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Abstract

In this paper, two related spoken language-oriented projects are presented. Both projects deal with integrating linguistic information
from multiple sources. The first project described is the development of a multi-purpose central lexicon database including phonemic
representations. Special emphasis is put on central availability and facilitating incremental development. The second project described
is a spoken langue annotation project aimed at creating data for data-driven pronunciation modelling. The annotation is designed to
form a general description of discourse context, including variables from the discourse level down to the articulatory feature level. A
multi-layer annotation scheme for spoken language is described and the information included in the annotation is presented. Models
of pronunciation variation induced from the annotation are evaluated in a tenfold cross validation experiment. On average, the models
produce 8.1% errors on the phone level. Models trained on phoneme level information only produce an average error of 14.2%. This
means that including information above the phoneme level in the context description can improve model performance by 42.6%.

1. Introduction ded context of the representation (egduced forrnor for-

Studies of spoken language commonly involve variousSi9N language Such information is added e.g. for proper
types of linguistic information. For example, in data-driven names, since orthographically identical names may be pro-

modelling of various spoken language phenomena, it is offounced differently depending on the native language en-

ten necessary to annotate spoken language data with iNironment of the person bearing the name. An entry also
formation on the phoneme and/or phone level as well agontains information about the probability of the particu-

information on the word level, such as part of speech and®” 9rammatical analysis given the orthographic word (es-

morphology. At the development of speech synthesis Sy,St_imated from a large automatically tagged text corpus).

tems and automatic speech recognition systems, pronunéf_resently, the database contains about 410,000 entries with
ation lexica are important. 330,000 unique orthographic word forms.

In this paper, two spoken language-oriented projects arg , Availability
presented. A common denominator of the projects is that,

they deal with integrating linguistic information from mul- —"¢ of the main ideas with theaTL Ex database is that

rfﬁll lexical data used in projects at TMH and within CTT is

tiple sources. The first project discussed is the developme ored rall that the data is i diatel q |
of a multi-purpose central lexicon database, which is usegdoréd centrally, so that the data 1S immediately and easily
vailable for all researchers at the department and for all

for the annotation of spoken language and in various othe?

contexts. The second project, which is the main focus 0partners involved in the Centre. Lexicon-related work con-

this paper, is a data-driven approach to modelling phcmegucted in different projects can be easily integrated with

level pronunciation variation, involving the annotation of the central lexical resource, and the results immediately

spoken language with various kinds of linguistic informa- févallafle f;)r all ?Se:js' Stan?ards for Tapplr(ﬁ betvvteehn the
tion in multiple layers. ENTLEX format and several commonly used formats have

been developed to facilitate information sharing.
. An interface to the database on the TMH internal web
2. ACentral Lexicon Database makes it possible to search the lexicon and to check out
A multi-purpose central lexicon database calleENGLEX  purpose-specific lexica with the set of information reques-
is being developed at the department of Speech, Musiged on several different output formats. Selected users also
and Hearing (TMH) and the Centre for Speech Technologyhave the possibility to edit the lexicon via the web inter-
(CTT) at KTH. The lexicon is based on lexical resourcesface, to stimulate continuous lexicon expansion and im-
of different types and on different formats, developed forprovement of existing data. The web interface is not suited
various research projects at TMH/CTT over the years. Théor large-scale changes of the database, so a stand-alone
information is stored in a relational database with separatannotation/correction tool has been developed for lexicon

tables for different types of information. development on a larger scale. This tool stores informa-
) ) ) tion on a &NTLEX import format, so that it can be easily
2.1. Information Included in the Lexicon incorporated with the database.

