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Abstract
In this paper, two related spoken language-oriented projects are presented. Both projects deal with integrating linguistic information
from multiple sources. The first project described is the development of a multi-purpose central lexicon database including phonemic
representations. Special emphasis is put on central availability and facilitating incremental development. The second project described
is a spoken langue annotation project aimed at creating data for data-driven pronunciation modelling. The annotation is designed to
form a general description of discourse context, including variables from the discourse level down to the articulatory feature level. A
multi-layer annotation scheme for spoken language is described and the information included in the annotation is presented. Models
of pronunciation variation induced from the annotation are evaluated in a tenfold cross validation experiment. On average, the models
produce 8.1% errors on the phone level. Models trained on phoneme level information only produce an average error of 14.2%. This
means that including information above the phoneme level in the context description can improve model performance by 42.6%.

1. Introduction
Studies of spoken language commonly involve various
types of linguistic information. For example, in data-driven
modelling of various spoken language phenomena, it is of-
ten necessary to annotate spoken language data with in-
formation on the phoneme and/or phone level as well as
information on the word level, such as part of speech and
morphology. At the development of speech synthesis sys-
tems and automatic speech recognition systems, pronunci-
ation lexica are important.
In this paper, two spoken language-oriented projects are
presented. A common denominator of the projects is that
they deal with integrating linguistic information from mul-
tiple sources. The first project discussed is the development
of a multi-purpose central lexicon database, which is used
for the annotation of spoken language and in various other
contexts. The second project, which is the main focus of
this paper, is a data-driven approach to modelling phone-
level pronunciation variation, involving the annotation of
spoken language with various kinds of linguistic informa-
tion in multiple layers.

2. A Central Lexicon Database
A multi-purpose central lexicon database called CENTLEX

is being developed at the department of Speech, Music
and Hearing (TMH) and the Centre for Speech Technology
(CTT) at KTH. The lexicon is based on lexical resources
of different types and on different formats, developed for
various research projects at TMH/CTT over the years. The
information is stored in a relational database with separate
tables for different types of information.

2.1. Information Included in the Lexicon

CENTLEX is a full-form lexicon, with each entry minim-
ally containing an orthographic word form and a grammat-
ical analysis (part of speech and morphology). An entry can
also have an arbitrary number of phonemic representations,
ordered by their probability of use. Each phonemic repres-
entation can be enriched with information about the inten-

ded context of the representation (e.g.reduced formor for-
eign language). Such information is added e.g. for proper
names, since orthographically identical names may be pro-
nounced differently depending on the native language en-
vironment of the person bearing the name. An entry also
contains information about the probability of the particu-
lar grammatical analysis given the orthographic word (es-
timated from a large automatically tagged text corpus).
Presently, the database contains about 410,000 entries with
330,000 unique orthographic word forms.

2.2. Availability

One of the main ideas with the CENTLEX database is that
all lexical data used in projects at TMH and within CTT is
stored centrally, so that the data is immediately and easily
available for all researchers at the department and for all
partners involved in the Centre. Lexicon-related work con-
ducted in different projects can be easily integrated with
the central lexical resource, and the results immediately
available for all users. Standards for mapping between the
CENTLEX format and several commonly used formats have
been developed to facilitate information sharing.
An interface to the database on the TMH internal web
makes it possible to search the lexicon and to check out
purpose-specific lexica with the set of information reques-
ted on several different output formats. Selected users also
have the possibility to edit the lexicon via the web inter-
face, to stimulate continuous lexicon expansion and im-
provement of existing data. The web interface is not suited
for large-scale changes of the database, so a stand-alone
annotation/correction tool has been developed for lexicon
development on a larger scale. This tool stores informa-
tion on a CENTLEX import format, so that it can be easily
incorporated with the database.
The lexicon is thus incrementally built and the latest version
is always available at a central location. Some of the in-
formation first included in the database has been automatic-
ally generated and the initial information merger was done
with automatic methods. The data thus has to be checked
with respect to quality, which is done continuously. Sub-



sequently added information is, however, mostly informa-
tion which is manually obtained or checked. Each lexicon
entry is annotated with information about whether it has
been manually checked/corrected, by whom and when, to
separate information of different quality.

