreign word SUV Degree Superlative
VB Verb AN Abbreviation  Abbreviation
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Appendix D

The Share of Tokens in Three
Frequency Groups

Table D.1: The share of tokens (per cent) in the three frequency groups over different
text corpora.

High frequency tokens Mid frequency tokens | Low frequency tokens
Corpus | Entry form Word Entry form Word Entry form Word
DN 49.98 49.97 40.02 40.03 10.00 10.00
TPB 49.99 49.96 40.01 40.04 10.00 10.00
Gov 49.97 50.00 40.02 40.00 10.00 10.00
RD 49.94 49.90 40.06 40.10 10.00 10.00
EU 49.96 49.92 40.04 40.08 10.00 10.00
JK 49.91 49.99 40.08 40.01 10.00 10.00
DOM 49.95 49.89 40.05 40.11 10.00 10.00
FMN 49.95 50.00 40.05 40.00 10.00 10.00
ALL 49.97 49.98 40.03 40.02 10.00 10.00
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Appendix E

Phone Instances in the Gold
Standard Transcript

Table E.1: The number of phone instances in the gold standard transcript.

Elision Instances Consonant  Instances Vowel Instances
[ 341 P 39 2 317
t 178 a 112
k 110 a: 48
b 31 e 64
d 72 e 37
g 17 1 74
f 42 ir 23
v 49 U 12
] 165 u: 20
b 8 e 21
¢ 3 H 24
h 45 Y 19
m 118 y: 1
n 156 b 113
| 23 o: 40
1 84 € 39
j 65 € 14
I 159 B 10
t 5 & 14
qd 16 e 7
1 3 o 3
n, 6 ® 9
s 9 el 3
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Appendix F

Phone Confusion Matrices

Table F.1: Matriz showing the confusions between O and different consonants made by
the tree models trained on all data, broken down over source phonemes. Fach column shows
the share of classifications corresponding to the class shown at the bottom of the column
for the key O of the row derived from the particular subscripripted consonant phoneme.

phonephoneme

.87.13
.98
.98
.70
48
7
43
.89
.81
.70
.89
.54

5 ow <4 ma & o m T

B

f=]

.60
.84
.76
.14

Foute gl et el

.55
.38
.05

8 =

SSSSSSSSSS?SSSSSSSSSS

o3

.02

.02
.30
.0l
.23
.57
11
.19

.01

.01
.30

11
.02 .42 .01

1

.40
.16
.24
.86

.45
.62
.95

0 p

t k bdg f v s

f ¢ hmmn g I j 1

t d 1l n s
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Table F.2: Consonant confusion matriz for tree models trained on all data, with confu-
sions broken down over source phonemes. Fach column shows the share of classifications
corresponding to the class shown at the bottom of the column for the key phone of the row
derived from the particular subscripripted consonant phoneme.

phonephoneme

pp [-01.99

ty |.01 .99

ke |.01 .99

by |.01 .99

dq |.04 .92 .03

gg |-20 .80

fr .02 .98

Vy 1

Sg .99

fig 1

Se 1

hy |.05 .95

my|.01 .99

m, |.04 .88 .07

n, |.02 97

On |.02 .14 .85

gy [.01 .99

L |.01 .99

Jj |05 .95

1 |.02 .88 A1

1. |.09 91

tt .88 12

i 1

da |.02 .88 .06 .04

dg 1

I |.64 .36

N |.01 91 .08

n, |.14 .86

Ss .88 12

ss |.01 .99
 pt k bdgfvs ¢ hmmnoglj 1t d 1l n s
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Table F.3: Matriz showing the confusions between O and different vowels made by the
tree models trained on all data, broken down over source phonemes. Each column shows
the share of classifications corresponding to the class shown at the bottom of the column
for the key O of the row derived from the particular subscripripted vowel phoneme.

phonephoneme

.65 .
39

U

o

8

@

4]

91
.33
.67
.19

c =

g

o

<

.32

[3)

S

.29

)

8

.73

8

K]

.39
12

-3

SSSSSSSSSSQ@SSSSSSSSS

I8

35

44 .16

.22

.09

.50

.50

.02

43

.05

.78

A7
.33

.81

.50

.66

.29

27

.01 .55
.25

.62

a

ai

e

o Hl
+

Y y:

D2 Ol €& €& & &I & g &

o

el

1
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Table F.4: Matriz showing the confusions between [o] and different vowels made by the
tree models trained on all data, broken down over source phonemes. Each column shows
the share of classifications corresponding to the class shown at the bottom of the column
for the key [9] of the row derived from the particular subscripripted vowel phoneme.

phonephoneme

2 1

9, |.01.81.19

da: .95 .05

e 91 .09

Qe .97 .01 .02

9, |.01.20 .80

i 94 .03 .03

s .58 42

Qu: A1 .67 .22

9 78 22

Ou: .81 .03 .16

dy 1

dy: 1

9, |.01.92 .08

0: 91 .06 .03

9 .70 .30

Qe .94 .06

e .49 .39 .12

Qe 94 .01 .04 .01

™ 1

dg; 1

9 |17 .06 .78

Oce: .33 .33 .33
@eaa:eezli:Uu:eg:yyxooxes:aeaexoeci:qeqe:
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Table F.5: Vowel confusion matriz for tree models trained on all data, with confusions
broken down over source phonemes. Fach column shows the share of classifications cor-
responding to the class shown at the bottom of the column for the key phone of the row

derived from the particular subscripripted vowel phoneme.

phonephoneme

Ay .06 .94

Aq 1

Ala: .01 .99

€e .16 .84

e .33 .14 .53

€le: .03 .03 .94

I .04 .96

Ii; .01 .72 .26

it .03 .97

Uy 21 .79

[ .02 .56 .42

Uly: .03 .97

o, |.01 .98

Oy .18 .06 .75

iy .02 .01 .97

Yy 1

Yy .25 .75

Viy: .03 .04 .94

2% |.01.02 97

Doz .01 .79 .20

Olo; .08 .92

€ .01 .99

€ .01 .71 .28

€ .03 A7 .75 .05

. .05 27 .53 .15

€l .01 .05 .93

L 11 .10 .73 .07

. .06 .08 .70 .16

Ll .01 01  .10.88

®e |02 .98

ey .31 .69

®e |-10 .07 .83

e, |.07 .07 .29 .57

Big: .06 .94

®Re |-12.04 .02 .82

Lee: .89 .10

Rl | .01 .01 .04 .94
D o a ar e e 1 i U u o ¥ Y yI 0 Ol £ & ® & ® B &






Appendix G
Phone Instances in the Evaluation

Data

Table G.1: The number of instances of each consonant (and 0) in the key transcript
for each database, sum over all evaluation data sets.

Phone VAKOS RADIO INTERVIEW RADIO NEWS All
0 5,796 3,193 753 9,742
p 740 330 157 1,229
t 4,123 2,858 704 7,685
k 1,943 1,044 384 3,372
b 640 329 194 1,164
d 2,175 1,479 345 3,999
g 473 307 130 910
f 932 621 201 1,755
v 1,353 692 262 2,308
S 3,083 2,012 672 5,768
b 189 241 58 488
G 85 30 19 134
h 995 519 116 1,630
m 2,110 1,324 395 3,830
n 3,370 2,128 747 6,248
1 502 244 124 870
1 2,281 1,112 440 3,833
j 840 475 139 1,454
1 3,240 2,157 700 6,097
t 171 108 52 331
qd 120 89 50 259
1 4 3 4 11
n 116 72 63 251
8 231 122 54 407
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Table G.2: The number of instances of each vowel in the key transcript for each data-
base, sum over all evaluation data sets.

Phone VAKOS RADIO INTERVIEW RADIO NEWS All
9 7,308 3,646 1,070 12,027
a 2,796 2,037 756 5,591
a: 1,257 731 272 2,261
e 1,136 839 242 2,219
e 730 645 171 1,546
I 1,781 1,271 442 3,494
i 635 360 105 1,100
U 258 140 43 441
u: 320 305 110 735
[2) 512 302 87 902
i 466 347 83 896
Y 288 143 28 459
y: 40 40 32 112
b} 2,181 1,156 302 3,639
o: 840 419 146 1,405
€ 741 530 122 1,393
e: 143 103 28 274
® 247 114 21 382
BN 276 288 60 624
o3 122 62 28 212
[uM 116 75 38 229
® 255 138 56 449
oSN 110 130 35 275




Appendix H

Phone Distance Matrix

Table H.1: Phone distance matriz, including a distance between each phone and ().

Phone distances are specified on a scale from 0 to 8.
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Appendix I

Consonant Realisations

The Realisation of /p/

The phoneme /p/ can be realised either as [p] or as () (i.e., have no overt realisation;
be elided). As can be seen from Table 1.1, /p/ is realised as [p] in a little more than
93% of the cases and elided in just under 7% of the cases both according to the
automatically obtained key transcript and according to the decision tree model.