CENTLEX is a full-form lexicon, with each entry minim- The lexicon is thus incrementally built and the latest version
ally containing an orthographic word form and a grammat-is always available at a central location. Some of the in-
ical analysis (part of speech and morphology). An entry carformation first included in the database has been automatic-
also have an arbitrary number of phonemic representationsjly generated and the initial information merger was done
ordered by their probability of use. Each phonemic represwith automatic methods. The data thus has to be checked
entation can be enriched with information about the intenwith respect to quality, which is done continuously. Sub-



sequently added information is, however, mostly informa-global word frequency) and speaking style, cf. e.g. Fosler-
tion which is manually obtained or checked. Each lexiconLussier and Morgan (1999), Finke and Waibel (1997), Jur-
entry is annotated with information about whether it hasafsky et al. (2001a) and Van Bael et al. (2004).
been manually checked/corrected, by whom and when, t@he influence of various other variables on the pronunci-
separate information of different quality. ation of words has also been studied, but these have mostly
— been studied in isolation. When more variables are taken
2.3.  Applications into account, the number of variables simultaneously un-
Thus far, the ENTLEX database has been used as a lexder study is in most cases limited to less than a handful.
icon in an experimental speech synthesis system (used Pescribing the discourse context more generally, includ-
various research-oriented applications at the department @ig a large variety of linguistic and related variables, en-
Speech, Music and Hearing at KTH) and in a large vocabugples studies of the interplay between various information
lary speech recognition system.EQTLEX has also been sources on e.g. phone-level pronunciation.
used for training grapheme-to-phoneme conversion rulegjachine learning methods can be used for such studies.
for commercial speech synthesis and as a lexicon for coma model of pronunciation variation created through ma-
mercial speech synthesis applications. It has further beeghine learning can be useful in speech technology applica-
used as a reference in the development of a system for prgmns, e.g. for creating more dynamic and natural-sounding
duction of talking books with synthetic speech for visu- speech synthesis. In addition to models which can predict
ally impaired and dyslectic university students. Finally, the pronunciation of words in context, it is possible to cre-
CENTLEX has been used for annotation in research projectgte models which are descriptive and to some degree ex-
aimed at context-sensitive prosody prediction and phonep|ains the interplay between different types of variables in-
level pronunciation prediction. volved in the predictions.

3. Pronunciation Variation Modelling

_ _ o 3.3. Speech Data
AIthough therg Is & certain Qegree of |nd|V|_duaI and faNrphe speech data used for pronunciation variation modelling
dom variation in the pronunciation of words in context, the. .
e S . . is the \AKOS database, originally constructed by Bannert
variation is largely systematic within a restricted, relatively . . o
. and Czigler (1999) for a phonological study of variation in
homogen'eous'gr'oup of Ianguage users. This agreement Wnsonant clusters, aA®10 INTERVIEW database and a
systematic variation strategies can be seen as a property &?ADIO NEws database, with recordings originating from
the language variety (e.g. dialect) spoken by the group. Th%veriges radigSwedish public service radio)
aim in the pronunciation variation modelling project de- ) - ) .
. ) . . oo The VAKOS database is a set of elicited monologues; ten
scribed here is to model this systematic variation inherent : ;
. . L speakers talk about some suggested topic or topics to a re-
to a language variety, with the focus on variation in phone : . o .
o . : cording assistant (who is silent). About ten minutes from
level realisation. The target language variety used in the

L . . each speaker is included in the database. Th&A&S
work presented in this paper is central standard Swedish. : . ;
database also includes some manual annotation at different

3.1. Annotating Spoken Language Data levels. The RDIO INTERVIEW database is a set of two 25

The methods used for pronunciation variation modellingMinute radio broadcast interviews, each including speech
are data-driven. Spoken language is annotated with variod§@inly from three speakers, the interviewee and two inter-
kinds of linguistic and related information, which is used by ViEWers. The interviewees are experienced public speakers
machine learning algorithms to create pronunciation mod@nd are allowed to answer questions in length, rarely being
els. The phoneme is the central unit in the approach anifitérrupted. The RDIO NEws database includes two ra-
the annotation is aimed at describing the discourse contetio News broadcasts, including speech from altogether three
of a phoneme from high-level linguistic variables such asStudio news announcers and eight reporters. Only studio
speaking style, down to the articulatory feature level. ThisSnvironment recordings are included in thatRo NEws
multi-variable linguistic context description is then used todatabase.

predict the context-sensitive realisation of the phoneme.
The results reported in this paper are based on recent ad
tions to the annotated data. The effect of making informa-T he annotation used for pronunciation variation modelling
tion on different linguistic levels available as predictors ofis organised in six layers: 1) a discourse layer, 2) an ut-
phone level pronunciation is investigated and the predictivéerance layer, 3) a phrase layer, 4) a word layer, 5) a syl-