2.3. Applications
Thus far, the CENTLEX database has been used as a lex-
icon in an experimental speech synthesis system (used in
various research-oriented applications at the department of
Speech, Music and Hearing at KTH) and in a large vocabu-
lary speech recognition system. CENTLEX has also been
used for training grapheme-to-phoneme conversion rules
for commercial speech synthesis and as a lexicon for com-
mercial speech synthesis applications. It has further been
used as a reference in the development of a system for pro-
duction of talking books with synthetic speech for visu-
ally impaired and dyslectic university students. Finally,
CENTLEX has been used for annotation in research projects
aimed at context-sensitive prosody prediction and phone-
level pronunciation prediction.

3. Pronunciation Variation Modelling
Although there is a certain degree of individual and ran-
dom variation in the pronunciation of words in context, the
variation is largely systematic within a restricted, relatively
homogeneous group of language users. This agreement on
systematic variation strategies can be seen as a property of
the language variety (e.g. dialect) spoken by the group. The
aim in the pronunciation variation modelling project de-
scribed here is to model this systematic variation inherent
to a language variety, with the focus on variation in phone
level realisation. The target language variety used in the
work presented in this paper is central standard Swedish.

3.1. Annotating Spoken Language Data
The methods used for pronunciation variation modelling
are data-driven. Spoken language is annotated with various
kinds of linguistic and related information, which is used by
machine learning algorithms to create pronunciation mod-
els. The phoneme is the central unit in the approach and
the annotation is aimed at describing the discourse context
of a phoneme from high-level linguistic variables such as
speaking style, down to the articulatory feature level. This
multi-variable linguistic context description is then used to
predict the context-sensitive realisation of the phoneme.
The results reported in this paper are based on recent addi-
tions to the annotated data. The effect of making informa-
tion on different linguistic levels available as predictors of
phone level pronunciation is investigated and the predictive
power of specific linguistic variables is discussed.

3.2. Background
Phonological work on pronunciation variation in Swedish
has been reported by several authors, e.g. Gårding (1974),
Bruce (1986), Bannert and Czigler (1999), Jande (2003)
and Jande (2005). There is an extensive corpus of research
on the influence of various context variables on the pronun-
ciation of words. Variables that have been found to influ-
ence the segmental realisation of words in context are fore-
most speech rate, word predictability (often estimated by

global word frequency) and speaking style, cf. e.g. Fosler-
Lussier and Morgan (1999), Finke and Waibel (1997), Jur-
afsky et al. (2001a) and Van Bael et al. (2004).
The influence of various other variables on the pronunci-
ation of words has also been studied, but these have mostly
been studied in isolation. When more variables are taken
into account, the number of variables simultaneously un-
der study is in most cases limited to less than a handful.
Describing the discourse context more generally, includ-
ing a large variety of linguistic and related variables, en-
ables studies of the interplay between various information
sources on e.g. phone-level pronunciation.
Machine learning methods can be used for such studies.
A model of pronunciation variation created through ma-
chine learning can be useful in speech technology applica-
tions, e.g. for creating more dynamic and natural-sounding
speech synthesis. In addition to models which can predict
the pronunciation of words in context, it is possible to cre-
ate models which are descriptive and to some degree ex-
plains the interplay between different types of variables in-
volved in the predictions.

3.3. Speech Data

The speech data used for pronunciation variation modelling
is the VAKOS database, originally constructed by Bannert
and Czigler (1999) for a phonological study of variation in
consonant clusters, a RADIO INTERVIEW database and a
RADIO NEWS database, with recordings originating from
Sveriges radio(Swedish public service radio).
The VAKOS database is a set of elicited monologues; ten
speakers talk about some suggested topic or topics to a re-
cording assistant (who is silent). About ten minutes from
each speaker is included in the database. The VAKOS
database also includes some manual annotation at different
levels. The RADIO INTERVIEW database is a set of two 25
minute radio broadcast interviews, each including speech
mainly from three speakers, the interviewee and two inter-
viewers. The interviewees are experienced public speakers
and are allowed to answer questions in length, rarely being
interrupted. The RADIO NEWS database includes two ra-
dio news broadcasts, including speech from altogether three
studio news announcers and eight reporters. Only studio
environment recordings are included in the RADIO NEWS

database.