Table 1.1: The realisations of the phoneme /p/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 91 6.89% 91 6.89% 89 97.80%

P 1,229 93.11% 1,229 93.11% 1,227 99.84%
> 1,320 100.00% 1,320 100.00% 1,316 99.70%

Figure 1.1 shows the part of the decision tree model handling the realisations
of the /p/ phoneme. From this figure, it can be seen that /p/ is elided when the
mean phoneme duration over the word is less than 52.7 ms (corresponding to a
‘canonical’ speaking rate faster than 19.0 phonemes per second), unless its right
hand neighbouring phoneme is /p/, /1/ or /a/. A canonical /p/ is also elided at
slower speech rates when its right adjacent phoneme is also a /p/. Otherwise, /p/

is realised as [p].
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phoneme_identity

P

word_duration_phonemes_absolute

<0.0527423 >0.0527423

/|

phoneme_identity+1 phoneme_identity+1

. T,K,B,D,F,V,S,SI,HM,N,L,
D.A:,A:, A3 sil T,R,A J.R.E0,A,A:E,E: LI:,0,0:,U,
U:,AA5LAA4,A3,0:,sil junk

Figure 1.1: The realisations of the phoneme /p/ (phoneme representations in the figure

are in STA format).
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The Realisation of /t/

A /t/ can be realised as [t] or it can lack a realisation. Although the final model does
not allow this realisation, in the key transcript, there are also a few /t/ phonemes
realised as [t]. Table 1.2 shows the distribution of /t/ realisations.

Table 1.2: The realisations of the phoneme /t/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 1,090 12.39% 1,166 13.25% 1,079 98.99%

t 7,686 87.34% 7,634 86.75% 7,599 98.87%

t 24 0.27% 0 0.00% 0 0.00%
> 8,800  100.00% 8,800 100.00% 8,678 98.61%

Figure 1.2 shows that a canonical /t/ is always elided by the model when its
right adjacent phoneme is /p/, /t/, /b/ or /s/. It is also elided if the phoneme
located three positions before the /t/ is a /v/ and the phoneme four positions before
the /t/ is an /m/. Otherwise, /t/ is realised as [t].

The left branch of the tree, specifying a context of /m/ and /v/ at four and
three phoneme positions, respectively, preceding the /t/, effectively handles the
elision of /t/ in the common word mycket ‘much’, mostly used as an adverb. The
pronunciation of this word could have been handled e.g. by using the function word
attribute, but for the current training data, it was optimal to use the phoneme
identity attribute.
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phoneme_identity

T

phoneme_identity+1

K.,D,G,F,V,SI,TLHM,N,L.J,
R,RS,E0,A,A:,E,E: 1I:,0,0:,U,
UsY, YA ALA Az R4,A3,0,0:,04,

03 sil,junk,—

P,T.B,S

phoneme_identity—3

P,T.K,B,D,G,F,V,S,SI,TIH,
M,N,NG,L.J,R, RT,RD,RN,RS,E0,A,
A:EE:LL,0,0:UU; YA A:,
A,A:,A4,A3,0,0:,04,03,si1,junk,—

@ phoneme_identity—4

T.B,S,H,N,L,R M

Figure 1.2: The realisations of the phoneme [t/ (phoneme representations in the figure
are in STA format).
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The Realisation of /k/

A /k/ in the canonical pronunciation representation can be realised as [k] or be
elided. Both in the key transcript and in the decision tree output, it is elided in
about 22% of the cases, as can be seen in Table 1.3.

Table 1.3: The realisations of the phoneme [k/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 935 21.71% 943 21.89% 915 97.86%

k 3,372 78.29% 3,364 78.11% 3,344 99.17%
> 4,307  100.00% 4,307 100.00% 4,259 98.89%

Figure 1.3 shows that the model always produces the realisation [k] for the
phoneme /k/ for all words except och ‘and’. All other words with a /k/ in their
canonical pronunciation representations are covered by the set of function words and
the generic content word representation (content) of the function word attribute.
The set of function words includes auxiliary verbs, interjections, adverbs and verb
particles.

There are also a few words in the set that are not actual function words, but
have been misclassified by the tagger!. The noun loan from English country ‘coun-
try’ (referring to the music genre), the noun compound diktaturlinder ‘dictatorial
countries’, and the verbs frakta ‘freight’ and sjunka ‘sink’ are obvious examples.
However, in this particular case, the misclassifications do not matter, since the
distinction is really between och ‘and’ and all other words.

In the word och, /k/ is elided if the mean phoneme duration over the word is
less than 135.9 ms or, otherwise, if the mean normalised vowel duration over the
phrase is more than 1.63 (the mean of this normalised measure is 0).

L Auxiliary verbs are defined partly by their context and for some words in the set, it may be
the right adjacent word that has been misclassified rather than the current word. The error may
also be due to a parsing/chunking error.
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phoneme_identity

K

word_function_word

bakom,brukar,country,diktaturlidnder,fick,frakta,forsoka,forsoker,
forsokte,ikapp,inklusive,kan,komma,kommer kontra kring,
kunde kunna kvar,liksom,lyckas,mycket,okej,omkring, och
sjunka,ska,skall,skulle,tack,tillbaka,tdnker,ténkte,

verkade,vilka,vilken,vilket,content

word_duration_phonemes_absolute

/<0.135855\\>0.135855
phrase_duration_vowels_normalised

<1.63464 \ >1.63464

Figure 1.3: The realisations of the phoneme /k/ (phoneme representations in the figure are in STA format).
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The Realisation of /b/

A /b/ is seldom realised as anything except [b], although it is elided in about 3%
of the cases in both the key transcript and the model output. Table 1.4 shows the
exact numbers and shares of realisations for the phoneme /b/.

Table 1.4: The realisations of the phoneme /b/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 37 3.08% 35 2.91% 30 81.08%

b 1,164 96.92% 1,166 97.09% 1,159 99.57%
> 1,201  100.00% 1,201 100.00% 1,189 99.00%

Figure 1.4 shows that /b/ is elided when the mean phoneme duration over the
word is less than 34.5 ms. If the mean phoneme duration over the word is more
than 34.5 ms, /b/ is elided if the mean phoneme duration over the phrase is less
than 31.6 ms and realised as [b] otherwise.

phoneme_identity

B

word_duration_phonemes_absolute

/ <0.03451 19\\>0.03451 19
phrase_duration_phonemes_absolute

<0.031577 \ >0.031577

Figure 1.4: The realisations of the phoneme /b/ (phoneme representations in the figure
are in STA format).
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The Realisation of /d/

In the key transcript, /d/ can be realised as [d], [1] or [d], and it can be elided. The
decision tree model only allows the [d] realisation of /d/, as can be seen from Table
1.5 and Figure L.5.

The reason for this is probably that most of the realisations of /d/ as [1], [d]
and () produced by the unpruned model were incorrect realisations. As can be
seen from tables F.1 and F.2 in Appendix F, for the optimal trees in the tenfold
cross-validation experiment still allowing the [1], [d] and () realisations of /d/, the
classification of /d/ as () was correct in 48% of the cases, the classification of /d/
as [1] was correct in 11% of the cases and the classification of /d/ as [d] was correct
in only 4% of the cases. The classification of /d/ as [d] was correct in 92% of the
cases. This, in turn, is probably due to insufficient data or irregular realisation (at
least given the available context attributes).

Table 1.5: The realisations of the phoneme /d/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 573 11.12% 0 0.00% 0 0.00%

d 3,999 77.59% 5,154 100.00% 3,999 100.00%

1 532 10.32% 0 0.00% 0 0.00%

qd 50 0.97% 0 0.00% 0 0.00%
> 5,154  100.00% 5,154 100.00% 3,999 77.59%

At pruning, the possibility for correct realisations of /d/ as [1], [d] or ( is ex-
cluded along with the possibility for erroneous classifications as these phones (or
no realisation), since the model cannot discriminate between correct and erroneous

classifications.

phoneme_identity

D

Figure 1.5: The realisations of the phoneme /d/ (phoneme representations in the figure
are in STA format).
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The Realisation of /g/

The phoneme /g/ is elided in about 50% of the cases in the key transcript and
in the model output, as shown in Table 1.6. As could be seen in Table 5.7 in
Chapter 5, Section 5.7, there are 29% erroneous [g] elisions (all corresponding to
/g9/ phonemes) in the automatically obtained key transcript over the part covered by
the gold standard transcript. There is thus a large degree of uncertainty regarding
the key realisations for this particular phoneme.

Table 1.6: The realisations of the phoneme /g/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 997 52.28% 945 49.55% 7T 77.93%

g 910  47.72% 962 50.45% 742 81.54%
> 1,907  100.00% 1,907 100.00% 1,519 79.65%

Figure 1.6 shows the contexts in which /g/ is realised as [g] and (}, respectively.
Given that the /g/ occurs in the small set of function words associated with the
leftmost branch of the tree in Figure 1.6, it should always be elided. If the /g/ does
not occur in one of the function words of the leftmost branch of the tree, it is elided
if the mean log phoneme duration over the phrase is less than -3.08 and realised as
[g] otherwise.

It is unlikely that generally deleting [g] in the words vdgar® ‘dare’ and angdende,
‘concerning’ would lead to a better model performance in relation to a manually
transcribed standard. However, since errors are relatively common for /g/ in the
key transcripts, it increases performance in relation to the key. Although relatively
frequently occurring, vagar and angaende are not in the absolute top of the list
of high frequency words. Hence, their inclusion in the list of words for which /g/
should always be elided will give rise to less errors than if the words had been very
high frequency words erroneously included in the list.