031;4. A Multi-Layer Annotation System

power of specific linguistic variables is discussed. lable layer and 6) a phoneme layer. The layers are segmen-
ted into units, which are linguistically meaningful and can
3.2. Background be synchronised to the speech signal. The segmentation of

Phonological work on pronunciation variation in Swedisheach layer is strictly sequential, i.e., every part of the signal
has been reported by several authors, eaydiag (1974), belongs to some unit at all layers and there is no overlap
Bruce (1986), Bannert and Czigler (1999), Jande (2003petween units within a layer.

and Jande (2005). There is an extensive corpus of resear@urational boundaries are inherited from higher order lay-
on the influence of various context variables on the pronuners to lower order layers, so that a discourse boundary is al-
ciation of words. Variables that have been found to influ-ways also an utterance boundary, a phrase boundary, a word
ence the segmental realisation of words in context are forddoundary, a syllable boundary and a phoneme boundary.
most speech rate, word predictability (often estimated byThe layers are thus hierarchically ordered so that a higher
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Figure 1: Annotation layers with example annotation aligned to the speech signal

order unit serves as the parent of all lower order units withinaligned to the signal using the word boundaries. The parser
its segmental bounds. An arbitrary amount of informationwas created for parsing written text, but it is robust and
can be supplied for each unit in each layer. Figure 1 showproduces parses also for tagged orthographic transcripts of
an excerpt of a sound file with some aligned example anspoken language.

notation. The phoneme layer is segmented word-by-word using
The most important feature of this system of annotatiorthe word boundaries and phonemic representations from
is that information can be unambiguously inherited fromthe CENTLEX database as input to an automatic aligner
units on higher layers by units on the layers below. A unit(Sjolander, 2003). The phonemes are clustered into syl-
can thus pass on its information to all the units within itslables with forced syllable boundaries at word boundaries
bounds in the lower order layers. Consequently, informaand the syllable layer is segmented using this clustering and
tion connected to syllable, word, phrase, utterance and dighe durational boundaries from the phoneme level segment-
course layer units, respectively, as well as to the phonemation.

layer units, is accessible from the phoneme layer. This iSome units with special characteristics are introduced at
important since the pronunciation variation models will usethe word layer to ensure that parts of the signal that
phoneme-sized units as input. Sequential context informaare not speech (or non-analysable speech) can be annot-
tion, i.e., properties of the units adjacent to the current unitited. The special unit types areoverlap> (overlapping

at the respective layers is used at model induction togeth&peech)<pause- (including pauses, inhalation and exhal-
with information connected to the current unit. Having the ation sounds)<non.speech- (including laughter, smacks,
information stored in different layers enables easy access fglicks, coughs and hawking sounds etc.) axflled

the sequential context information. pause-. The information supplied for normal word units
is not included for these units. Within the boundaries of
3.5. Segmentation one of the special word layer units,<asil> (for pauses)

With some minor exceptions, automatic methods are usefl & <Iunk> special phoneme unit is used as a place filler
at the phoneme layer, but no additional annotation is sup-

for segmentation, however with manual supervision to im- lied | dor | E " ql ;
prove accuracy at some intermediate stages. The annotB€d On lower order layers. Every special word layer unit

tion process begins with segmenting each annotation laydf: Nowever, included in a phrase unit, an utterance unit and
into its respective type of unit. The next step is to retrieve,n the discourse unit.

calculate or estimate a set of features for each unit. An ut- ) ) ]

terance is in this context defined as a discourse turn utteregt®- Adding Information to the Units

by a single speaker. This means that a monologue discouralues for a set of variables hypothesised to be important
is treated as a single utterance. For dialogues, the corpusfisr predicting the realisation of a phoneme in its discourse
manually segmented into utterances. context is attached to each unit at each layer of annotation.
Automatic segmentation begins at the word level. Given arThe following sections will briefly describe the information
orthographic string, the corpus is segmented into word unitattached to the units at each layer.

