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Abstract
Our recent experiments with HMM-based speech synthesis
systems have demonstrated that speaker-adaptive HMM-based
speech synthesis (which uses an ‘average voice model’ plus
model adaptation) is robust to non-ideal speech data that are
recorded under various conditions and with varying micro-
phones, that are not perfectly clean, and/or that lack of pho-
netic balance. This enables us consider building high-quality
voices on ’non-TTS’ corpora such as ASR corpora. Since
ASR corpora generally include a large number of speakers, this
leads to the possibility of producing an enormous number of
voices automatically. In this paper we show thousands of voices
for HMM-based speech synthesis that we have made from
several popular ASR corpora such as the Wall Street Journal
databases (WSJ0/WSJ1/WSJCAM0), Resource Management,
Globalphone and Speecon. We report some perceptual evalu-
ation results and outline the outstanding issues.
Index Terms: speech synthesis, HMMs, speaker adaptation

1. Introduction
Statistical parametric speech synthesis based on hidden Markov
models (HMMs) [1] is now well-established and can gener-
ate natural-sounding synthetic speech. In this framework, we
have pioneered the development of the HMM Speech Synthe-
sis System, HTS (H Triple S) [2]. In conventional speech syn-
thesis including HTS, large amounts of phonetically-balanced
speech data recorded in highly-controlled recording studio en-
vironments are typically required to build a voice. Although
using such data is a straightforward solution for high quality
synthesis, the number of voices available will always be lim-
ited, because recording costs are high.

On the other hand, our recent experiments with HMM-
based speech synthesis systems have demonstrated that speaker-
adaptive HMM-based speech synthesis (which uses an ‘aver-
age voice model’ plus model adaptation) is robust to non-ideal
speech data that are recorded under various conditions and with
varying microphones, that are not perfectly clean, and/or that
lack of phonetic balance[Add references]. This enables us con-
sider building high-quality voices on ’non-TTS’ corpora such
as ASR corpora. Since ASR corpora generally include a large
number of speakers, this leads to the possibility of producing an
enormous number of voices automatically.

In this paper we explain the thousands of voices for
HMM-based speech synthesis that we have made from sev-
eral popular ASR corpora such as the Wall Street Journal
databases (WSJ0/WSJ1/WSJCAM0), Resource Management,
Globalphone and Finnish and Mandarin Speecon. We will re-
port some analysis results, perceptual evaluation results, an ap-

plication, and outline the outstanding issues of the voices.

2. HTS voices trained on ASR corpora
2.1. Framework of TTS systems

All TTS systems are built using the framework from the “HTS-
2007 / 2008” system ([3]), which was a speaker-adaptive system
entered for the Blizzard Challenge 2007 and 2008 ([4]).

2.2. ASR speech databases used for TTS systems

In conventional speech synthesis research, phonetically-
balanced speech databases are typically used. A phonetically-
balanced dataset (e.g., complete diphone coverage) is required
for each individual speaker, since conventional systems are
speaker-dependent. In multi-speaker sets of speech synthesis
data (e.g., CMU-ARCTIC1), it is common for the same set of
phonetically-balanced sentences to be re-used for each speaker.
Therefore, pooling the data from multiple speakers does not al-
ways significantly increase phonetic coverage. Compared to
this, the sentences chosen for ASR corpora tend to be designed
to achieve phonetic balance across multiple speakers, or simply
chosen randomly. Therefore, phonetic coverage increases with
the number of speakers. However, each individual speaker typ-
ically records a very limited number of utterances (e.g., fewer
than 100). Building TTS voices from these ASR corpora is in
itself a new challenge.

We hypothesised that it would be feasible to build speaker-
adaptive HTS systems using ASR corpora, since adaptive train-
ing techniques (e.g., SAT) can normalize speaker differences,
and since the total phonetic coverage of ASR corpora may be
better than that of TTS (see Section 2.4). Therefore we used a
number of popular ASR corpora such as the Wall Street Journal
databases (WSJ0/WSJ1/WSJCAM0), Resource Management,
Globalphone, Finnish and Mandarin Speecon, and Japanese
JNAS.