Because of the transparency of the decision tree models, the induced models can
be manually edited and the effects of changes can be evaluated through executing
the original and the edited models on the same data set.

2 Included in the function word set since it can be used as an auwiliary verb. However, the
orthographic form can also be a main verb or a noun.
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phoneme_identity

G

word_function_word

gd,herregud,igang,ihag,ivig,ligga,nagon,tillviga,

angdende,enligt,jag,ndgot,nagra,vagar
ghende enligt jag.nagot.nigra,vag tog content

° phrase_duration_phonemes_log_absolute

<-3.07709 >-3.07709

Figure 1.6: The realisations of the phoneme /q/ (phoneme representations in the figure
are in STA format).
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The Realisation of /f/

The phoneme /f/ is realised as [f] in the majority of cases in both the key transcript
and in the model output. However, as can be seen from Table 1.7, it is realised as
[f] to a greater extent in the model output. The alternative is that /f/ is elided.

Table 1.7: The realisations of the phoneme /f/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 218 11.05% 88 4.46% 87 39.91%

f 1,755 88.95% 1,885 95.54% 1,754 99.94%
> 1,973  100.00% 1,973 100.00% 1,841 93.31%

If the mean phoneme duration over the word is less than 36.7 ms and the word
following the word in which /f/ occurs is not a proper name (PM), the /f/ is elided
by the pronunciation model and otherwise, it is realised as [f], as illustrated in
Figure I.7. This is an interesting pattern, for which there is no immediate analytical
explanation. However, it likely not a general rule, but an artefact of data sparsity
at model training.

phoneme_identity

F

word_duration_phonemes_absolute

/ <0.0366548

word_part_of_speech+1

>0.0366548

AB,DT,HA IE,JJNN,PL,PN,SN,VB,—- PM

<> D,

Figure 1.7: The realisations of the phoneme /f/ (phoneme representations in the figure
are in STA format).
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The Realisation of /v/

About 14% of the occurrences of /v/ are realised as [v] and 86% as () both according
to the key transcript and according to the model output, as shown in Table 1.8.

Table 1.8: The realisations of the phoneme v/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 392 14.52% 363 13.44% 356 90.82%

v 2,308 85.48% 2,337 86.56% 2,301 99.70%
> 2,700  100.00% 2,700 100.00% 2,657 98.41%

The tree model for the realisation of /v/ is shown in Figure 1.8. A /v/ is always
elided if the mean phoneme duration over the word is less than 35.1 ms. It is also
elided if the mean phoneme duration over the word is between 35.1 and 38.2 ms
and the /v/ occurs in one of the function words av ‘of’, vad ‘what’; vara ‘be’; vi

‘we’ or vid ‘at’.

However, when the mean phoneme duration over the word is in the 35.1 to 38.2
ms interval and the /v/ occurs in any other word (explicitly, a content word or the
function word blev ‘became’), it is realised as [v]. During pruning, two leaves with
the same realisation have been created (cf. Figure 1.8). This is, of course, equivalent
to having one leaf with the realisation [v] and a common arc for the function word
blev ‘became’ and the generic content word representation.

If the mean phoneme duration over the word is more than 38.2 ms, /v/ is realised
as [v], unless when followed by another /v/, in which case it is elided.
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phoneme_identity

\%

word_duration_phonemes_absolute

/<0.035148R>0.0351488
word_duration_phonemes_absolute
/ <0.038165\\>0.038165

word_function_word phoneme_identity+1

P, T.K,B,D,G,F,S,SJ,LHM,N,
av,vad,vara,vi,vid | content blev L,J.R.E0,A,A:EE: LI:,0,0:,

U,U:;AA: A A:,A4,A3 il junk,—

Figure 1.8: The realisations of the phoneme /v/ (phoneme representations in the figure
are in STA format).
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The Realisation of /s/

In the key transcript, /s/ can be realised as [s], [g] or 0. In the model output, only
the [s] and @ realisations remain and [s] constitutes a larger share of the realisations.
As can be seen in Table 1.9, more than 97% of the instances of /s/ are realised as
[s] according to the model predictions.

Table 1.9: The realisations of the phoneme /s/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 197 3.23% 166 2.72% 162 82.23%

S 5,768 94.53% 5,936 97.28% 5,765 99.95%
s 137 2.25% 0 0.00% 0 0.00%
> 6,102  100.00% 6,102 100.00% 5,927 97.13%

According to the pronunciation tree, shown in Figure 1.9, /s/ is always elided if
succeeded by another /s/. If the mean phoneme duration over the word is less than
36.4 ms, the /s/ is elided if preceding /t/, /1/, /e/, Je1/, /2/ or Joi/ and otherwise
realised as [s]. This phoneme context corresponds to several function words with a
word initial /s/. An /s/ is also realised as [s] if the mean phoneme duration over
the word is more than 36.4 ms (and the /s/ is not followed another /s/).

phoneme_identity

S

phoneme_identity+1

P.T.K,B,D,G,F,V,SI,TLHM,
N,L.J,R.E0,A.A: EE:LL,0,
0:;,U,U.Y,Y:,A A A A A4,43,0,
0:,04,03sil junk,—

word_duration_phonemes_absolute

/ <0.0363721 >0.0363721

phoneme_identity+1

TLEE,AA: \ KMA|I

Figure 1.9: The realisations of the phoneme [s/ (phoneme representations in the figure
are in STA format).
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The Realisation of /fj/

A /§/ is always realised as [f] according both to the key transcript and to the
pronunciation model, as shown in Table 1.10 and Figure I.10.

Table 1.10: The realisations of the phoneme /§/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions
Phone | Instances Share | Instances Share | Instances Share
g 488  100.00% 488 100.00% 488 100.00%

phoneme_identity

SJ

Figure 1.10: The realisations of the phoneme /§/ (phoneme representations in the figure
are in STA format).
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The Realisation of /¢/

The rule for the realisation of the phoneme /¢/ shows the same simplicity as the

rule for /§/: a /¢/ is always realised as [¢].

this fact.

Table 1.11 and Figure I.11 illustrate

Table 1.11: The realisations of the phoneme /¢/ in the key transcript and in the decision

tree model output, and the correct decisions made by the model.

Key transcript
Phone | Instances Share

Decision tree model output
Instances Share

Correct model decisions
Instances Share

¢ 134 100.00%

134 100.00%

134 100.00%

phoneme_identity

TJ

Figure I.11: The realisations of the phoneme /g/ (phoneme representations in the figure

are in STA format).
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The Realisation of /h/

An /h/ is mostly realised as [h], but may also be elided. Table 1.12 shows that /h/
is elided in about 15% of the cases according to the key transcript and in about
13% of the cases according to the model predictions.

Table 1.12: The realisations of the phoneme /h/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 284 14.84% 245 12.80% 181 63.73%

h 1,630 85.16% 1,669 87.20% 1,566 96.07%
> 1,914  100.00% 1,914 100.00% 1,747 91.27%

Figure 1.12 shows the realisation rules for /h/. It can be seen that an /h/ is never
elided in a syllable in word initial position (i). However, if the syllable is in final (f)
or medial (m) position, the mean log phoneme duration over the phrase must be
less than -2.54 and the phoneme two positions to the left cannot be /p/, /§/, /n/,
/i/, Jaz/, Jet/, Ju/ or e/ for the /h/ to be elided. This phoneme identity context
probably targets a specific group of words and it likely that the /h/ realisation
would have been handled differently if more data had been available for training
the model. If the mean log phoneme duration over the phrase is more than -2.54,
/h/ is always realised as [h].

phoneme_identity

H

syllable_position_in_word
/ i \Em
@ phrase_duration_phonemes_log_absolute
/ <-2.54407 \>—2.54407
phoneme_identity—2 @

T.K.B.D,G,V.SNGLR.E0,A, o
ELO.U.Y.AA:A4,04 P.SINJALE,UA

Figure 1.12: The realisations of the phoneme /h/ (phoneme representations in the
figure are in STA format).
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The Realisation of /m/

For /m/, the key transcript and the model transcript contain almost equal shares of
realisations: in about 90.5% of the cases, /m/ is realised as [m] and in the reminder
of cases, it is elided. Table 1.13 shows this distribution of realisations.

Table 1.13: The realisations of the phoneme /m/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 379 9.40% 385 9.55% 322 84.96%
m 3,653 90.60% 3,647 90.45% 3,590 98.28%
> 4,032  100.00% 4,032 100.00% 3,912 97.02%

Figure 1.13 shows that /m/ is elided when the mean phoneme duration over the
word is less than 35.1 ms or, otherwise, when the /m/ is followed by another /m/.
If the mean phoneme duration over the word is more than 35.1 ms and the /m/ is

not followed by /m/, it is realised as [m)].

phoneme_identity

M

word_duration_phonemes_absolute

<0.035 1371\\ >0.0351371

o phoneme_identity+1

PTKBDGFVSSJTJH,

04, 03 511 _]unk -

Figure 1.13: The realisations of the phoneme /m/ (phoneme representations in the
figure are in STA format).
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The Realisation of /n/

Table 1.14 shows that the set of possible realisations for /n/ is larger than the sets
of possible realisations for previously discussed consonants. Although realised as
[n] in about 86% of the cases according to the key transcript and in about 91% of
the cases according to the model output, /n/ can also be realised as [m], [g] or [n]
or be elided.