3.4. A Multi-Layer Annotation System

The annotation used for pronunciation variation modelling
is organised in six layers: 1) a discourse layer, 2) an ut-
terance layer, 3) a phrase layer, 4) a word layer, 5) a syl-
lable layer and 6) a phoneme layer. The layers are segmen-
ted into units, which are linguistically meaningful and can
be synchronised to the speech signal. The segmentation of
each layer is strictly sequential, i.e., every part of the signal
belongs to some unit at all layers and there is no overlap
between units within a layer.
Durational boundaries are inherited from higher order lay-
ers to lower order layers, so that a discourse boundary is al-
ways also an utterance boundary, a phrase boundary, a word
boundary, a syllable boundary and a phoneme boundary.
The layers are thus hierarchically ordered so that a higher



Figure 1: Annotation layers with example annotation aligned to the speech signal

order unit serves as the parent of all lower order units within
its segmental bounds. An arbitrary amount of information
can be supplied for each unit in each layer. Figure 1 shows
an excerpt of a sound file with some aligned example an-
notation.
The most important feature of this system of annotation
is that information can be unambiguously inherited from
units on higher layers by units on the layers below. A unit
can thus pass on its information to all the units within its
bounds in the lower order layers. Consequently, informa-
tion connected to syllable, word, phrase, utterance and dis-
course layer units, respectively, as well as to the phoneme
layer units, is accessible from the phoneme layer. This is
important since the pronunciation variation models will use
phoneme-sized units as input. Sequential context informa-
tion, i.e., properties of the units adjacent to the current unit
at the respective layers is used at model induction together
with information connected to the current unit. Having the
information stored in different layers enables easy access to
the sequential context information.

3.5. Segmentation

With some minor exceptions, automatic methods are used
for segmentation, however with manual supervision to im-
prove accuracy at some intermediate stages. The annota-
tion process begins with segmenting each annotation layer
into its respective type of unit. The next step is to retrieve,
calculate or estimate a set of features for each unit. An ut-
terance is in this context defined as a discourse turn uttered
by a single speaker. This means that a monologue discourse
is treated as a single utterance. For dialogues, the corpus is
manually segmented into utterances.
Automatic segmentation begins at the word level. Given an
orthographic string, the corpus is segmented into word units
using an automatic aligner Sjölander (2003). Manual cor-
rection of the word layer segmentation is performed, since
all succeeding annotation depends on this segmentation and
increases in the segmentation accuracy on this level gives
large improvements in the accuracy of successive annota-
tion. Manual word layer segmentation was already in-
cluded in the VAKOS database.
The phrase layer is segmented with the help of a shallow
parser (Megyesi, 2002) using a string of tags produced by
a part of speech and morphological tagger. The phrases are

aligned to the signal using the word boundaries. The parser
was created for parsing written text, but it is robust and
produces parses also for tagged orthographic transcripts of
spoken language.
The phoneme layer is segmented word-by-word using
the word boundaries and phonemic representations from
the CENTLEX database as input to an automatic aligner
(Sjölander, 2003). The phonemes are clustered into syl-
lables with forced syllable boundaries at word boundaries
and the syllable layer is segmented using this clustering and
the durational boundaries from the phoneme level segment-
ation.
Some units with special characteristics are introduced at
the word layer to ensure that parts of the signal that
are not speech (or non-analysable speech) can be annot-
ated. The special unit types are<overlap> (overlapping
speech),<pause> (including pauses, inhalation and exhal-
ation sounds),<non speech> (including laughter, smacks,
clicks, coughs and hawking sounds etc.) and<filled
pause>. The information supplied for normal word units
is not included for these units. Within the boundaries of
one of the special word layer units, a<sil> (for pauses)
or a<junk> special phoneme unit is used as a place filler
at the phoneme layer, but no additional annotation is sup-
plied on lower order layers. Every special word layer unit
is, however, included in a phrase unit, an utterance unit and
in the discourse unit.

3.6. Adding Information to the Units

Values for a set of variables hypothesised to be important
for predicting the realisation of a phoneme in its discourse
context is attached to each unit at each layer of annotation.
The following sections will briefly describe the information
attached to the units at each layer.

3.6.1. The Discourse Layer
A set of ‘inverted speech rate’ measures based on the global
mean phoneme durationis attached to discourse layer units.
Phoneme durations are estimated from the automatic align-
ment of the phonemic word representations to the signal.
The discourse layer information also includes four speaking
style-related variables:number of discourse participants,
degree of formality, degree of spontaneityandtype of inter-
action.



3.6.2. The Utterance Layer
In the utterance layer, mostly speaker attributes are annot-
ated. Speaker pitch registeris a binary variable that dif-
ferentiates speakers with a high pitch register from speak-
ers with a low pitch register. This variable may interplay
with measures based on pitch movement. A set ofmean
phoneme durationmeasures over the utterance and sets of
pitch rangeandpitch dynamics(‘speech liveliness’) meas-
ures are also included in the utterance layer annotation.

