
Modeling Conversational Interaction Using Coupled Markov Chains 

Daniel Neiberg and Joakim Gustafson 

Department of Speech, Music and Hearing, KTH, Sweden 

jocke@speech.kth.se, neiberg@speech.kth.se 

 

 

Abstract 

This paper presents a series of experiments on automatic 

transcription and classification of fillers and feedbacks in 

conversational speech corpora. A feature combination of PCA 

projected normalized F0 Constant-Q Cepstra and MFCCs has 

shown to be effective for standard Hidden Markov Models 

(HMM). We demonstrate how to model both speaker channel 

with coupled HMMs and show expected improvements. In 

particular, we explore model topologies which take advantage 

of predictive cues for fillers and feedback. This is done by 

initialize the training with special labels located immediately 

before fillers in the same channel and immediately before 

feedbacks in the other speaker channel. The average F-score 

for a standard HMM is 34.1%, for a coupled HMM 36.7% and 

for a coupled HMM with pre-filler and pre-feedback labels 

40.4%. In a pilot study the detectors are found to be useful for 

semi-automatic transcription of feedback and fillers in 

socializing conversations. 

 

Index Terms: fillers, feedbacks, coupled hidden markov 

models, cross-speaker modeling, conversation 

1. Introduction 

A naturally occurring spontaneous conversation is a process 

where the participants influence each other. It is reasonable to 

model all participants in the interaction process to improve 

automatic detection of communicative vocalizations [1]. 

Successful examples of this include detecting emotions [2], 

engagement [3], turn-taking behavior [4] and Dialog Acts 

(DA) [5][6][7]. Automatic transcription and classification of 

Dialog Acts (DAs) may be done on a pure lexical level, or by 

using prosody alone [8], or a combination thereof [9,10]. 

However, it is not straightforward to train language-models for 

non-lexical content such as '''mm'', ''mhm'' and ''eh'' since non-

verbal features like speaking rate, pitch slope and voice 

quality determine their meaning. Furthermore, machine 

learning of the meaning of these conversational tokens is 

hampered by the lack of standardized annotation schemes. 

Non-lexical conversational tokens are usually found in dialog 

acts which can be roughly divided into those that are 

interjected into one's own speech (fillers) and those that are 

interjected into the interlocutor's account (feedback). Different 

kinds of feedback tokens, such as back-channels, 

acknowledgments and agreements often share the same type 

of phonetic content. Because of this it seems to be necessary 

to use prosodic features and models to construct detectors for 

these non-lexical conversational tokens. In this paper we aim 

to construct a detector for semi-automatic annotation which 

can discriminate between fillers and feedback by modeling the 

both participants in a conversational interaction.  

Using interlocutor (non-target speaker) information to 

boost back-channel detection, rather than prediction, is not a 

very common practice. One study [7] use a rule system based 

on speech durations in dual channel conversational recordings 

to detect back-channels. Instead of using pitch tracker derived 

features, the Fundamental Frequency Variation spectrum 

(FFV) has been used to classify dialog acts [8] which included 

two types of fillers, back-channels, acknowledgments among 

others in a multi-participant meeting. This study showed the 

benefit of using spectral correlates to fundamental frequency 

change without using a token-based language model, which 

may be inappropriate for non-verbal tokens. One finding was 

that non-target prosodic context improves detection of DA 

interruption. 

In the current study we aim to construct a detector for 

fillers and feedbacks and aims for semi-automatic 

transcription of corpora. Three specific goals are addressed:  
  

1. Capture the prosodic characteristics of fillers and feedback 

by using a normalized fundamental frequency cepstrum 

representation suitable for Hidden Markov Modeling, as 

well as standard MFCC as auxiliary features  

2. Investigate the benefit of modeling the dyadic interaction, 

by using one Markov chain per speaker and a joint 

coupled transition matrix. 

3. Explore model topologies which take advantage of 

predictive cues for fillers and feedback. For example, in a 

study of conversational Japanese and English [11], it was 

found that back-channels may be predicted by a region of 

low pitch of the interlocutor. This finding has also been 

confirmed for Swedish [12].  Another study found cues 

connected to intonation and both average intensity and F0 

[13]. 
 

In Section 2, the DEAL corpus is described, in Section 3 a 

normalized fundamental frequency cepstral representation is 

outlined, in Section 4 experiments using single and dual chain 

Hidden Markov Models are reported, which is followed by a 

pilot study of the semi-automatic annotation of fillers and 

feedback token in a different kind of dialogue corpus. 

2. The DEAL corpus 

The current study uses data from the DEAL corpus [14]. It 

consists of dialog data recorded as informal, human-human, 

face-to-face task-oriented dialogues. The data collection was 

made with 6 subjects (4 male and 2 female), 2 posing as shop 

keepers and 4 as potential buyers. Each customer interacted 

with the same shop-keeper twice, in two different scenarios. 