using an automatic aligner @ander (2003). Manual cor-

rection of the word layer segmentation is performed, since8.6.1. The Discourse Layer

all succeeding annotation depends on this segmentation amdset of ‘inverted speech rate’ measures based on the global
increases in the segmentation accuracy on this level givadiean phoneme duratiésattached to discourse layer units.
large improvements in the accuracy of successive annot#honeme durations are estimated from the automatic align-
tion. Manual word layer segmentation was already in-ment of the phonemic word representations to the signal.
cluded in the MK 0S database. The discourse layer information also includes four speaking
The phrase layer is segmented with the help of a shallovstyle-related variablesnumber of discourse participants
parser (Megyesi, 2002) using a string of tags produced byegree of formalitydegree of spontaneigndtype of inter-

a part of speech and morphological tagger. The phrases aagtion



3.6.2. The Utterance Layer the pronunciation of the current word and these distances
In the utterance layer, mostly speaker attributes are annofmeasured in number of words) are therefore included in
ated. Speaker pitch registeis a binary variable that dif- the word layer annotation. Information about the presence
ferentiates speakers with a high pitch register from speakef a pause afilled pauseor aninterrupted wordadjacent
ers with a low pitch register. This variable may interplay to the current word is also included. Prosodic boundaries
with measures based on pitch movement. A seamnefin  are important for grouping coherent subunits in the speech
phoneme duratiomeasures over the utterance and sets ofignal. For listeners, this grouping facilitates parsing the
pitch rangeandpitch dynamicg'speech liveliness’) meas- sound stream. Manuglrosodic boundaryannotation has
ures are also included in the utterance layer annotation. been supplied for the databases used.

Word lengthis measured as the number of syllables and

3.6.3. ) The Phrase Layer as the number of phonemes, respectively, contained by the
An attribute calledphrase typecorresponds to the type of word. Finally, some measures pftch dynamics pitch

the current phrase according to the shallow parser used f‘?ﬁngeandmean phoneme duratiaver each word unit are
phrase chunking. Also included in the phrase layer an; <juded in the word layer annotation

notation is a set ophrase lengthmeasures: the number
of words syllablesand phonemesrespectively, contained 6.5. The Syllable Layer
by each phase unit. Further, two measures associated wifﬁ

the prosodic weightof a phrase are calculated: the num-

ber ofstressed syllableand the number dbcally stressed Swedish has two different types of word streasgent |

wordscontained by the phrase (focal stress annotation Walndaccent Il In central standard Swedish, accent | has a
manually provided for a subset of the speech data). Finally '

itch dvnamicspitch ranaeand mean phoneme duration single stressed syllable while accent Il has a primary and a
P Y P 9 P ) secondary stress. There is also a special compound accent
measures are calculated over each phrase unit.

similar to accent Il, with primary stress on the first com-
3.6.4. The Word Layer pound constituent and a secondary stress on the last com-
The word is generally conceived of as the most central linPound constituent. Thstressannotation is a simple divi-
guistic unit, in that it is the principal conveyor of mean- SION between stressed and unstressed syllables, while the
ing in language and the principal syntactic unit. There@ccentannotation takes the word accent into account, thus

is thus a large variety of features that can be attached taking theaccentclassification a division into finer stress
the word units. To begin withpart of speechand mor-  type classes.

phological information from the tagger is included in the Further, the distances to the nearest preceding stressed syl-
annotation. Morphologyis included as a set of tags cor- lable and to the nearest preceding syllable withmary
responding to different morphological dimensions. Basedstress(measured in number of syllables) are included in
on the part of speech tags, a division of words imird ~ the syllable layer annotation. The distances to succeed-
types(content words vs. function words) is made. A sim-ing stresses are also include8yllable lengthis measured

ilar variable denoteélinction wordhas the entire closed set in number of phonemes. The initial and final syllables of
of function words and a generic ‘content word’ represent-@ word are generally less prone to syllable reduction than
ation as its possible values. There are pronunciation varimedial syllables, which makes tipasition of the syllable
ation strategies specific to certain function words and thdn the wordan important variable to include in the annota-
function wordvariable should be a strong predictor of this tion. Lastly, a set omean phoneme durationeasures over
behaviour. the syllable are calculated.