3.6.3. The Phrase Layer
An attribute calledphrase typecorresponds to the type of
the current phrase according to the shallow parser used for
phrase chunking. Also included in the phrase layer an-
notation is a set ofphrase lengthmeasures: the number
of words, syllablesandphonemes, respectively, contained
by each phase unit. Further, two measures associated with
the prosodic weightof a phrase are calculated: the num-
ber ofstressed syllablesand the number offocally stressed
wordscontained by the phrase (focal stress annotation was
manually provided for a subset of the speech data). Finally,
pitch dynamics, pitch rangeand mean phoneme duration
measures are calculated over each phrase unit.

3.6.4. The Word Layer
The word is generally conceived of as the most central lin-
guistic unit, in that it is the principal conveyor of mean-
ing in language and the principal syntactic unit. There
is thus a large variety of features that can be attached to
the word units. To begin with,part of speechand mor-
phological information from the tagger is included in the
annotation. Morphology is included as a set of tags cor-
responding to different morphological dimensions. Based
on the part of speech tags, a division of words intoword
types(content words vs. function words) is made. A sim-
ilar variable denotedfunction wordhas the entire closed set
of function words and a generic ‘content word’ represent-
ation as its possible values. There are pronunciation vari-
ation strategies specific to certain function words and the
function wordvariable should be a strong predictor of this
behaviour.
The predictability of a word has been shown to be import-
ant for the realisation of the word, cf. e.g. Fosler-Lussier
and Morgan (1999) and Jurafsky et al. (2001b). Many
variables influence the predictability of a word in con-
text. Measures related to word predictability included in
the word layer annotation areword repetitionsand lexeme
repetitions(the number of times the full-form word and the
lexeme, respectively, has been repeated thus far in the dis-
course),the position of the word in a phrase, the position
of the word in a frequent collocationandglobal word fre-
quency. A special measure termedword predictability is
also included in the annotation. This measure is an es-
timation based on a weighted combination of unigram, bi-
gram and trigram probabilities collected from the Göteborg
Spoken Language Corpus (Allwood et al., 2002). Thepart
of speechvariable already mentioned also affects the pre-
dictability of a word in context, since there are syntactic
constraints governing language production.
The distances to the preceding and the succeeding fo-
cally stressed word can be important factors in predicting

the pronunciation of the current word and these distances
(measured in number of words) are therefore included in
the word layer annotation. Information about the presence
of a pause, a filled pauseor an interrupted wordadjacent
to the current word is also included. Prosodic boundaries
are important for grouping coherent subunits in the speech
signal. For listeners, this grouping facilitates parsing the
sound stream. Manualprosodic boundaryannotation has
been supplied for the databases used.
Word lengthis measured as the number of syllables and
as the number of phonemes, respectively, contained by the
word. Finally, some measures ofpitch dynamics, pitch
rangeandmean phoneme durationover each word unit are
included in the word layer annotation.

3.6.5. The Syllable Layer
Information about the stress and accent of the current
syllable is derived from the phonemic representations.
Swedish has two different types of word stress,accent I
andaccent II. In central standard Swedish, accent I has a
single stressed syllable while accent II has a primary and a
secondary stress. There is also a special compound accent
similar to accent II, with primary stress on the first com-
pound constituent and a secondary stress on the last com-
pound constituent. Thestressannotation is a simple divi-
sion between stressed and unstressed syllables, while the
accentannotation takes the word accent into account, thus
making theaccentclassification a division into finer stress
type classes.
Further, the distances to the nearest preceding stressed syl-
lable and to the nearest preceding syllable withprimary
stress(measured in number of syllables) are included in
the syllable layer annotation. The distances to succeed-
ing stresses are also included.Syllable lengthis measured
in number of phonemes. The initial and final syllables of
a word are generally less prone to syllable reduction than
medial syllables, which makes theposition of the syllable
in the wordan important variable to include in the annota-
tion. Lastly, a set ofmean phoneme durationmeasures over
the syllable are calculated.