The Wall Street Journal corpus (WSJ) is particularly well-
suited to this since it provides a large quantity of transcribed
read speech data of mostly good quality (though not in the
same category as purpose-built speech synthesis databases).
Thus the WSJ0 was the primary corpus used for comparison
of speaker-dependent and speaker-adaptive HMM-based TTS
systems. The speaker-dependent systems were built from the
subset called “very long term” which includes about 2,400 sen-
tences per speaker for a small number of speakers. Average
voice models were built using other subsets: short term, long
term (excluding the speakers from very long term), develop-

1A free database for speech synthesis, http://festvox.org/
cmu arctic/
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Table 1: Triphone coverage of ASR and TTS corpora

Name triphones/speaker triphones/corpus
CMU-ARCTIC 10041 10708
WSJ0 (short/SI-84) 3287 18577
WSJ0+1 (short/SI-284) 4220 23776
WSJCAM0 (total) 3036 23534
RM (ind total) 1091 7162

ment, and evaluation. In total, 110 speakers utter from 80 to
600 sentences each. We compared speaker-dependent models
trained with a reasonably large amount of data (2,400 sentences
– which is twice the size of a single-speaker CMU-ARCTIC
dataset) against various speaker-adaptive systems.

The speecon corpora includes speech data recorded in
various amounts of background noise (e.g., “car” or “public
spaces”). Although it may eventually be possible to use such
data for speech synthesis, we chose a set of speech data recorded
in relatively quiet “office” environments (although this is not
still perfectly clean). The data includes isolated word or spelling
pronunciation utterances and phonetically balanced sentences.
Since we are unsure of the effects of using large quantities of
isolated word or spelling pronunciation utterances on synthesis,
we used only the phonetically balanced sentences as training
sentences for the average voice model in this experiment.

2.3. Front-end processing

The labels for the data were automatically generated from the
word transcriptions and speech data using the Unisyn lexi-
con [5] and Festival’s Multisyn Build modules for English and
Spanish voices, and using Nokia’s in-house lexica and TTS
modules for Finnish and Mandarin voices, with no further mod-
ification. The multisyn Build modules identified utterance-
medial pauses, vowel reductions, or reduced vowel forms and
they were added to the labels. For the out-of-vocabulary words,
letter-to-sound rules of the Festival’s Multisyn were used. En-
glish and Spanish phonesets are based on IPA and Finnish and
Mandarin phonesets are based on SAMPA-C.

2.4. Analysis of ASR corpora from TTS point of view – pho-
netic coverage

Triphone coverage is a simple way to measure the phonetic cov-
erage of a corpus. Table 1 shows the average number of dif-
ferent triphone types per speaker and the total number of dif-
ferent triphone types in the various corpora. A larger number
of types implies that the phonetic coverage is better, which in
turn implies that the corpus is more suitable for speech syn-
thesis. For comparison, the triphone coverage of the CMU-
ARCTIC speech database which includes four male and two
female speakers is also shown.

We can see although the average number of triphone types
for each speaker in the CMU-ARCTIC database is clearly larger
than for any single speaker from an ASR corpus, the total
triphone coverage across all speakers in the CMU-ARCTIC
database is about the same (because all speakers say the same
set of sentences). In contrast, the triphone coverage of the com-
plete WSJ0, WSJ1 and WSJCAM corpora is much higher than
CMU-ARCTIC. This leads us to believe that these ASR cor-
pora should be better for building speaker-independent/adaptive
HMM-based TTS systems as well as speaker-independent ASR
systems. The RM corpus, because of its very limited domain
and small word vocabulary, has relatively poor coverage and

Figure 1: Geographical representation of HTS voices trained
on ASR corpora for EMIME projects. Blue markers
show male speakers and red markers show female speak-
ers. Available online via http://www.emime.org/learn/speech-
synthesis/listen/Examples-for-D2.1

Figure 2: All English HTS voices can be used as online TTS on
the geographical map.

would be unsuitable for use as a TTS corpus unless combined
with other data.