Table 1.14: The realisations of the phoneme /n/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 612 8.46% 364 5.03% 291 47.55%
m 178 2.46% 206 2.85% 171 96.07%

n 6,248 86.42% 6,554 90.65% 6,155 98.51%

i) 117 1.62% 105 1.45% 101 86.32%

n 75 1.04% 1 0.01% 1 1.33%
> 7,230  100.00% 7,230 100.00% 6,719 92.93%

Figure 1.14 illustrates the realisation rules for /n/. An /n/ is realised as [m]
preceding a /p/ or a /b/ and as [g] if preceding a /k/. These are common and well-
known place assimilation rules for Swedish connected speech. An /n/ is, further,
elided preceding another /n/.

When the succeeding phoneme is any other than the above mentioned, /n/ is
always realised as [n] when the mean phoneme duration over the word is more than
36.2 ms. At faster speaking rates, /n/ is realised as [n] in the function word ned
‘down’. From Table 1.14, it is apparent that this rule only applies once for the entire
data set, and the probability of this rule being an artefact of sparse data is thus
large.

When the succeeding phoneme is not /p/, /b/, /k/ or /n/ and the mean phon-
eme duration over the word is less than 36.2 ms, /n/ is elided in the function words
ens ‘ones’, ni ‘you’, nagon ‘someone’; nagot ‘something’, nagra ‘some’; nat ‘some-
thing’ (not standard spelling, but a spelling indicating an abbreviated/reduced
pronunciation), sant ‘such’, under ‘under’ and dn ‘yet’.

If the /n/ occurs in one of the function words bland ‘among’, den ‘the’, en
‘a’, man ‘one’, men ‘but’ or nan ‘someone’ (not standard spelling, but a spelling
indicating an abbreviated /reduced pronunciation) or in a content word, it is realised
as [n] if the normalised mean phoneme duration over the word is more than -0.55
and elided otherwise.

If the /n/ occurs in one of the function words fran ‘from’, han ‘he’, hans ‘his’,
hon ‘she’, nej ‘no’ or nar ‘when’, it is realised as [n] if the normalised mean phoneme
duration over the phrase is more than -1.17 and elided otherwise.



Consonant Realisations

204

phoneme_identity

phoneme_identity+1

TDGFVSSJTJHMLJ
U: YY AA AA: A4A300:,O4
03,511,_][11’1](,—

word_duration_phonemes_absolute || word_part_of_speech+4 |
/ <0. 0362163\ 50.0362163 ABDTHAHPIE LS NN PMPNPERG, PL,PS
J word_function_word
bland,den,en,man,men,nén,content frén,han,hans,hon,nej,nir enS,ni,nagon,nﬁgotflﬁgra,nﬁt,sﬁm,under, ned
word_duration_phonemes_normalised || phrase_duration_phonemes_log_normalised | o @

<-0.553373 \ >-0.553373 <—].17269\‘ >-1.17269

Figure 1.14: The realisations of the phoneme /n/ (phoneme representations in the figure are in STA format).
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The Realisation of /y/

An /p/ is realised as [g] in more than 99% of the cases and elided in the reminder
of the cases in the key transcript, as can be seen in Table 1.15. In the decision tree
model, the option of deleting /y/ is not included, as seen in Table 1.15 and Figure

I.15.

Table 1.15: The realisations of the phoneme /1/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 7 0.92% 0 0.00% 0 0.00%

| 753 99.08% 760 100.00% 753 100.00%
> 760  100.00% 760 100.00% 753 99.08%

phoneme_identity

NG

Figure 1.15: The realisations of the phoneme /y/ (phoneme representations in the figure
are in STA format).
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The Realisation of /1/

An /1/ is mostly realised as [l] according to the key transcript and also to the
model output, as shown in Table I.16. The /1/ is elided slightly more often in the
key transcript than in the model output (95.9% vs. 97.4%).

Table 1.16: The realisations of the phoneme /1/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 164 4.10% 104 2.60% 98 59.76%

1 3,833 95.90% 3,893 97.40% 3,827 99.84%
> 3,997  100.00% 3,997 100.00% 3,925 98.20%

As for most consonants, an /1/ is elided in the pronunciation model if followed
by an identical consonant. Double consonants may occur at word boundaries when
canonical pronunciation representations are concatenated. However, at pronunci-
ation in context, these double consonants are mostly realised as a single consonant.

From Figure 1.16, it is also clear that /1/ is elided preceding several phoneme
sequences starting with an /s/, but that it is realised as [l] in most cases also when
preceding an /s/. When the phoneme following the /1/ is not another /1/ or an
/s/, /1/ is elided when occurring in the function words wilka ‘which’, vilken ‘what’
and wvilket ‘what’ and realised as [l] otherwise.

It is likely that the phoneme sequence following the /1/, involving phoneme
identity+2 and phoneme identity+3 is not the primary predictor for the realisation
of /1/ as such. The phoneme sequences probably to some extent target specific
words and the rules with the specified phoneme contexts may not be generally
applicable. However, the phoneme sequence following the /1/ plays a part for the
realisation and, given the training data and the ‘greedy’ training algorithm used, the
phoneme identity attributes are the best of the predictors involved in the decision
in the unpruned tree. Thus, the phoneme identity attributes are the predictors left
in the pruned model. If more data had been available at training, other attributes
may have been used.



word_function_word

all,alla,allihop,allihopa,allt,allting,bland,blev,
bli,blivit,eller,emellan,enligt,fel,halla,inklusive,

liksom,loss,lyckas,ldgga,limna,ldrde,ldt,mellan, vilka,vilken,vilket

skall,skulle,slut,slutar,tala,till tillbaka,tillviga,

phoneme_identity

L

phoneme_identity+1

0O3,sil,junk,—

P.T,K.B.D,G,F,V,.STHMN,
J,R,E(W),Q,A:,E,E:,l,I:,O,O: U
U.Y,Y: A AL A A A4,43,0,0:,04,
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phoneme_identity+2

vilja,vill,ville,content

phoneme_identity+3

G,V,A:

K.B,D,L.E0,A E:I.,Y: A

T.K,D,F,S,M,N,L,R,AE.E:,

0:,U:,Asil

S.TILJLE.O,AA: A3

P.T,F,V.HM,N,R.LY,A: sil

Figure 1.16: The realisations of the phoneme /1) (phoneme representations in the figure are in STA format).
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The Realisation of /j/

Table 1.17 shows that /j/ may be realised as [j] or elided. Table 5.7 in Chapter 5,
Section 5.7 indicated that the key transcript contains a large share of [j] erroneously
classified as (). The [j] phones in the gold standard transcript almost exclusively
originate from /j/ and it is thus likely that the decision tree model elides /j/ un-
proportionally often when compared to a phonetic transcript of speech with higher
quality than the automatic transcription system output.

Table 1.17: The realisations of the phoneme /j/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 751 34.06% 649 29.43% 615 81.89%

j 1,454  65.94% 1,556 70.57% 1,420 97.66%
> 2,205  100.00% 2,205 100.00% 2,035 92.29%

In the model, a /j/ is always realised as [j] unless it is succeeded by /g/, /f/,
/8/, /h/, /i/, /a/, Jaz/, [iz/ or Jor/. If succeeded by another phoneme, it is elided
if the mean phoneme duration over the phrase is less than 35.2 ms. If the mean
duration is longer, /j/ is elided if the preceding phoneme is /g/, /1/, /e/, /e/, <sil>
or <junk> and the phoneme two positions to the right is not /g/, /n/, /1/, /u/ or
/e/. The part of the pronunciation model handling the realisations of /j/ is shown
in Figure I.17.

The attributes used by the model for determining the realisation of /j/ are
mainly phoneme context attributes. The hypothesis is that the current model would
give poor realisation predictions for /j/ if evaluated against a manually transcribed
standard and that more data and especially more accurate training keys would
facilitate finding better rules for the realisation of /j/.
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phoneme_identity

J

phoneme_identity+1

. P,T.K.B,D,V,SM,N,L R E0,
GFSILHJAA:LA: EE:L0,0:U,U;Y,A A A: A4,
A3,0,0:,03,sil,junk,—

phrase_duration_phonemes_absolute

<0.0351698\ >0.0351698

° phoneme_identity—1

G,R,E,A sil junk

T.K.D,S,M,N.NG,L,J.RT,RS,EO,
AA:LO: UL A A0

phoneme_identity+2

P,TK.B.D,F,V.SHML)J,
AALEE:LLO:LUULY,A A G,N,R,0,A3
A,0:,03,sil, junk,—

Figure 1.17: The realisations of the phoneme /j/ (phoneme representations in the figure
are in STA format).
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The Realisation of /1/

Table 1.18 shows that /1/ is either realised as [1] or elided. The /1/ is elided more
often in the key transcript than in the model output.