3.6.6. The Phoneme Layer
Thephoneme identitiesincluded in the phoneme layer an-
notation are represented by the phoneme symbols from
CENTLEX. A set of articulatory featuresdescribing the
phoneme is associated with each phoneme unit. Thepos-
ition of the phoneme in the syllablemay be important for
predicting the realisation of the phoneme. Hence, inform-
ation about in which part of the syllable (onset, nucleusor
coda) the phoneme is located is included in the annotation.
A consonant cluster lengthvariable takes as its value the
length (phoneme count) of the consonant cluster of which
the current phoneme is a part. This measure defaults to 0
for vowels.
Thephoneis the context-dependent realisation of the phon-
eme. Phonetic identity is the variable to be estimated by
the pronunciation variation models and consequently, the
phone is used as the key in model training. The phones are
supplied by a hybrid automatic transcription system, using
statistical decoding and a set of a posteriori correction rules.



A place filler∅ symbol is used to signal that there is no real-
isation of a particular phoneme in the phonetic string.
The SNACK sound toolkit (Sj̈olander and Beskow, 2000)
is used for building and decoding statistical models rep-
resenting the possible realisations of a word. Models are
built using an empirically compiled context-insensitive list
of possible realisations (tentative phones) for each phon-
eme and a set of HMM monophone models. The speech
signal is parameterised to form a sequence of observations.
The path trough the statistical model most closely match-
ing this observation sequence (using Viterbi decoding) can
be represented as a string of phones, and this string is the
output of the statistical decoder.
Evaluated against a small manually transcribed gold stand-
ard, statistical decoding alone was shown to give higher
phone error rates (PER) than estimating the phonetic tran-
script with the phoneme string. However, due to the sys-
tematic nature of the errors made by the statistical decoder,
a set of correction rules that significantly lowered the error
rate could be compiled. The final hybrid transcription sys-
tem produces an average of 15.5% errors on the phone level
when compared to an enlarged gold standard transcription.
This means that the PER is reduced by 40.4% compared to
using the phoneme string for estimating the phone realisa-
tion.
Since manual transcription is restricted by a relatively small
set of phone symbols, some decisions about phone iden-
tity are not obvious, most notably many cases of choos-
ing between a full vowel symbol and a schwa. Default-
ing to the system decision whenever a human transcriber is
forced to make ad hoc decisions would increase the speed
of manual transcript checking and correction considerably
without lowering the transcription quality. It is worth not-
ing that if this strategy had been used for compiling the gold
standard transcript, the PER would have been somewhat
lower. The 15.5% PER is thus a slight under-estimation of
the system performance. Manual correction of the automat-
ically obtained transcripts will most likely result in more
accurate pronunciation variation models.

4. Creating Pronunciation Variation Models
Using the annotation from the speech databases, pronunci-
ation variation models can be created with different types
of machine learning methods. If the model is to be used
for descriptive purposes, it must be transparent, i.e., it must
contain information such that the model can be represen-
ted on a format interpretable by a human familiar with lin-
guistic theory.
A machine learning paradigm that creates transparent mod-
els and is suitable for the type of data at hand is thedecision
tree inductionparadigm. A decision tree inducer com-
monly needs no ad hoc knowledge and can induce mod-
els directly from training data. It is thus very easy to use
once you have the data. For these reasons, the decision tree
paradigm has been selected for creating the models repor-
ted in this paper. It is not claimed that the decision tree
paradigm necessarily produces the best models. Other ma-
chine learning paradigms may be able to create more ac-
curate models or models which meet certain application-
specific demands.

4.1. Decision Tree Induction

Decision trees are induced from a set of training instances
compiled from the structured annotation. The training in-
stances are phoneme-sized and can be seen as a set ofcon-
text sensitive phonemeswith their respective phone realisa-
tions. Each training instance includes a set of 516 attrib-
ute values and the phone realisation, which is used as the
classification key. The features of the current unit at each
layer of annotation are included as attributes in the training
examples. Where applicable, information from the neigh-
bouring units at each annotation layer is also included in
the attribute sets. The algorithm used for inducing the pro-
nunciation variation models is that included in the DTREE

program suite (Borgelt, 2004).
Decision tree induction is non-iterative and trees are built
level by level, which makes the learning procedure fast.
However, the optimal tree is not guaranteed. At each new
level created during the tree induction procedure, the set of
training instances is split into subsets according to the val-
ues of one of the attributes. The attribute selected is the
attribute that best meets a given criterion, generally based
on entropy minimisation. In the current case, a measure
referred to assymmetric information gain ratio(Lopez de
Mantaras, 1991) is used. The inducer is set to allow group-
ing of discrete values to obtain the optimal number of nodes
at each level.