The customers were given a task: to buy items at the best 

possible price from the shop-keeper. 

The recordings were done with one microphone per 

speaker, and recorded at 16 kHz in two channels. All dialogs 

were first transcribed orthographically including non-lexical 

entities such as laughter and hawks. Filled pauses, repetitions, 

corrections, restarts and cue phrases were labeled manually. 

The DEAL corpus is rich in fillers and feedback tokens. The 

feedbacks are generally single words (99%) or non-lexical 

units and appear in similar dialog contexts (i.e. as responses to 

assertions). The feedbacks are labeled according to attitude; 

news receiving, dis-preference or general feedback, but in this 

study the attitude is not addressed. 



3. A normalized fundamental frequency 

cepstral representation 

The procedure of finding correlates to pitch starts with 

calculating a Constant-Q filter bank in a semitone scale. Then 

the mean F0 is estimated and the filters which are located up 

to 8 semitones from the estimated mean F0 are retained. These 

filters are finally used to obtain a normalized fundamental 

frequency cepstrum. This entire procedure follows the 

description in [15] were more details are found. Here, an 

overview of the original approach is given, including a few 

modifications. 

The filter-bank is based on the Constant-Q transform [16] 

with a corresponding Q factor of  1/(21/12-1) or 16.8  which 

corresponds to the 12 semitones per octave in a musical scale. 

The filter-bank spans a total of 81 bins between 60 Hz and 

6458 Hz, which is below the Nyquist frequency. Compared to 

Short-time Fourier Transform (STFT), the constant-Q 

transform has optimal temporal-spectral resolution for all 

filters, which means there is no need to optimize the analysis 

window length for different applications. A standard frame 

shift rate of 100 Hz is used. 

To provide a reference for normalization, a simple method 

of finding an average F0 within each Inter Pausal Unit (IPU), 

given by the labels collapsed into speech (as described in 

Section 4), is proposed. The basic idea is summing harmonics 

for each filter in the semitone scale per frame. The maximum 

number of harmonics to sum over is 12 because beyond that 

consecutive harmonics would fall under the same bin, but here 

only the first 8 harmonics are considered to give a reasonable 

frequency resolution for higher order harmonics. An 

approximation to tone versus noise separation is used which 

classifies all frequencies with amplitudes below 10 dB from 

the highest amplitude frequency component as noise. So any 

filter above this threshold occurring in the output of the filter-

bank are considered as tones, which means that the harmonic 

summing starts at the first index containing non-noise. The per 

frame estimated F0 is then found by the semitone 

corresponding to maximum of the per filter harmonic 

summation. Then the average F0 is found by a weighted 

average of the per frame estimated F0s using power 

amplitudes as weights. This is not just motivated by a study 

which found frequencies at higher intensity levels to be more 

salient [17], but it also removes the need for voicing decision. 

If the IPU is marked as non-speech, then the mean frequency 

is set to 240 Hz. To obtain a normalized F0 spectrum, the 

range which is within 8 semitones from the mean frequency is 

retained. While this implies the assumption of a maximum F0 

variation of 17 semitones, it reduces the influence of the first 

overtone which is located at 1 octave (12 semitones) in 

average.After the log power spectrum is obtained, the 

cepstrum is calculated by applying a one dimensional discrete 

cosine transform (DCT). 

4. Experiments 

For this study we use the six first DEAL dialogs that were 

labeled at the time. Six-fold cross validation on dialog level is 

used. The labels for silence, breath and hawks are collapsed 

into the silence label. Similarly, all speech acts other than 

fillers and feedback are collapsed into the speech label. With 

fillers and feedbacks, this gives us four labels in total, but this 

number may increase by inserting special labels described 

later on. 

Single channel experiments are conducted using standard 

Hidden Markov Models with emitting distributions modeled 

as Gaussian Mixtures. As features we use Normalized F0 

cepstra and RASTA processed MFCCs, where the RASTA 

processing removes spikes and channel bias. For the 

normalized F0 cepstra, the first 6 coefficients are retained. For 

both the normalized F0 cepstra and the MFCCs, we add the 

delta along with delta-delta coefficients calculated over a 

window of 9 frames. A standard 3 state left-to-right topology 

with 4 Gaussians per state is adopted for each label. The 

parameters of each left-to-right HMM is estimated using the 

Baum–Welch algorithm. A global HMM is constructed from 

the single HMMs, with the help of bi-gram statistics 

calculated for the labels in the training data. Since the coupled 

HMMs require high computational effort and put high 

demands on memory resources, we do not explore higher 

number of Gaussians and reduce the feature dimension by 

PCA. The F0 cepstra is reduced from 18 to 10 dimensions and 

the MFCCs are reduced from 39 to 15 dimensions. 