The predictability of a word has been shown to be import-

ant for the realisation of the word, cf. e.g. Fosler-Lussier3.6.6. The Phoneme Layer

and Morgan (1999) and Jurafsky et al. (2001b). ManyThe phoneme identitiegicluded in the phoneme layer an-
variables influence the predictability of a word in con- notation are represented by the phoneme symbols from
text. Measures related to word predictability included inCENTLEX. A set of articulatory featuresdescribing the

the word layer annotation asgord repetitionsandlexeme phoneme is associated with each phoneme unit. pdse
repetitions(the number of times the full-form word and the ition of the phoneme in the syllabteay be important for
lexeme, respectively, has been repeated thus far in the digredicting the realisation of the phoneme. Hence, inform-
course)the position of the word in a phrasthe position  ation about in which part of the syllabler{sef nucleusor

of the word in a frequent collocatioand global word fre-  codg the phoneme is located is included in the annotation.
guency A special measure termedord predictabilityis A consonant cluster lengthariable takes as its value the
also included in the annotation. This measure is an edength (phoneme count) of the consonant cluster of which
timation based on a weighted combination of unigram, bi-the current phoneme is a part. This measure defaults to 0
gram and trigram probabilities collected from thét€borg  for vowels.

Spoken Language Corpus (Allwood et al., 2002). pae  Thephoneis the context-dependent realisation of the phon-
of speechvariable already mentioned also affects the pre-eme. Phonetic identity is the variable to be estimated by
dictability of a word in context, since there are syntacticthe pronunciation variation models and consequently, the
constraints governing language production. phone is used as the key in model training. The phones are
The distances to the preceding and the succeeding fesupplied by a hybrid automatic transcription system, using
cally stressed word can be important factors in predictingstatistical decoding and a set of a posteriori correction rules.

nformation about the stress and accent of the current
syllable is derived from the phonemic representations.



A place filler() symbol is used to signal that there isnoreal-4.1. Decision Tree Induction

isation of a particular phoneme in the phonetic string. Decision trees are induced from a set of training instances
The SNAck sound toolkit (Splander and Beskow, 2000) compiled from the structured annotation. The training in-
is used for building and decoding statistical models repsignces are phoneme-sized and can be seen as aset of
resenting the possible realisations of a word. Models argayt sensitive phonemeith their respective phone realisa-
built using an empirically compiled context-insensitive list tjons. Each training instance includes a set of 516 attrib-
of possible realisations (tentative phones) for each phongte yalues and the phone realisation, which is used as the
eme and a set of HMM monophone models. The speecfiagsification key. The features of the current unit at each

signal is parameterised to form a sequence of observationgyer of annotation are included as attributes in the training
The path trough the statistical model most closely matChéxamples. Where applicable, information from the neigh-
ing this observation sequence (using Viterbi decoding) caoyring units at each annotation layer is also included in
be represented as a string of phones, and this string is thge attribute sets. The algorithm used for inducing the pro-
output of the statistical decoder. nunciation variation models is that included in the REE
Evaluated against a small manually transcribed gold Sta”dprogram suite (Borgelt, 2004).

ard, statistical decoding alone was shown to give highepeision tree induction is non-iterative and trees are built
phone error rates (PER) than estimating the phonetic trangye| py level, which makes the learning procedure fast.
script with the phoneme string. However, due to the sysyqyever, the optimal tree is not guaranteed. At each new

tematic nature of the errors made by the statistical decodefeye| created during the tree induction procedure, the set of
a set of correction rules that significantly lowered the €Ok aining instances is split into subsets according to the val-

rate could be compiled. The final hybrid transcription syS-yes of one of the attributes. The attribute selected is the
tem produces an average of 15.5% errors on the phone levglipyte that best meets a given criterion, generally based
when compared to an enlarged gold standard transcriptiony, entropy minimisation. In the current case, a measure

This means that the PER is reduced by 40.4% compared {Qterred to asymmetric information gain ratiéLopez de
using the phoneme string for estimating the phone realisgyantaras, 1991) is used. The inducer is set to allow group-

ti(?”- o . ) ing of discrete values to obtain the optimal number of nodes
Since manual transcription is restricted by a relatively smally; aach level.