4.1.1. Pruning
Since training data generally contain some degree of noise,
a decision tree may be biased toward the particular noise
in the training data (over-trained). However, once a tree is
constructed, it can be pruned to make it more generally ap-
plicable. The idea behind pruning is that the most common
patterns are kept in the model, while less common patterns,
with high probability of being due to noise in the training
data, are deleted. At pruning, a sub-tree of a particular
node is replaced by a leaf with the most common class of
the leaves governed by the sub-tree, when some criterion is
met.

4.2. Model Evaluation

A tenfold cross validation procedure was used for model
evaluation. Under this procedure, the data is divided into
ten equally sized partitions using random sampling. Ten
different decision trees are induced, each with one of the
partitions left out during training. The left out partition is
then used for evaluation. A separate tenfold cross valid-
ation evaluation was performed for data from each of the
three databases (VAKOS, RADIO INTERVIEW and RADIO

NEWS) and for the collapsed data set.
The prosodic information cannot be fully exploited in its
current form in e.g. a speech synthesis context. Thus, it was
interesting topic investigate the influence of the prosodic
information (variables based on f0, duration, focal stress
and prosodic boundary information) on model results. To
investigate this, an experiment where the decision tree in-
ducer did not have access to the prosodic information was
performed for each of the four data sets. As a baseline, an
evaluation of trees induced from phoneme layer informa-
tion only was also performed for each data set. The same



Table 1: Mean and standard deviation of phone error rate (PER) for each data set

Database All VAK OS RADIO I NTERVIEW RADIO NEWS

# training instances 93,996 52,263 31,779 9,936
# evaluation instances 10,444 5,807 3,531 1,104

Trained on attributes all nopro∗ pho† all nopro∗ pho† all nopro∗ pho† all nopro∗ pho†

x̄PER (per cent) 8.14 13.08 14.19 9.07 14.90 15.60 8.94 12.32 13.74 9.34 10.57 11.70
σPER (per cent) 0.15 0.25 0.23 0.39 0.49 0.53 0.42 0.30 0.54 1.23 1.23 1.34

∗no prosodic attributes,†phoneme level attributes only

Table 2: Error reduction as a result of making more information available for the decision tree inducer

Database All VAK OS RADIO I NT. RADIO NEWS

Tree types pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡

Error reduction (per cent) 42.64 37.77 41.86 39.12 34.93 27.43 20.20 11.65
‡trained with access to all attributes,∗trained access only to non-prosodic attributes,†trained with access only to phoneme level attributes

randomisation was used under all conditions.
Each tree was pruned under a range of pruning criteria and
the tree with the optimal performance on the evaluation data
was selected to be used in the evaluation. The pruning cri-
teria used all yielded the same pruned tree and the optimal
tree could thus either be theprunedtree or the original,un-
prunedtree. Thesymmetric information gain ratioattrib-
ute selection measure created trees, which were near the
optimal before pruning. Hence, the effect of pruning on
model performance was small. In most cases, pruning af-
fected model performance (on the test data) negatively and,
on average, pruning gave rise to adecreasein model per-
formance with 0.6%. The unpruned trees were actually sub-
jected tobasic pruning, at which the trees were pruned to
the extent that no deterioration of accuracy on the training
data occurred. Thus, following “Occam’s razor”, if there
were several trees giving the same result, the simplest of
these trees was selected.

5. Results and Discussion
Table 1 summarises the results from the cross validation
experiments. On average, we get a phone error rate of 8.1%
when training on 90% of the collapsed data set and allowing
the decision tree inducer to use all available information.

5.1. Phone Error Rates

Using the phoneme string to estimate phone realisations
gives a PER of 20.4%, which means that phone errors can
be reduced by 60.2% by using an average pronunciation
variation model in stead of using a phoneme string collec-
ted directly from a lexicon. Applying phonological sandhi
rules to adapt the phonemic representations for isolated
words to their context decreased the PER for the phoneme
string only to 20.3%. The error reduction resulting from
using the pronunciation variation model is thus significant.
Further, as can be seen from Table 2, we get a reduction of
PER by 42.6% when switching from a classifier trained on
phoneme level information only to a classifier trained on all
available information.