Table 1.18: The realisations of the phoneme /1/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 2,317 29.40% 1,813 23.00% 1,630 70.35%

I 5,565 70.60% 6,069 77.00% 5,382 96.71%
> 7,882 100.00% 7,882 100.00% 7,012 88.96%

Approximants were hard to handle by the automatic transcription system and
the keys corresponding to approximant phonemes thus contain a larger share of
errors than the keys for most other phonemes. The realisation of approximants
may also be less rule-governed than the realisation of other consonants. Further,
both the phone identity and the presence of these phones in actual spoken language
recordings can often be debated.

In the tree governing the realisation of /1/, shown in Figure 1.18, the highest
ranking attribute, phoneme feature py+1° separates the right adjacent phoneme
context into vowels and /h/ (and no phoneme, i.e., <sil>, <junk> or discourse
boundary) on one side and all consonants but /h/ on the other side.

If the mean phoneme duration over the word is less than 30.6 ms, /1/ is elided
if the phoneme two position to the left is /f/, /h/ or /j/ and the right adjacent
phoneme is /ir/, /ui/, /eer/, <sil> or <junk>. The /1/ is also elided in the case
where the mean phoneme duration over the word is less than 30.6, the phoneme
two position to the left is not /f/, /h/ or /j/ and the current syllable contains less
than 3.5 phonemes. Otherwise, when the phoneme feature py+1 attribute targets
a vowel or /h/, an /1/ is realised as [1].

An /1/ is, further, elided preceding /d/, /§/, /¢/, /m/, /u/, /1/, /1/, or /d/.
Preceding other consonants (except /h/), the /i/ is elided if the mean phoneme
duration over the word is less than 36.6 ms and the phoneme two positions to the
left is not /d/, /t/, /b/, /1/, /i/ or /a/. If the phoneme two positions to the left is
one of these consonants, /1/ is still elided if the mean phoneme duration over the
following word is more than 41.6 ms and if it is less than 41.6 ms and the number
of phones in the phrase is less than 2.5%. Otherwise, when not preceding /d/, /§/,
/¢/, /m/, /n/, /b/, /1/, /1) or /d/, an /1/ is realised as [1].

Finally, if /1/ does not precede /d/, /§/, /¢/, /m/, /n/, /h/, /1, /1/ or /d/ and

the mean phoneme duration over the word is more than 36.6 ms, the realisation of

3py is the combination of the place of articulation feature for consonants and the tongue
position in the y (open-close) dimension feature for vowels.

4Under the phrase chunking method employed, subjunctions and conjunctions were treated
as one-word phrases and this rule seems to target such units specifically.
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/1/ depends on the word to the right of the current word (cf. Figure I1.18 to see which
particular function words render a specific realisation). The function word+1 node
has four branches. However, again the pruning procedure has created two branches
with the same leaf ([1]) which are equivalent to a single [1] branch. The remaining
branches gives an () realisation and leads to a syllable nucleus node, respectively. If
the syllable nucleus is /a:/ or /e/, and the type of the phrase preceding the current
phrase is not VC (verb cluster), the /1/ is realised as () and otherwise as [1].

Both from the syllable nucleus and the phrase type-1 node, there are branches
with identical leaves, which are equivalent to a single leaf. One of the branches
from the syllable nucleus node is for “no syllable nucleus” (-). All normal syllables
contain a nucleus, which in central standard Swedish is always a vowel. However,
some interrupted words contain interrupted syllables. For example, an interrupted
word may consist of only a word initial consonant. In the syllable layer, these
relatively rare interrupted syllable units are treated as syllables with no nuclei.
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phoneme_identity
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till,varfor,vi,over,content,—

9

sen,skulle,vara,vart,vid,vilka,vilket

<

Figure 1.18: The realisations of the phoneme /1/ (phoneme representations in the figure are in STA format).
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The Realisation of /{/

In the key transcript, a /{/ is realised as [t] in almost 98% of the cases and realised
as () in the few remaining cases, as shown in Table 1.19. The decision tree model
does not include the option of eliding /t/, as seen in Table 1.19 and Figure 1.19.

Table 1.19: The realisations of the phoneme [t/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 7 2.23% 0 0.00% 0 0.00%

t 307 97.77% 314 100.00% 307 100.00%
> 314  100.00% 314 100.00% 307 97.77%

phoneme_identity

RT

Figure 1.19: The realisations of the phoneme [t/ (phoneme representations in the figure
are in STA format).
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The Realisation of /d/

In the key transcript, a /d/ is realised as [d] in all cases but one, where it is elided,
as can be seen in Table 1.20. The pruned decision tree model always realises /d/
as [d], as seen in Table 1.20 and Figure 1.20.

Table 1.20: The realisations of the phoneme /d/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 1 0.48% 0 0.00% 0 0.00%

d 209 99.52% 210 100.00% 209 100.00%
> 210  100.00% 210 100.00% 209 99.52%

phoneme_identity

RD

Figure 1.20: The realisations of the phoneme /d/ (phoneme representations in the
figure are in STA format).
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The Realisation of /|/

An /|/ is realised as [|] and as 0, respectively, equally often in the key transcript. In
the model output, /|/ is elided in about 59% of the cases, as can be seen in Table
[.21. Since there were very few training examples, the selection of attributes during
model training was probably highly dependent on chance. The model may not be
very good for predicting the realisations of /|/ generally, since it is probably biased
towards the particular data used for training the model.

Table 1.21: The realisations of the phoneme /|/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 11 50.00% 13 59.09% 11 100.00%

1 11 50.00% 9 40.91% 9 81.82%
> 22 100.00% 22 100.00% 20 90.91%

As illustrated by the tree in Figure 1.21, the pitch dynamic measure defined
as the sum of extreme point distances from the median fy over the utterance in
Hz divided by the number of extremes (minimum or maximum points or plateaus)
contained by the utterance (i.e., the average distance between the median and the
extreme point frequencies) is used as the first attribute under the phoneme identity
node for /|/.

If the pitch dynamic value is higher than 33.25, /|/ is always realised as [|]. If the
pitch dynamic value is lower than 33.25, /|/ is realised as () if the mean normalised
logarithmic phoneme duration over the right adjacent syllable is less than 0.02 and
as [|] otherwise.

phoneme_identity

RL

utterance_pitch_dynamic_extremes_median+1

<33.2532\>33.2532
syllable_duration_phonemes_log_normalised+1

<0.0194981 \ >0.0194981

Figure 1.21: The realisations of the phoneme /|/ (phoneme representations in the figure
are in STA format).
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The Realisation of /n/

The /n/ phoneme is realised as [n] in somewhat more than 70% of the cases and
elided in the remainder of the cases, both according to the key transcript and to
the decision tree model, as shown in Table 1.22.

Table 1.22: The realisations of the phoneme /n/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 63 26.36% 69 28.87% 43 68.25%

n 176 73.64% 170 71.13% 150 85.23%
> 239 100.00% 239 100.00% 193 80.75%

In the model, if the mean normalised log phoneme duration over the word is
less than -0.21, /n/ is elided and otherwise, it is realised as [n], as illustrated in

Figure 1.22.

phoneme_identity

RN

word_duration_phonemes_log_normalised

<-0.211851\>-0.211851

Figure 1.22: The realisations of the phoneme /n/ (phoneme representations in the
figure are in STA format).
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The Realisation of /g/

In the key transcript, a /g/ is realised as [g] in about 88% of the cases and otherwise
elided, as can be seen in Table 1.23. The pruned decision tree model always realises
/s/ as [g], as shown by Table 1.23 and Figure 1.23.

Table 1.23: The realisations of the phoneme [/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 37 12.05% 0 0.00% 0 0.00%

s 270 87.95% 307 100.00% 270 100.00%
> 307  100.00% 307 100.00% 270 87.95%

phoneme_identity

RS

Figure 1.23: The realisations of the phoneme /s/ (phoneme representations in the figure
are in STA format).






Appendix J

Vowel Realisations

The Realisation of /a/

An /a/ can be realised as [a] or [o] or, although very seldom, be elided. Table J.1
shows the details of the distribution of realisations of the /a/ phoneme.

Table J.1: The realisations of the phoneme /a/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 61 0.80% 49 0.64% 30 49.18%

2 1,997 26.13% 1,879 24.58% 1,623 81.27%

a 5,586 73.08% 5,716 74.78% 5,345 95.69%
> 7,644  100.00% 7,644 100.00% 6,998 91.55%

As can be seen from Figure J.1, the realisation of /a/ is dependent on several
different duration-based attributes: 1) the mean normalised vowel duration over the
word, 2) the mean log vowel duration over the word, 3) the mean phoneme duration
over the word, 4) the mean normalised log phoneme duration over the phrase, 5)
the mean vowel duration over the discourse, and 6) the mean log phoneme duration
over the following word. The length of the preceding phrase (measured in number
of phonemes) is also utilised by the model.

The syllable stress type variable is used high up in the tree structure. Here, it
is used to group syllables with primary stress in accent II words and compounds
(prim2) with syllables with secondary stress in compounds (secondComp) on the
one hand and syllables with stress in accent I words (prim!) with syllables with
secondary stress in accent II words (second?2) and unstressed syllables (n0) on the
other hand.

Typically, function words are accent I words and their word stress is not realised
in practice, since function words mostly have an unstressed pronunciation. Never-
theless, in the canonical pronunciation representation, the word stress is marked.