set of phone symbols, some decisions about phone iden-
tity are not obvious, most notably many cases of choos4.1.1. Pruning

ing between a full vowel symbol and a schwa. Default-Since training data generally contain some degree of noise,
ing to the system decision whenever a human transcriber ig decision tree may be biased toward the particular noise
forced to make ad hoc decisions would increase the spegf the training data (over-trained). However, once a tree is
of manual transcript checking and correction considerablysonstructed, it can be pruned to make it more generally ap-
without lowering the transcription quality. It is worth not- pjicable. The idea behind pruning is that the most common
ing that if this strategy had been used for compiling the goldyatterns are kept in the model, while less common patterns,
standard transcript, the PER would have been somewhaiith high probability of being due to noise in the training

lower. The 15.5% PER is thus a S||ght under-estimation OHata' are deleted. At pruning, a sub-tree of a particu|ar
the system performance. Manual correction of the automaiode is replaced by a leaf with the most common class of

ically obtained transcripts will most likely result in more the leaves governed by the sub-tree, when some criterion is
accurate pronunciation variation models. met.

4. Creating Pronunciation Variation Models  4.2. Model Evaluation

Using the annotation from the speech databases, pronundh tenfold cross validation procedure was used for model
ation variation models can be created with different typesvaluation. Under this procedure, the data is divided into
of machine learning methods. If the model is to be useden equally sized partitions using random sampling. Ten
for descriptive purposes, it must be transparent, i.e., it muddifferent decision trees are induced, each with one of the
contain information such that the model can be represenpartitions left out during training. The left out partition is
ted on a format interpretable by a human familiar with lin- then used for evaluation. A separate tenfold cross valid-
guistic theory. ation evaluation was performed for data from each of the
A machine learning paradigm that creates transparent modhree databases AK0S, Rabio INTERVIEW and RaDIO

els and is suitable for the type of data at hand iskbeision ~ NEws) and for the collapsed data set.

tree inductionparadigm. A decision tree inducer com- The prosodic information cannot be fully exploited in its
monly needs no ad hoc knowledge and can induce modzurrent form in e.g. a speech synthesis context. Thus, it was
els directly from training data. It is thus very easy to useinteresting topic investigate the influence of the prosodic
once you have the data. For these reasons, the decision triedormation (variables based og, fduration, focal stress
paradigm has been selected for creating the models repoand prosodic boundary information) on model results. To
ted in this paper. It is not claimed that the decision treeinvestigate this, an experiment where the decision tree in-
paradigm necessarily produces the best models. Other mducer did not have access to the prosodic information was
chine learning paradigms may be able to create more agerformed for each of the four data sets. As a baseline, an
curate models or models which meet certain applicationevaluation of trees induced from phoneme layer informa-
specific demands. tion only was also performed for each data set. The same



Table 1: Mean and standard deviation of phone error rate (PER) for each data set

[ Database I All I VAKOS [ RADIO INTERVIEW | RADIO NEWS |
# training instances 93,996 52,263 31,779 9,936
# evaluation instances 10,444 5,807 3,631 1,104
Trained on attributes all | noprd* phat all | noprd* pha' all | noprd* pho' all | noprd* pha'
XpER (per cent) 8.14 13.08 | 14.19 9.07 1490 | 15.60 8.94 12.32 | 13.74 9.34 10.57 | 11.70
opEgR (per cent) 0.15 0.25 0.23 0.39 0.49 0.53 0.42 0.30 0.54 1.23 1.23 1.34

*no prosodic attributesf phoneme level attributes only

Table 2: Error reduction as a result of making more information available for the decision tree inducer

[ Database I All [ VAKOS [ RADIO INT. [ RADIO NEwWS |
Tree types pho' >all* [ nopro*>allf | phof >allf | nopro->all* | phd >allf [ nopro*>allf | pho'>allf | nopro >allf
Error reduction (per cent) 42.64 37.77 41.86 39.12 34.93 27.43 20.20 11.65