5.2. Data Size and Speaking Style

It is likely that the PERs presented in Table 1 reflect the fact
that both the amount and the type of training data affects
the performance of the models induced. If all attributes

are used, neither models trained on the VAKOS database
nor models trained on the RADIO NEWS database have the
lowest PER, although the VAKOS database has the largest
number of training instances and the RADIO NEWS data-
base has the most formal type of speech. Instead, the mod-
els trained on the RADIO INTERVIEW database show the
lowest PER. The RADIO INTERVIEW database has the ad-
vantages of having relatively formal speech compared to
the VAKOS database, relatively few speakers and many
more training instances than the RADIO NEWS database.
Further, we can see from Table 2 that models trained on
the VAKOS database are more dependent on prosodic in-
formation and generally on information on layers above the
phoneme, while the models trained on the RADIO NEWS

database are less dependent on this type of information.

5.3. Attribute Ranking

Table 3 shows the 18 top ranking attributes over the ten
optimal trees trained on all information from all databases.
The layer from which the attribute is collected is used as a
prefix in attribute names. Attributes can refer to the current
unit or to units at±4 positions from the current unit at the
specific annotation layer. Duration measures can be based
on the duration of allphonemesor on the duration ofvowels
only, they can be based onnormalisedor absolutephoneme
duration and they can be based on duration on alog scale.
The ranking in the first column of Table 3 is based on the
position of the attribute in the ten trees. For this meas-
ure, the attribute governing the largest number of sub-trees
(leaves excluded) will get the highest rank (1). The second
column weights the sub-tree count with the number of clas-
sifications involving the attribute (over the training data).
For this measure, an attribute involved in many classific-
ations can climb in rank even if it does not appear in the
absolute top of the tree. Thephoneme identityattribute ap-
pears in the top node of all trees. This means that it governs
all sub-trees and is involved in all classifications made by
the trees.

5.4. Attributes Used by the Models

From Table 4, it can be seen that variables from all layers
of annotation are used by the trees trained on all available
information from all databases. In fact, from 516 available
attributes, as many as 470 were used at least once in the



Table 3: The 18 top ranking attributes for trees trained on all information from all databases

Rank Rank based on # sub-trees Rank based on # sub-trees· # classifications
1 phoneme identity phoneme identity
2 phoneme identity+1 phoneme identity+1
3 word function word-1 word duration phonemes absolute
4 word duration phonemes absolute word function word+1
5 word function word+1 word function word
6 phoneme identity+4 word function word-1
7 phoneme identity-2 phoneme identity-1
8 word function word phoneme identity+2
9 phoneme identity-1 phoneme identity-3
10 phoneme identity-4 phoneme identity+4
11 phoneme identity+2 word duration vowels absolute
12 phoneme identity-3 phoneme identity-2
13 phoneme identity+3 phoneme identity+3
14 word duration vowels absolute phoneme identity-4
15 syllable accent syllable accent
16 syllable nucleus phrase duration phonemes absolute
17 word duration vowels normalised word duration vowels normalised
18 word duration vowels log absolute syllable nucleus

Table 4: Probability of variables from each annotation layer at the top twelve tree levels

Level P(Phoneme) P(Syllable) P(Word) P(Phrase) P(Utterance) P(Discourse)
∑

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
2 0.4101 0.0791 0.4820 0.0144 0.0144 0.0000 1.0000
3 0.4113 0.0493 0.3941 0.1404 0.0025 0.0025 1.0000
4 0.4052 0.0507 0.4298 0.0897 0.0145 0.0101 1.0000
5 0.3728 0.0310 0.4281 0.1294 0.0310 0.0077 1.0000
6 0.3936 0.0330 0.3729 0.1460 0.0348 0.0198 1.0000
7 0.3952 0.0316 0.3416 016.27 0.0383 0.0306 1.0000
8 0.4338 0.0408 0.3168 013.47 0.0397 0.0342 1.0000
9 0.4140 0.0440 0.3299 014.10 0.0543 0.0168 1.0000
10 0.4180 0.0384 0.3250 014.77 0.0561 0.0148 1.0000
11 0.3958 0.0545 0.3189 015.22 0.0529 0.0256 1.0000
12 0.4096 0.0422 0.3293 014.46 0.0562 0.0181 1.0000

ten trees. However, the phoneme and word layer attributes
are the attributes most commonly used in the higher levels
of the trees. The top ranking utterance layer attribute is a
vowel-based duration measure showing up at place 50 using
the first ranking strategy and on place 46 using the second
ranking strategy. The top discourse layer attribute is also
a vowel-based duration measure and shows up at place 31
and 35, respectively.