219
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Thus, since function words are so common, the prim1 syllables will be equivalent
to mo in the majority of cases in practice. The secondary stress in accent II words is
often much less pronounced than the primary stress. Thus, although theoretically
disparate, the prim1, second2 and no syllables in practice make up a likely cluster.

The realisation of /a/ is also to a high degree dependent on the function word
attribute and the function word+1 attribute and an /a/ has a greater probability
of being reduced to a [9] in a syllable in word final position than if the /a/ is the
nucleus of a word initial or word medial syllable.



phoneme_ident

‘ word_duration_vowels_normalised ‘

<=0.109945 \ >-0.109945

syllable_s
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s_absolute ‘
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‘ syllable_position_in_word H word_duration_vowels_normalised ‘
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f <255 | >255
varenda,content

bland borjade,man im

av.en,har,man,mellan,
som

na,ska,skulle,
tilltors,upp,vi.vilja,
ville,ir.content,~

TKDFV,
E,

diktaturlinder.era,frakta, ha huruvida,
komma,ligga medans,media,mina,
ménga,sedan,sjunka skira siga,

allihop.allting.andra.fast fram,
han,hoppas,kan,mellan,nira, alla,annat <-120726 | >-1.20726
samman.skall,sitta,tvingas.united.
varfor.vart verkade, vilka,viran
word_duration_phonemes_absolute ‘

/ <0. 08(\4187\\>0 0864187
@ ‘ discourse_duration_vowels_absolute ‘

/<o 0818528 >0.0818528
‘ word_duration_phonemes_log_absolute+1 ‘

<=2.36703 | >-2.36703

& O

Figure J.1: The realisations of the phoneme /a/ (phoneme representations in the figure are in STA format).

SUOT)LSI[BIY] [OMOA
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The Realisation of /a:/

The realisation of /a:/ is restricted to [a:] and [o] in the pronunciation model,
although the key transcript also includes five instances of [a] and a ) realisation, as

shown in Table J.2.

Table J.2: The realisations of the phoneme /az/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 1 0.03% 0 0.00% 0 0.00%

) 768 25.30% 726 23.91% 725 94.40%

a 5 0.16% 0 0.00% 0 0.00%
a: 2,262 74.51% 2,310 76.09% 2,261 99.96%
> 3,036  100.00% 3,036 100.00% 2,986 98.35%

Figure J.2 shows that the realisation of /a:/ is dependent on several duration-
based attributes, on the identity of the preceding phoneme, on the function word
identity and on the Part of Speech of the word in which the /a:/ appears.



phoneme_identity

A:

word_duration_vowels_absolute

<0.0450865 >0.0450865

phoneme_identity—1 °

v P.TKB.D.G.SHMNNG.L,
i R,E0,AA:,0:

word_function_word word_duration_phonemes_absolute

/ jag,vad,var,vara,content \ ja,kvar,varit
A|

<0.025550N\>0.0255504

word_part_of_speech

phrase_duration_vowels_log_normalised @

word_duration_vowels_absolute

DT,HA,HP,PN,VB AB,NN <-1.33998 \ >-1.33998

Figure J.2: The realisations of the phoneme /a:/ (phoneme representations in the figure are in STA format).
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The Realisation of /o/, /e/ and /e:/

The phonemes /a/, /e/ and /e:/ share an arc from the top phoneme identity node,
but already at the next tree level, the tree is split into a separate branch for each
of the phonemes, as can be seen in Figure J.3. This odd structure occurred since
a greater symmetric information gain at the first split was obtained when the tree
inducer grouped these similar phonemes than when separate branches were cre-
ated for them. However, at the second split, the greatest gain in information was
obtained by splitting the phoneme group.

Table J.3: The realisations of the phoneme /o] in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 51 1.29% 43 1.09% 36 70.59%

) 3,905 98.71% 3,913 98.91% 3,898 99.82%
> 3,956  100.00% 3,956 100.00% 3,934 99.44%

The realisation of a /o/ is dependent on the mean phoneme duration over the

word and over the phrase, as can be seen in Figure J.3. A /o/ in the canonical
pronunciation representation is almost exclusively realised as a [o], but is elided in
about 1% of the cases, as shown in Table J.3.

Table J.4: The realisations of the phoneme /e/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 2 0.06% 0 0.00% 0 0.00%

2 1,367 40.77% 1,681 50.13% 1,306 95.54%

e 1,984 59.17% 1,672 49.87% 1,609 81.10%
> 3,353 100.00% 3,353 100.00% 2,915 86.94%

The realisation of /e/ depends on the function word attribute®, the syllable
stress type and the mean phoneme duration over the word, as can be seen in Figure
J.3. In the key transcript, /e/ is realised as [e] in the majority of cases, elided in
2 cases and realised as [o] in the remainder of cases. In the model output, /e/ is
realised as [e] and as [o] about equally often, as shown in Table J.4.

The realisation of /e:/ is dependent on the mean vowel duration over the word,
the function word attribute and the mean phoneme duration over the word, as can
be seen in Figure J.3. An /e:/ is mostly realised as [e:] or [s], but can also be
realised as [e]. In the model output, the [e] realisation occurs less often than in the
key transcript. The () realisation, which occurs once in the key transcript, is not
allowed by the decision tree model, as can be seen in Table J.5 and Figure J.3.

IN.b.: the proper name tv-fem ‘T'V five’ is erroneously included in the list of function words.
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Table J.5: The realisations of the phoneme [e:/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 1 0.04% 0 0.00% 0 0.00%

) 1,051 37.10% 1,120 39.53% 1,025 97.53%

e 235 8.30% 93 3.28% 42 17.87%

e: 1,546 54.57% 1,620 57.18% 1,477 95.54%
> 2,833 100.00% 2,833 100.00% 2,544 89.80%




Vowel Realisations

226

phoneme_identity

EO,E.E:
angdende,behdva,behdvde,behover,

phoneme_identity
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word_duration_phonemes_absolute ’ word_duration_vowels_absolute ‘ ’ word_function_word ville
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dessa,detta,dig efter,eftersom,

eller,emellan,emot.ett,gentemot,

<0.0500093 | >0.0500093 <0.0443735 >0.0443735 hem,henne,hennes,herregud,igen,

mellan,men,mig,nej,oavsett,
okej,sej,sen,sig,tv—fem,
’ phrase_duration_phonemes_absolute ‘
<0.0182007 | >0.0182007

varenda,vem,5verens,content

word_function_word

’ word_duration_phonemes_absolute ‘ ’ syllable_stress_type

blev,genom,sedan,content det,enligt,med,ned ner <0.0350682 >0.0350682 \‘ prim1,prim2,secondComp no,second2

word_duration_phonemes_absolute

é <0.035194 ?>0035194

Figure J.3: The realisations of the phonemes /o/, /e/ and [e:/ (phoneme representations in the figure are in STA format).
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The Realisation of /1/

An /1/ is always realised as [1] in the pronunciation model, as apparent from Figure
J.4 and Table J.6. In the key transcript, /1/ can also be realised as [o] or be
elided. Tt is likely that the simplification of the /1/ realisation rules resulting from
pruning the decision tree model does not increase the prediction performance for
/1/ realisations on new data.

Table J.6: The realisations of the phoneme /1] in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 9 0.25% 0 0.00% 0 0.00%

) 531 14.75% 0 0.00% 0 0.00%

I 3,060 85.00% 3,600 100.00% 3,060 100.00%
> 3,600 100.00% 3,600 100.00% 3,060 85.00%

phoneme_identity

I

Figure J.4: The realisations of the phoneme /1/ (phoneme representations in the figure
are in STA format).
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The Realisation of /i:/

An /iz/ can be realised as [if], [1], [o] or ) and has similar realisation distributions
in the key transcript and the model output. However, as can be seen from Table
J.7, the decision tree model produces a greater share of [iz] realisations and a lesser
share of [1] realisations than the automatic transcription system.

Table J.7: The realisations of the phoneme /i/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 11 0.60% 13 0.71% 11 100.00%

) 290 15.80% 286 15.59% 283 97.59%

I 434 23.65% 324 17.66% 317 73.04%

i 1,100 59.95% 1,212 66.05% 1,092 99.27%
> 1,835 100.00% 1,835 100.00% 1,703 92.81%

Figure J.5 shows that the realisation of /ir/ depends on duration-based measures
over the word and over the phrase, on the function word attribute and on the Part
of Speech of the word in which the /ir/ occurs. For verbs (VB), the number of
times the lexeme (the word base form or any inflected form of the word) has been
repeated thus far in the discourse, is used as a predictor. If the duration-based
criteria match and the verb has been repeated more than 7.5 times, and thus is
likely to convey given information, the /i:/ is realised as [1] rather than as [if], as it
is when the verb has been repeated less than 7.5 times.
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’ word_duration_phonemes_absolute ‘

/<0.0453402\>0.0453408

’ word_duration_vowels_absolute ‘ ’ word_duration_vowels_absolute ‘

/0.0580797\ >0.0580797 [ <0.0949705\ >0.0949705
’ word_duration_phonemes_log_normalised ‘ @ ’ word_function_word ‘ @

<—O.386104\>—0.386104 bli,dit,hin,vi,vid,content blivit,i,mina,ni,sina
’ word_part_of_speech ‘ ’ phrase_duration_phonemes_normalised ‘ ’ word_duration_vowels_absolute
M,PP lVB NN <-0.334969 >—0.334969 / <0. 044933\10 0449335
word_duration_phonemes_absolute H phrase_duration_phonemes_absolute ‘@ ’ phrase_duration_vowels_log_absolute

<0.0158196 \ >0.0158196 <0,0343429\ >0.0343429 <-4.26926 \ >-4.26926
° e @ word_lexeme_repetitions ‘

<7.5\ >7.5

Figure J.5: The realisations of the phoneme /i:/ (phoneme representations in the figure are in STA format).
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The Realisation of /u/

The phoneme /u/ has very similar realisation distributions in the key transcript
and in the model output, respectively. The phoneme can be realised as [u], [o] or
(0, as can be seen in Table J.8.