*trained with access to all attribute$trained access only to non-prosodic attributésained with access only to phoneme level attributes

randomisation was used under all conditions. are used, neither models trained on thekKwS database
Each tree was pruned under a range of pruning criteria andor models trained on theA®10 NEws database have the
the tree with the optimal performance on the evaluation datéoowest PER, although theAK0S database has the largest
was selected to be used in the evaluation. The pruning crirumber of training instances and the®o News data-
teria used all yielded the same pruned tree and the optimddase has the most formal type of speech. Instead, the mod-
tree could thus either be tipeunedtree or the originalun-  els trained on the Rb10 INTERVIEW database show the
prunedtree. Thesymmetric information gain ratiattrib-  lowest PER. The RDIO INTERVIEW database has the ad-
ute selection measure created trees, which were near tlvantages of having relatively formal speech compared to
optimal before pruning. Hence, the effect of pruning onthe VAKOS database, relatively few speakers and many
model performance was small. In most cases, pruning afmore training instances than the o NEws database.
fected model performance (on the test data) negatively andkurther, we can see from Table 2 that models trained on
on average, pruning gave rise talacreasan model per- the VAKOS database are more dependent on prosodic in-
formance with 0.6%. The unpruned trees were actually subformation and generally on information on layers above the
jected tobasic pruning at which the trees were pruned to phoneme, while the models trained on thed®Ro NEws

the extent that no deterioration of accuracy on the traininglatabase are less dependent on this type of information.
data occurred. Thus, following “Occam’s razor”, if there

were several trees giving the same result, the simplest d¥-3-  Attribute Ranking

these trees was selected. Table 3 shows the 18 top ranking attributes over the ten
) ] optimal trees trained on all information from all databases.
5. Results and Discussion The layer from which the attribute is collected is used as a

Table 1 summarises the results from the cross validatioRrefix in attribute names. Attributes can refer to the current
experiments. On average, we get a phone error rate of 8.194it or to units at-4 positions from the current unit at the
when training on 90% of the collapsed data set and allowingpecific annotation layer. Duration measures can be based

the decision tree inducer to use all available information. on the duration of apphonemesr on the duration ofowels
only, they can be based oormalisedor absolutephoneme

5.1. Phone Error Rates duration and they can be based on duration tmyacale.
Using the phoneme string to estimate phone realisationghe ranking in the first column of Table 3 is based on the
gives a PER of 20.4%, which means that phone errors caposition of the attribute in the ten trees. For this meas-
be reduced by 60.2% by using an average pronunciationre, the attribute governing the largest number of sub-trees
variation model in stead of using a phoneme string collec{leaves excluded) will get the highest rank (1). The second
ted directly from a lexicon. Applying phonological sandhi column weights the sub-tree count with the number of clas-
rules to adapt the phonemic representations for isolatesifications involving the attribute (over the training data).
words to their context decreased the PER for the phonemleor this measure, an attribute involved in many classific-
string only to 20.3%. The error reduction resulting from ations can climb in rank even if it does not appear in the
using the pronunciation variation model is thus significant.absolute top of the tree. Thhoneme identitgttribute ap-
Further, as can be seen from Table 2, we get a reduction ¢fears in the top node of all trees. This means that it governs
PER by 42.6% when switching from a classifier trained onall sub-trees and is involved in all classifications made by
phoneme level information only to a classifier trained on allthe trees.

available information. ]
5.4. Attributes Used by the Models

5.2. Data Size and Speaking Style From Table 4, it can be seen that variables from all layers
Itis likely that the PERs presented in Table 1 reflect the facof annotation are used by the trees trained on all available
that both the amount and the type of training data affecténformation from all databases. In fact, from 516 available
the performance of the models induced. If all attributesattributes, as many as 470 were used at least once in the



Table 3: The 18 top ranking attributes for trees trained on all information from all databases

[Rank [ Rank based on # sub-trees [ Rank based on # sub-trees# classifications |
1 |phoneme._identity phoneme_identity
2 | phoneme._identity+1 phoneme_identity+1
3 |word function _word-1 word _duration _phonemes _absolute
4 | word _duration _phonemes _absolute word _function _word+1
5 |word _function _word+1 word _function  _word
6 | phoneme_identity+4 word _function  _word-1
7 | phoneme_identity-2 phoneme_identity-1
8 |word _function _word phoneme_identity+2
9 | phoneme_identity-1 phoneme_identity-3
10 | phoneme_identity-4 phoneme_identity+4
11 | phoneme_identity+2 word _duration _vowels _absolute
12 | phoneme_identity-3 phoneme_identity-2
13 | phoneme_identity+3 phoneme_identity+3
14 |word _duration _vowels _absolute phoneme_identity-4
15 |syllable _accent syllable  _accent
16 |syllable _nucleus phrase _duration _phonemes _absolute
17 |word _duration _vowels _normalised word _duration _vowels _normalised
18 |word _duration _vowels _log _absolute syllable  _nucleus