2.5. Demonstration of the HTS voices

We built speaker-adaptive HMM-based TTS systems from
each corpora above and adapt them to all speakers avail-
able. Informal listening revealed that there are a few speak-
ers whose synthetic speech sounds worse than other speak-
ers. This may be because the available for these speak-
ers has poor phonetic coverage or because of other fac-
tors such as properties of the speaker’s voice or the record-
ing quality. This will be investigated in future work.
The phenomenon is analogous to the familiar situation in
ASR, where WER varies widely across some speakers and
is especially high for a small number of speakers. Sam-
ples are available from http://www.emime.org/learn/speech-
synthesis/listen/Examples-for-D2.1

2.6. Geographical representation and online demo

One of important advantages of using ASR corpora is the large
number of speakers. Building TTS voices on such data allows
the creation of many more voices than has previously been pos-
sible for TTS. In fact, we built so many voices (1500+ including
some voices built outside the EMIME project but using the same
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techniques, which we believe is the largest known collection of
synthetic voices in existence) it became impossible to represent
them in list or table form. Instead, we devised an interactive
geographical representation, shown in Figure 1. Each marker
corresponds to an individual speaker. Blue markers show male
speakers and red markers show female speakers. Some markers
are in arbitrary locations (in the correct country) because pre-
cise location information is not available for all speakers. This
geographical representation, which includes an interactive TTS
demonstration of many of the voices, is available from the URL
provided. Clicking on a marker will play synthetic speech from
that speaker2. As well as being a convenient interface to com-
pare the many voices, the interactive map is an attractive and
easy-to-understand demonstration of the technology being de-
veloped in EMIME.

2.7. Multidimensional scaling of male speakers included in
WSJ0 corpus

Another way to visualize the speakers is to place them not in
a geographical space, but in a space derived from properties of
the speech. This can be achieved using multidimensional scal-
ing [6]. We generated a set of speech samples from all the HTS
voices trained on the WSJ0 corpus using all test sentences from
the Blizzard Challenge 2008. We then calculated the average
mel-cepstral distance between the speech for all pairs of voices,
placing the values in a mel-cepstral distance table. For simplic-
ity, the unadapted duration models of the average voice model
were used so that the number of frames of synthetic speech for
each speaker is same. Then we applied a classic multidimen-
sional scaling technique [6] to the mel-cepstral distance table
and examined the resulting two-dimensional space, which is
shown in Figure 3.

The axes of this space do not have any meaning, but MDS
attempts to preserve the pairwise distances between speakers
given in the mel-cepstral distance table. In other words, similar
speakers will be close to one another in this space. For exam-
ple, speakers 012, 01e, 029, 02b and 021 are similar to one other
(in terms of mel-cepstral distance) and speakers 22h, 422, and
423 are relatively different from other speakers. We can only
use very few target speakers in formal listening test, so it is im-
portant to investigate the distribution of speakers in other ways,
such as MDS.

3. Evaluation
In this experiment, we confirmed that our speaker-adaptive sys-
tems built on ASR corpora show the same tendencies as those
previous systems. We also confirmed that our speaker-adaptive
systems provide good baseline performance.

3.1. Average voice model training data

We built two kinds of average voice model. The first was built
using 50 utterances per training speaker (“condition 1”). If a
speaker has more than 50 utterances, a subset of 50 was cho-
sen randomly. The second average voice model was built using
all available utterances from all training speakers (“condition
2”). The numbers of training sentences are 2950 and 10847
sentences for male average voice models in conditions 1 and
2 respectively, and for female average voice models there are

2Currently the interactive mode supports English and Spanish only.
For other languages this only provides pre-synthesised examples, but
we plan to add an interactive type-in text-to-speech feature in the near
future.
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Figure 3: Multidimensional scaling of HTS voices trained on
WSJ0 corpus. The three characters at each point correspond to
the name of each speaker in the database.

3000 and 12151 sentences respectively. They have 5.7 hours,
21.1 hours, 5.9 hours, and 24.6 hours of speech duration, re-
spectively. By providing a part of training data for speaker-
dependent models to the average voice models, we compared
the speaker-adaptive systems with speaker-dependent systems.

3.2. Speaker-dependent model training data

To examine the effect of corpus size, three speaker-dependent
systems were built, using 100 randomly chosen sentences
(about 6 minutes in duration), 1000 randomly chosen sentences
(about 1 hour in duration) and 2000 randomly chosen sentences
(about 2 hours in duration) respectively from the target speaker.