Initial experiments using only cross-validation rotation 

one and five was conducted and the average F-score was 

measured on frame level. The score for F0 cepstrum was 

24.7%, for RASTA processed MFCC 31.1%, for a 

combination of the two 37.0% and for PCA projected features 

38.1%. Thus, performance is increased in a sequence of steps. 

While the durations of the collapsed labels have little 

meaning, the durations of fillers and feedback are shown in 

Figure 1 and follow two slightly different distributions. To 

reduce confusion between fillers, feedback and regular speech 

a shared duration threshold is applied after the recognition 

pass. Thus, any filler or feedback shorter than 90 ms is 

classified as speech. This threshold is set such that 5% of 

fillers and feedbacks segments are lost. This allows us to filter 

out short schwa-vowels with may be confused with fillers, or 

too short durations caused by random state-switching. 

 
Figure  1:  Distributions durations in fillers and feedbacks. 

 

A fully dual coupled Hidden Markov Model [18] is basically 

two standard HMMs where each emitting density is a function 

of two state variables and the state transition probabilities are 

conditioned on the previous states in both Markov chains 

using a joint transition matrix. This type of HMM is a natural 

extension to capture interaction in dyadic conversations. If the 

model is supposed to be speaker independent, then the cross 

chain conditional probabilities and emitting distributions has 

to be symmetric for the two channels. For pragmatic and 

computational purposes, we are only retraining the joint 

transition matrix. First the state sequences for each label is 

estimated by a Viterbi search for each speaker channel using 

the single channel HMMs. The necessary statistics for the 

joint transition matrix is then accumulated symmetrically for 

the two channels. A joint channel feature space is created by 

catenating the feature vectors for the two channels. To create 

joint channel emitting distributions, the Gaussian Mixtures 

from two states, each belonging to two different Markov 



chains, are pooled causing a doubling in the number of 

parameters. The GMM weights are made sure to sum to one 

by dividing with the sum after pooling. For all coupled HMM 

experiments, the PCA projected features are used to reduce the 

computational burden, and a duration threshold is applied after 

the recognition pass.  

A filler may be preceded by distinct cues which may be 

captured by a special pre-filler label in the same channel as the 

filler producing speaker. Initial experiments confirmed that a 

good duration for this extra label is 500ms. The pre-filler 

labels are marked backwards in time before each filler, but are 

terminated as soon as any other label than the speech or 

silence label is encountered or when the initial duration has 

passed. Thus, the initial durations are maximum durations. 

The bi-gram statistics which are used to create the global 

transition matrix will then force the pre-filler states to be 

connected to the filler states in sequence. 

The pre-feedback labels are marked in the same way as the 

pre-filler labels, but in the other channel where only speech 

labels are overwritten. Initial experiments confirmed that a 

good duration for this extra label is 1000ms. The pre-feedback 

labels in the other channel will be forced to precede the 

feedback label in the target channel via the joint transition 

matrix. Feedback labels may be detected without pre-feedback 

labels where the feedback is preceded by silence in the non-

target channel. It should be noted, that previous studies [11], 

where back-channels are predicted from interlocutor cues, 

report only modest accuracy so the performance boost is 

expected to be small. Examples of this label initialization are 

shown in Figure 2. 

 

 

Figure  2:  Examples of initialization of (A) coupled HMM (B) 

coupled HMM using pre-filler and pre-feedback labels. 

   

The following configurations are reported for the full 

evaluation:   

 HMM-Comb-PCA: F0 and RASTA MFCC 

combined in the same feature vector with PCA 

projection;  

 HMM-Comb-D-PCA: HMM-Comb-PCA with a 

duration threshold;  

 CHMM-Comb-D-PCA: Comb-D-PCA using 

coupled HMMs  

 P-CHMM-Comb-D-PCA: Coupled-Comb-D-PCA 

using a pre-filler state with duration of 500 ms a pre-

feedback label with duration 1000 ms. 

 

The results of the experiments are shown in Table 1. 

Performance is measured in F-scores for fillers and feedback 

on frame level, as well as the average of the two. F-score is 

defined as the harmonic mean between precision and recall. 

Improvements are observed in order of appearance, and         

P-CHMM-Comb-D-PCA is the final and best configuration. 

 

 

 

Table  1:   F-scores given in percent for final experiments. 

    

Configuration   Filler  Feedback Avg. 

HMM-Comb-PCA   36.6   30.6   33.6  

HMM-Comb-D-PCA   37.1   31.0   34.1  

CHMM-Comb-D-PCA   41.6   31.7   36.7  

P-CHMM-Comb-D-PCA   46.5   34.2   40.4  

5. Discussion on experiments 

Although it seems that coupled HMMs have a clear advantage 

over regular HMMs for this task, parts of the success may 

have a simple explanation. There is a constant leakage of 

speech between the two channels, and sometimes it increases 

significantly when speakers move during animated 

discussions. Given the typical conversation style in Swedish 

where overlapped speech is the exception rather than the rule; 

the joint transition matrix should suppress errors due to cross-

talk. However, other factors may also have contributed. For 

example, back-channels are often uttered in overlap, fillers are 

expected to be uttered when the interlocutor remains silent and 

feedbacks are unlikely when the interlocutor utter a feedback. 