Table 4: Probability of variables from each annotation layer at the top twelve tree levels

[ Level [ P(Phoneme) [ P(Syllable) [ P(Word) [ P(Phrase) | P(Utterance) [ P(Discourse) > ]
1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.0000
2 0.4101 0.0791 0.4820 0.0144 0.0144 0.0000 | 1.0000
3 0.4113 0.0493 0.3941 0.1404 0.0025 0.0025 | 1.0000
4 0.4052 0.0507 0.4298 0.0897 0.0145 0.0101 | 1.0000
5 0.3728 0.0310 0.4281 0.1294 0.0310 0.0077 | 1.0000
6 0.3936 0.0330 0.3729 0.1460 0.0348 0.0198 | 1.0000
7 0.3952 0.0316 0.3416 016.27 0.0383 0.0306 | 1.0000
8 0.4338 0.0408 0.3168 013.47 0.0397 0.0342 | 1.0000
9 0.4140 0.0440 0.3299 014.10 0.0543 0.0168 | 1.0000
10 0.4180 0.0384 0.3250 014.77 0.0561 0.0148 | 1.0000
11 0.3958 0.0545 0.3189 015.22 0.0529 0.0256 | 1.0000
12 0.4096 0.0422 0.3293 014.46 0.0562 0.0181 | 1.0000

ten trees. However, the phoneme and word layer attributeand attributes from these levels end up in the lower levels
are the attributes most commonly used in the higher levelsf the decision trees, as a result of the ‘greedy’ induction
of the trees. The top ranking utterance layer attribute is algorithm used.

vowel-based duration measure showing up at place 50 usin )

the first ranking strategy and on place 46 using the secona->- Effects of Noise

ranking strategy. The top discourse layer attribute is alsd’he erroneous classifications possible for a phoneme are
a vowel-based duration measure and shows up at place 3dinited to the set of realisations for the phoneme found in
and 35, respectively. the training data. Both training and evaluation data contain
up to 15.5% errors on the phone level, as previously dis-
cussed. Since the phone string is generated by an automatic
transcription system with a priori restrictions on the pos-
®ible realisations of each phoneme, the range of variation is
probably less than it would have been if the transcripts had
Been produced by a human. It is not immediately obvious

Theword frequencyandword predictabilityattributes both
get ranks around 110. The relatively weak predictive
strength of these variables may be due to the fact that th
are obscured by thenction wordvariable, which gets high
ranks. Further, thevord frequencyand word predictab-
ility measures are estimated from a corpus of transcribe

: : . whether this translates into lower phone error rates for the
speech, relatively small in comparison to standard text cor-

ora. These measures mav be improved with text data pronunciation variation models than would have been the
pora. y P " case if the phones in the training and evaluation data had

A large variety of the duration and pitch based measureseen supplied by a human transcriber.

are represented among the variables used by the optimal

trees (the first measure based on pitch shows up at place®. Gold Standard Evaluation

42 using the fist ranking strategy and on place 55 using thélthough it is hard to speculate about how the model per-

second ranking strategy). Most of the duration measurefrmance would be affected by more accurate training data,
seem to be nearly equivalent in terms of predictive powerthe transcriptions generated by the current models can be
with vowel-based measures working somewhat better ovesvaluated against actual target transcriptions. When eval-
larger units. Units on higher order layers are both larger iruated against the small gold standard consisting of five
terms of duration and conceptually more abstract than unitminutes of manually transcribes speech from theK\@S

on lower order layers. Because of this, it is not possible talatabase, the models produce a PER of 16.9%, which
make exact predictions from higher order layer units onlymeans that the deterioration in performance when using the
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