Table J.8: The realisations of the phoneme /u/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 6 1.17% 6 1.17% 6 100.00%

) 160 31.25% 171 33.40% 117 73.12%

U 346 67.58% 335 65.43% 292 84.39%
> 512 100.00% 512 100.00% 415 81.05%

The realisation of /u/ is not dependent on duration-based attributes in the
pruned decision tree model, shown in Figure J.6. Instead, the realisation is de-
pendent on phoneme context and word predictability (a weighted sum of trigram
probability, bigram probability and unigram probability).

phoneme_identity

(0}

phoneme_identity—1

P,T,B,D,F,V.TLHM,N,J R, .
ﬁD,RS,A,E:,siI K’G’S’SJ’L’a I
phoneme_identity+1 @ word_probability

TKB.DGSSLHMNLR, 3 ( <2.0029¢-05 \ >2.0029¢-05

RT.RD,RN,A A: I A

o EO phoneme_identity+3 e

GM,L.E,E:,1,0,0:, A A:,A,sil, KDNRA

o

Figure J.6: The realisations of the phoneme /u/ (phoneme representations in the figure
are in STA format).
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The Realisation of /u:/

An /u:/ is mainly realised as [u:], but may also be realised as [u] and, in some cases,
as [o] or . All of these four realisations occur in both the key transcript and in
the model output, however with slightly different distributions. Table J.9 gives the
details of the realisation distributions for /uz/.

Table J.9: The realisations of the phoneme /u:/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 3 0.36% 3 0.36% 3 100.00%

) 9 1.07% 2 0.24% 2 22.22%

U 95 11.28% 81 9.62% 65 68.42%
ur 735 87.29% 756 89.79% 724 98.50%
> 842 100.00% 842 100.00% 794 94.30%

As can be seen from Figure J.7, the realisation of /u:/ in the pronunciation
model depends on the mean vowel duration over the word, on the identity of the
phoneme two positions to the left of the /ui/ and on the identity of the word

preceding the word in which the /uz/ occurs.
It is hypothesised that the realisations of both /u/ and /u:/ suffer from data
sparsity and that these particular realisation rules are to some degree specific to

the particular training data.
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phoneme_identity
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word_duration_vowels_absolute
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phoneme_identity—2 word_function_word-1

all,alla,att,av,bli,bade,de,den,
det,dom,du,da,efter,en,enligt,ett,
fram, fran, far,for,gentemot,hade,han,har,
hur,i,inget,ivég,ja,jag,jo,man,
K,U: A4 E med,mellan,men,négot,nagra,nan,och,om,
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till,upp,usch,ut,vara,varfor,varit,varje,
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content,—

Figure J.7: The realisations of the phoneme /u:/ (phoneme representations in the figure are in STA format).

T,G,S.,M,N,L,R,E0,A sil,junk I:,A: mig,mina,nagon,in
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The Realisation of /e/

An /e/ can be realised as [e] or [9] or be elided according to the key transcript.
The model does not allow for the /o/ be elided and very seldom produces a [o]
realisation for /e/, as can be seen in Table J.10. Only the mean vowel duration
over the word is used by the model to determine the realisation of /e/, as shown

by Figure J.8.

Table J.10: The realisations of the phoneme /e/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 118 11.53% 0 0.00% 0 0.00%

2 68 6.65% 49 4.79% 49 72.06%

e 837 81.82% 974 95.21% 837 100.00%
> 1,023  100.00% 1,023 100.00% 886 86.61%

phoneme_identity

U

word_duration_vowels_absolute

<0.01375 \ >0.01375

Figure J.8: The realisations of the phoneme Je/ (phoneme representations in the figure
are in STA format).
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The Realisation of /u:/

As shown in Table J.11, /u:/ is realised as [¢:] in the majority of cases and the
majority class is more pronounced in the model output than in the key transcript,
as it is for the realisations of most phonemes. Other realisations that occur in both

the key transcript and the model output are [e], [o] and 0.

Table J.11: The realisations of the phoneme [ai/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 2 0.19% 1 0.09% 1 50.00%

) 93 8.81% 89 8.43% 83 89.25%

e 65 6.16% 5 0.47% 5 7.69%
w 896 84.85% 961 91.00% 895 99.89%
> 1,056  100.00% 1,056 100.00% 984 93.18%

The realisation rules for /u:/ are illustrated by the tree in Figure J.9. Here, it
can be seen that the realisation of /u:/ depends on duration-based measures over
the word, on the Part of Speech of the word in which the /4:/ occurs and on the
phoneme context, however not the adjacent phonemes.
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Figure J.9: The realisations of the phoneme /[a:/ (phoneme representations in the figure are in STA format).
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The Realisation of /v/

An /y/ can be realised as [v], [¢], or @ in the key transcript. As can be seen in
Table J.12, the [o] and () realisations are very rare and in the model output, only
the [v] realisation occurs. Figure J.10 shows that this is the only possible output

from the model.

Table J.12: The realisations of the phoneme /y/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 2 0.44% 0 0.00% 0 0.00%

2 1 0.22% 0 0.00% 0 0.00%

Y 447 99.33% 450 100.00% 447 100.00%
> 450  100.00% 450 100.00% 447 99.33%

phoneme_identity

Y

Figure J.10: The realisations of the phoneme /v/ (phoneme representations in the
figure are in STA format).
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The Realisation of /y:/

The phoneme /y:/ is realised as [yz], [v] or [o] and have similar realisation distribu-
tions in the key transcript and in the model output, respectively. Table J.13 shows
that the [o] realisation is infrequent.

Table J.13: The realisations of the phoneme [y:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
2 2 1.59% 4 3.17% 2 100.00%

Y 12 9.52% 11 8.73% 10 83.33%
yr 112 88.89% 111 88.10% 110 98.21%
> 126 100.00% 126 100.00% 122 96.83%

In the pronunciation model, the realisation of /y:/ depends on the identity of
the phoneme four positions to the right of the /y:/ and on duration-based measures
over the phrase and over the syllable. It is likely that the phoneme context attribute
targets specific words and that the realisation rule set for /y:/ may not be fully
generalisable to new data as a result of data sparsity.

phoneme_identity

Y:

phoneme_identity+4

P, T,K,B,D,G,V,S,M,N,NG,L, .
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A,A3,0:,sil
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% <-0.316769 ?>—O.316769

Figure J.11: The realisations of the phoneme [y:/ (phoneme representations in the
figure are in STA format).
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The Realisation of /o/

Table J.14 shows that /o/ is mainly realised as [o] or [o] and sometimes elided. The
share of elisions is lower in the model output than in the key transcript.

Table J.14: The realisations of the phoneme /o/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 198 4.86% 64 1.57% 52 26.26%

) 946 23.21% 888 21.79% 855 90.38%

) 2,932 71.93% 3,124 76.64% 2,892 98.64%
> 4,076  100.00% 4,076 100.00% 3,799 93.20%

The phoneme /5/ occurs in many high frequency function words, and is always
elided if occurring in one of the words eftersom ‘since’, nagon ‘someone’ or nagot
‘something’, as can be seen in Figure J.12. If the /o/ occurs in one of the function
words liksom ‘like’, och ‘and’ or som ‘that’, duration-based measures and the iden-
tity of the preceding phoneme are used to chose between an [o] and a [o] realisation.
If occurring in any other word than the above mentioned, /o/ is always realised as

[2].
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Figure J.12: The realisations of the phoneme /a/ (phoneme representations in the figure are in STA format).
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The Realisation of /o:/

An /o:/ can be realised as [01], [0] or [9] by the pronunciation model, as can be seen
in Table J.15. In the key transcript, there is also one case of /o:/ elision. An /o:/ is
realised as [0:] in about 60% of the cases according to both the key transcript and
the model output. The [o] realisation is more common in the model output than in
the key transcript at the expense of the [o] realisation.