3.3. Objective evaluation

Table 2 shows the objective measures for each system. From
the results for speaker 001, we can confirm that the speaker-
adaptive systems using all available average voice model train-
ing data (“condition 2”) outperform the speaker-adaptive sys-
tems using an equal amount of speech data per training speaker
(“condition 1”). In addition, as we expected, we can see that
when the amount of target speaker speech data is less than
about 1 hour, speaker-adaptive systems outperform speaker-
dependent systems. Once the amount of speech data is more
than about 1 hour, speaker-dependent systems start to become
better than speaker-adaptive systems. This result is consistent
with previous results.

The RMSE of log F0 for the speaker 002 shows unexpected
tendencies. All the systems using 2 hours of target speaker
speech data have worse RMSE than those using 1 hour of data.
A possible explanation for this is that the speaker’s speaking
style was not consistent over the long-term recording sessions
(e.g., the average value and range of F0 varied session by ses-
sion). This may be investigated in future work: although the
EMIME application may operate with less target speaker data
than this, there may still be multiple speech capture sessions as
the device is used on different occasions. We chose the male
speaker 001 as the target speaker for the subjective (listening
test) evaluation.
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Table 2: The objective measures of each speaker-dependent
(SD) and speaker-adaptive (SA) systems built using various
amounts of speech data from the target speaker. Underlined fig-
ures indicate the best performing system under each objective
measure for each target speaker (i.e., in each column). MCD
and log F0 show mel-cepstral distance and RMSE of log F0,
respectively.

(a) 6 minutes of target speaker data

Speaker 001 Speaker 002
MCD log F0 MCD log F0

System (dB) (cent) (dB) (cent)
SD 9.05 407 7.18 195
SA (condition 1) 5.46 393 4.97 168
SA (condition 2) 5.38 369 5.09 186

(b) 1 hour of target speaker data

Speaker 001 Speaker 002
MCD log F0 MCD log F0

System (dB) (cent) (dB) (cent)
SD 5.27 354 4.86 174
SA (condition 1) 5.36 398 4.99 176
SA (condition 2) 5.25 352 4.98 174

(c) 2 hours of target speaker data

Speaker 001 Speaker 002
MCD log F0 MCD log F0

System (dB) (cent) (dB) (cent)
SD 5.18 348 4.83 190
SA (condition 1) 5.32 386 4.97 180
SA (condition 2) 5.25 351 4.97 182

3.4. Subjective evaluation

We adopted the evaluation methods used in the Blizzard Chal-
lenge 2008. English synthetic speech was generated for a set
of 600 test sentences, including 400 sentences from conversa-
tional, news and novel genres (used to evaluate naturalness and
similarity) and 200 semantically unpredictable sentences (used
to evaluate intelligibility). A subset of these sentences were then
chosen randomly for use in the listening test (the exact number
required depends on the number of systems being compared —
see [4] for details of the Latin Square experimental design.) The
number of listeners for this experiment was 26.

Figure 4 shows the results. The perceptual evaluation reveal
the same tendencies as the objective evaluations. The speaker-
adaptive systems using the all the data (“condition 2”) were
found by listeners to be better in terms of naturalness and simi-
larity than the speaker-adaptive systems using an equal amount
of speech data. We can again see that when the amount of
speech data is less than about 1 hour, speaker-adaptive systems
outperform speaker-dependent systems in every way. Once the
amount of speech data is about 1 hour, the speaker-dependent
system and speaker-adaptive system in condition 2 have almost
the same scores. When the amount of speech data is about 2
hours, the speaker-dependent system starts to have better natu-
ralness and intelligibility than the speaker-adaptive system.

These results are consistent with previous analyses. We
conclude that the performance of our baseline speaker-adaptive
system is good and comparable to other state-of-the-art HMM-
based speech synthesis systems.

4. Conclusions
Building TTS voices on ASR speech database allows the cre-
ation of many more voices than has previously been possible for
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Figure 4: Subjective evaluation results for speaker-dependent
and speaker-adaptive HMM-based TTS systems built on ASR
corpora.

TTS. We have shown their analysis/evaluation results and appli-
cations using a geographical map. These voices would have po-
tential for some applications such as medical voice banking or
virtual game such as second life. Our future work is to analyze
the difference of the quality of the voices.
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