Also, any systematic overlap may be modeled by the joint 

transition matrix via the cross channel dependencies for the 

individual states in each left-to-right HMM. 

No attempt has been made to balance precision and recall, 

but in all experiments the recall rates are 1.8 times higher than 

the precision. This may not be of any concern if the aim is to 

use the output for semi-automatic transcription. 

6. A semiautomatic annotation pilot 

Semi-automatic transcription of fillers and feedback is 

expected to reduce labor work considerably for large corpora. 

We have recently collected about 60 hours of audio, video and 

motion capture data in human-human conversations within the 

project Spontal [19]. We are encouraged by previous reported 

attempts [7, 11], where the last study reported semi-automatic 

annotation of more than 3000 feedbacks in less than 4 hours. It 

is our intention to investigate if semi-automatic annotation of 

fillers and feedback in the Spontal corpus is feasible using the 

P-CHMM-Comb-D-PCA detector. The Spontal corpus 

consists of recordings of spontaneous face-to-face 

spontaneous socializing conversations where the participants 

have received minimal directions for task and topic. For this 

pilot study we use one recording of 5 minutes between a male 

and a female speaker. The result of a manual analysis of the 

automatic detection is summarized in Table 2.  

 

Table 2. The number occurrences of correctly and wrongly 

classified fillers and feedbacks, with manually tagged reasons 

for errors within the parenthesis. 

Feedbacks Fillers 

correct 82 correct 15 

missed 7 missed 0 

wrong  9 wrong 14 

wrong (extraling) 10 wrong (extraling) 3 

wrong (cross talk) 20 wrong (prolonged) 7 

wrong (feedback 

within own IPU) 
83 wrong (cross talk) 8 

 

 

 

Speaker Type 

S1 
S2 

Feedback 

Speech 

A 

Feedback 

S1 
S2 

< 1000 ms 

Pre-Feedback Filler Pre-Filler 

B 

< 500 ms 



This small corpus consisted of 89 feedback tokens and 15 

filled pauses. All of the fillers and 92% of the feedbacks were 

successfully detected. To achieve this high recall rate, we have 

to accept a low precision rate. However, we want to keep the 

wrongly detected tokens as few as possible. The overall 

number of incorrectly detected feedback tokens was 42% and 

the number of wrongly identified fillers was 68%. We have 

performed an error analysis on these results. Most of the 

wrongly detected feedback tokens were due to channel 

leakage. However, these could be detected and removed 

automatically in a subsequent filtering step that makes use of 

cross-talk detection, which of course is a difficult problem by 

itself. If this is done the number of wrongly identified 

feedback tokens falls to 18%. Half of these contained extra-

linguistic sound like coughs. The number of cross talk related 

wrongly detected fillers were few, but if these were removed 

the number of falsely detected fillers dropped to 62%. One 

third of these were prolongation of other sounds than filled 

pauses, and 12% were extra-linguistic sounds. The manually 

judged quality of the segmentation is high. In almost all cases 

the detected feedbacks and fillers had correct start times and 

end times.         

7. Conclusions 

Series of experiments for automatic transcription and 

classification of fillers and feedbacks have been reported. A 

feature combination of PCA projected normalized F0 

Constant-Q Cepstra and MFCCs has been shown to be 

effective for standard Hidden Markov Modeling. It is 

demonstrated how to model each speaker channel with 

coupled HMMs and expected improvements are confirmed. In 

particular, model topologies which take advantage of 

predictive cues for fillers and feedback have been explored. 

This was done by initializing the training with special labels 

located immediately before fillers in the same channel and 

immediately before feedbacks in the other speaker channel. 

The pre-feedback and pre-filler states in the one channel will 

be forced to precede the feedback in the other channel via the 

joint transition matrix. 

The feedback and filler detectors were trained on task 

oriented dialogues. In order to verify the generalization of the 

detectors we decided to test them on socializing conversations. 

In this pilot experiment we evaluated the efficiency of our 

semi-automatic annotation of feedback and fillers. In semi-

automatic transcription the initial automatic detector needs to 

correctly find and segment as many fillers and feedback 

tokens as possible. Our pilot showed that all fillers and 92% of 

the feedback were found, with correct segmentation. Despite 

the fact that we did joint channel modeling there were still 

some problems with cross talk sections. This is a consequence 

of the decision to opt for a high recall rate on the expense of 

lower precision.   
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