Table J.15: The realisations of the phoneme /o:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 1 0.04% 0 0.00% 0 0.00%

) 193 8.37% 117 5.07% 114 59.07%

) 707 30.66% 795 34.48% 578 81.75%

o: 1,405 60.93% 1,394 60.45% 1,263 89.89%
> 2,306  100.00% 2,306 100.00% 1,955 84.78%

Figure J.13 shows that /o:/ is realised as [o:] if the mean vowel duration over
the word is more than 54.8 ms and that duration-based measures are also used to
select between the [o] and [o] realisations when the mean vowel duration over the

word is less than 54.8 ms.
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Figure J.13: The realisations of the phoneme /o:/ (phoneme representations in the
figure are in STA format).
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The Realisation of /¢/

The phoneme /¢/ is mostly realised as [g], but is sometimes reduced to a [o]. As can
be seen in Table J.16 and Figure J.14, the model never elides a /¢/, although there
are some elided /¢/ phonemes according to the key transcript. The fact that there
is a high concentration of /e/ realisations to [¢] in the key transcript makes the
realisation easier to predict and the tree model makes the correct decision about
phone identity in 98.5% of the cases.

Table J.16: The realisations of the phoneme /g/ in the key transcript and in the decision
tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 7 0.58% 0 0.00% 0 0.00%

o 23 1.92% 34 2.84% 20 86.96%

€ 1,167 97.49% 1,163 97.16% 1,159 99.31%
> 1,197  100.00% 1,197 100.00% 1,179 98.50%

Figure J.14 shows that an /e¢/ is always realised as [o] in unstressed syllables
and can also be realised as [o] in stressed syllables, if the mean phoneme duration
over the phrase is less than 27.2 ms. Otherwise, /¢/ is realised as [¢].
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Figure J.14: The realisations of the phoneme /[e/ (phoneme representations in the
figure are in STA format).
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The Realisation of /e:/

The /e:/ phoneme is realised as [e1], [¢] or [o] with very similar distributions in the
key transcript and the model output, as shown in Table J.17.

Table J.17: The realisations of the phoneme /e:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
o 52 12.75% 53 12.99% 52 100.00%

£ 82  20.10% 73 17.89% 67 81.71%

€ 274 67.16% 282 69.12% 268 97.81%
> 408  100.00% 408 100.00% 387 94.85%

The part of the decision tree handling the /e:/ phoneme is relatively complex
and includes several duration-based attributes, stress, phoneme context, Part of
Speech context and function word context. Figure J.15 shows the details of the
rules employed for determining the realisation of /e:/.
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Figure J.15: The realisations of the phoneme /e:/ (phoneme representations in the figure are in STA format).
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The Realisation of /&/ and /&:/

The phonemes /&/ and /#:/ share an arc from the top node of the decision tree
model. Because of this, it is possible for the model to realise /a&/ as [a:], as shown
in Table J.18, although this realisation of /&/ never occurs in the key transcript.

Table J.18: The realisations of the phoneme /&/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
2 72 28.69% 47 18.73% 44 61.11%

€ 65 25.90% 4 1.59% 4 6.15%

® 114 45.42% 195 77.69% 108 94.74%
®! 0 0.00% 5 1.99% 0 0.00%
> 251  100.00% 251 100.00% 156 62.15%

The phonemes were clustered at creation of the first level of the decision tree,
since the gain in information was maximised through clustering. The realisations
of both /a&/ and /ee:/ are distributed over several realisations with no realisation
standing out in any extreme way in terms of frequency. The realisation distributions
of /ee/ and /e&:/, respectively, are too similar to be clearly separable.

One of the reasons for the similarity in realisation distributions is that /ee:/
occurs in the very frequent copula verb @r ‘s’, which is often reduced. The canonical
pronunciation of dr, /air/, is thus seldom used and the word is instead realised as
[eer], [ze1], [22], [¢] or [o].

Since a greedy algorithm is used for decision tree induction, no consideration is
taken to how the creation of a higher level affects the possibility to create descriptive
lower levels. In most cases, this is not a problem in practice, given the current
training data. However, for the /s/ and /#:/ phonemes, it would probably have
been beneficial for the tree as a whole if the phonemes had not been clustered in the
creation of the first tree level, but separated at an early stage of the tree induction
process.

Table J.19: The realisations of the phoneme [@®:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 1 0.07% 2 0.14% 1 100.00%

) 456 31.91% 427 29.88% 425 93.20%

€ 79 5.53% 24 1.68% 23 29.11%

® 269 18.82% 381 26.66% 244 90.71%
®: 624 43.67% 595 41.64% 562 90.06%
> 1,429  100.00% 1,429 100.00% 1,255 87.82%
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Since the /e:/ phoneme is much more frequent than the /&/ phoneme, as can
be seen from tables J.18 and J.19, the distribution of realisations of /a:/ dominates
the distribution of realisations for the /a/-/e:/ cluster.

The consequence of this is that the share of correct realisation for the less
frequent phoneme, /a/, is very low. In total, the share of correct decisions made
for this phoneme is 62.2%, but for the [g] realisation, the share is as low as 6.2%.
The high degree of noise in the data given the clustering of /a/ and /ze:/ is also
reflected in the complexity of the decision tree model. Figure J.16 illustrates the
complex model for /ee/ and /ee:/ realisations.
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Figure J.16: The realisations of the phonemes /&/ and /e:/ (phoneme representations in the figure are in STA format).
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The Realisation of /ce/

The realisation rule for /ce/ is very simple: in stressed syllables, /ce/ is realised as
[ce] and in unstressed syllables, the phoneme is elided. The rule is illustrated in
Figure J.17. This simple rule seems to work well for the data used for training and
evaluating the model, as seen in Table J.20. However, the rule may work less well

when applied to new data.

Table J.20: The realisations of the phoneme [/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 11 7.24% 11 7.24% 9 81.82%

9 1 0.66% 0 0.00% 0 0.00%
e 140 92.11% 141 92.76% 139 99.29%
> 152 100.00% 152 100.00% 148 97.37%

phoneme_identity

6

syllable_stress
[\

Figure J.17: The realisations of the phoneme [/ (phoneme representations in the
figure are in STA format).




248 Vowel Realisations

The Realisation of /g:/

An /¢:/ can be realised as [gi], [ce], [8] or @, as can be seen in Table J.21. The
model depends on duration-based measures and phoneme context to determine the
realisation of /¢:/ in context, as shown in Figure J.18.

Table J.21: The realisations of the phoneme /@:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 1 0.38% 1 0.38% 1 100.00%

) 3 1.15% 4 1.53% 3 100.00%

e 29 11.07% 21 8.02% 18 62.07%
o 229 87.40% 236 90.08% 225 98.25%
> 262 100.00% 262 100.00% 247 94.27%

phoneme_identity

0:

phrase_duration_vowels_absolute

/<o.0354063\30.0354063

phoneme_identity—1 phoneme_identity—1
P,TK.B.D.S,SJ,TLHMN,L,
P,D.F,S,SJ.TI.RS LRAL H J.R.RT,RS,E0,A E: LI:,U,U:,A:,
sil,junk

@ syllable_duration_vowels_absolute

<7.64504e-06 >7.64504e-06

Figure J.18: The realisations of the phoneme /@¢:/ (phoneme representations in the
figure are in STA format).




Vowel Realisations 249

The Realisation of /ee/ and /ce:/

Like the /ze/ and /eer/ phonemes, /ce/ and /cer/ share an arc from the top node
of the decision tree pronunciation model. The part of the tree model responsible
for predicting the realisations of /ce/ and /ce:r/ show the same kinds of problems
as the part of the model responsible for /a/ and /z:/ realisations, and for similar
reasons.

Table J.22: The realisations of the phoneme [/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
[ 85 23.88% 0 0.00% 0 0.00%

o 36 10.11% 4 1.12% 2 5.56%
fo3) 29 8.15% 0 0.00% 0 0.00%
e 206 57.87% 352 98.88% 204 99.03%
> 356 100.00% 356 100.00% 206 57.87%

The distributions are hard to separate and the more frequent class dominates the
common tree structure. The /cer/ phoneme occurs in the canonical pronunciation
representation of frequent preposition for ‘for’, which has many realisations, one of
the most common being /fee/.

Table J.23: The realisations of the phoneme [oe:/ in the key transcript and in the
decision tree model output, and the correct decisions made by the model.

Key transcript Decision tree model output | Correct model decisions

Phone | Instances Share | Instances Share | Instances Share
0 8 1.47% 0 0.00% 0 0.00%

) 3 0.55% 1 0.18% 1 33.33%
e 14 2.58% 2 0.37% 1 7.14%
e 243 44.75% 241 44.38% 222 91.36%
cer 275 50.64% 299 55.06% 268 97.45%
> 543 100.00% 543 100.00% 492 90.61%

Table J.22 shows the distribution of realisations and the share of correct clas-
sifications made by the model for the phoneme /ce/ and Table J.23 shows the
corresponding statistics for the phoneme /ce:/. In Table J.22, it can be seen that
/ce/ has the lowest share of correct model decisions of any phoneme. Figure J.19
shows the part of the decision tree responsible for predicting the realisations of /ce/
and /oez/.



250

Vowel Realisations

phoneme_identity

04,03

syllable_stress_type

prim1,prim2,secondComp

word_duration_vowels_absolute

/ <0.0434868\>0.0434868

no,second2

04

phoneme_identity—1 phoneme_feature_len+1

G,J / T,B,F H

i INF,NO,PRT i PRS,SUP

1 \\9
Y
word_morphology_tense_aspect @

Figure J.19: The realisations of the phonemes /ce/ and /ce:/ (phoneme representations

in the figure are in STA format).