Theword frequencyandword predictabilityattributes both
get ranks around 110. The relatively weak predictive
strength of these variables may be due to the fact that they
are obscured by thefunction wordvariable, which gets high
ranks. Further, theword frequencyand word predictab-
ility measures are estimated from a corpus of transcribed
speech, relatively small in comparison to standard text cor-
pora. These measures may be improved with text data.

A large variety of the duration and pitch based measures
are represented among the variables used by the optimal
trees (the first measure based on pitch shows up at place
42 using the fist ranking strategy and on place 55 using the
second ranking strategy). Most of the duration measures
seem to be nearly equivalent in terms of predictive power,
with vowel-based measures working somewhat better over
larger units. Units on higher order layers are both larger in
terms of duration and conceptually more abstract than units
on lower order layers. Because of this, it is not possible to
make exact predictions from higher order layer units only

and attributes from these levels end up in the lower levels
of the decision trees, as a result of the ‘greedy’ induction
algorithm used.

5.5. Effects of Noise

The erroneous classifications possible for a phoneme are
limited to the set of realisations for the phoneme found in
the training data. Both training and evaluation data contain
up to 15.5% errors on the phone level, as previously dis-
cussed. Since the phone string is generated by an automatic
transcription system with a priori restrictions on the pos-
sible realisations of each phoneme, the range of variation is
probably less than it would have been if the transcripts had
been produced by a human. It is not immediately obvious
whether this translates into lower phone error rates for the
pronunciation variation models than would have been the
case if the phones in the training and evaluation data had
been supplied by a human transcriber.

5.6. Gold Standard Evaluation

Although it is hard to speculate about how the model per-
formance would be affected by more accurate training data,
the transcriptions generated by the current models can be
evaluated against actual target transcriptions. When eval-
uated against the small gold standard consisting of five
minutes of manually transcribes speech from the VAKOS
database, the models produce a PER of 16.9%, which
means that the deterioration in performance when using the



model instead of the automatic transcription system is only
8.5% and that the improvement using the model instead of
the phoneme string is 34.9%

6. Conclusions
In this paper, two related spoken language-oriented pro-
jects have been described, each dealing with the issue of
integrating linguistic information from multiple sources.
First, the work with developing a multi-purpose central lex-
icon database including phonemic representations was de-
scribed. The central ideas behind this project are central
availability and incremental development. Tools for facil-
itating continuous and simultaneous lexicon development
have been created.
Second, a project aimed at modelling phone-level pronunci-
ation in discourse context was presented. A data-driven ap-
proach was taken for this task and the work involved annot-
ating spoken language with linguistic and related informa-
tion ranging from the discourse level down to articulatory
feature level. Annotation was structured in six layers: 1) a
discourse layer, 2) an utterance layer, 3) a phrase layer, 4) a
word layer, 5) a syllable layer and 6) a phoneme layer. The
layers were segmented into their specific unit types and lin-
guistic information was attached to each unit at each level.
The resulting annotation was used for machine learning of
models describing variation in phoneme realisation. Us-
ing the phoneme as the primary unit, a set of training in-
stances, essentially being context-sensitive phonemes, were
created. Each instance contained information about the cur-
rent phoneme and about the current unit in all annotation
layers above. Instances also contained information about
the sequential context of the current unit in each layer.
In the evaluation of models created from the multi-layer
linguistic annotation, emphasis was put on the effects of
adding information of different types to the training data in
addition to phoneme-level variables. It was shown that in-
cluding information from multiple layers improves model
performance, most notably for spontaneous speech, where
the predictive power of phonological and grammatical in-
formation is relatively low.
Attributes from all layers of annotation were used in the
models with the highest prediction accuracy and as many as
470 out of 516 available attributes were actually used by at
least one of the models (optimally pruned decision trees) in
a tenfold cross validation experiment. The optimal models
produced an average phone error rate of 8.1%, which is an
improvement with 60.2% compared to using the phoneme
string for estimating phone-level realisation. A comparison
between models trained only on phone layer attributes and
models trained on attributes from all layers showed that the
prediction accuracy could be improved by 42.6% by adding
attributes for units above the phoneme layer.
The classification keys used at model training were gener-
ated by an automatic transcription system with access to the
speech signal. Evaluated against gold standard transcrip-
tions, the models produced a phone error rate of 16.9%.
This means that the deterioration in performance when us-
ing the model instead of the automatc transcription system
is only 8.5% and that the improvement using the model in-
stead of a phoneme string from a lexicon is 34.9%.
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