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A Dual Channel Coupled Decoder for Fillers and Feedback

D. Neiberg, J. Gustafson

Department of Speech, Music and Hearing, Royal Institute of Technology (KTH), Sweden
[neiberg,jocke]@speech.kth.se

Abstract
This study presents a dual channel decoder capable of modeling
cross-speaker dependencies for segmentation and classification
of fillers and feedbacks in conversational speech found in the
DEAL corpus. For the same number of Gaussians per state, we
have shown improvement in terms of average F-score for the
successive addition of 1) increased frame rate from 10 ms to
50 ms 2) Joint Maximum Cross-Correlation (JMXC) features
in a single channel decoder 3) a joint transition matrix which
captures dependencies symmetrically across the two channels
4) coupled acoustic model retraining symmetrically across the
two channels. The final step gives a relative improvement of
over 100% for fillers and feedbacks compared to our previous
published results. The F-scores are in the range to make it pos-
sible to use the decoder as both a voice activity detector and an
illucotary act decoder for semi-automatic annotation.
Index Terms: filler, feedback, coupled hidden Markov models,
cross-speaker modeling, conversation

1. Introduction
In human-human conversation interlocutors do not speak in iso-
lation, but rather mutually interacts with one another in the dis-
course. Thus, automatic detection of communicative signals in
conversation should benefit from modeling the cross-speaker
dependencies in the interaction process. Examples of this in-
clude detecting affect [1], engagement [2], turn-taking behavior
[3] and Dialog Acts (DA) [4].

The most trivial example of the benefit of modeling
cross-speaker dependencies is found in voice-activity detec-
tion (VAD), simply because overwhelmingly one speaks at a
time. This property of conversation allows for suppression of
cross-talk which is a main source of VAD error in conversa-
tional corpora with close-in microphones. In [5], interlocu-
tor dependencies were taken into account via a HMM-based
framework. Cross-talk suppression was achieved by a Viterbi-
search through the joint channel space, governed by joint tran-
sition matrix. Alternatively, cross-talk may be suppressed by
including cross-talk suppression features in a HMM-based sin-
gle channel frame-work [6]. The approach by [5] can be di-
rectly extended to modeling interlocutor dependencies for text-
independent joint segmentation and classification of DAs [7].
The decoder was based on prosodic features, most notably the
Fundamental Frequency Variation spectrum (FFV) which is a
vector-valued filter-bank with correlates to pitch change. The
target DAs included two types of fillers, back-channels, ac-
knowledgments among others in a multi-participant meeting.

In our previous work [8], we constructed a detector for non-
lexical tokens with the aim of semi automatic transcription of
corpora. These non-lexical tokens are usually found in dialog
acts which can be roughly divided into those that are interjected
into one’s own speech (filled pauses or fillers) and those that

are interjected into the interlocutor’s account (feedback or back-
channels). Feedback often occupy an entire inter-pausal unit
(IPU) although exceptions are found [9] while fillers often ini-
tiate an IPU. This points towards a frame-based solution, for
which a Hidden Markov Model framework is the standard so-
lution. The experiments showed the benefit of capturing the
prosodic characteristics of fillers and feedback by using a nor-
malized fundamental frequency cepstrum representation suit-
able for Hidden Markov Modeling, as well as standard MFCC
as auxiliary features. Additional improvement was achieved by
modeling the dyadic interaction, by using one Markov chain
per speaker and a joint coupled transition matrix. Finally, we
explored model topologies which take advantage of predictive
cues for fillers and feedback. An analysis of the errors of the
final decoder, which used all the mentioned techniques, showed
that a large proportion of the errors was still due to cross-
channel talk.

In this study we expand the task of detecting fillers and
feedback by also including silence and other types of speech.
This extension allows for using the decoder as a speech activity
detector, and also gives the position of both fillers and feedback
within an IPU. This information is useful for distinguishing be-
tween turn-initial feedback and feedback which occupy an en-
tire IPU (the same applies for fillers). Based on the decoder
introduced in [8], the following improvements are reported:

1. The frame-shift rate is increased to 50 ms. This reduces
the complexity of the decoder which improves speed and
allows longer duration modelling for the same number
of states per HMM which leads to improved recognition
performance.

2. A cross-correlation feature, computed as the maximum
cross-correlation between the channels normalized by
the energy in the non-target channel (denoted as NMXC
in [6] and JMXC in [10]). This feature is an approxima-
tion for the distance to the microphone.

3. Full coupled speaker-independent training of both the
joint transition matrix and the acoustic models formed
by Cartesian product.

In Section 2, the DEAL corpus is described, in Section 4.1
a normalized fundamental frequency cepstral representation is
outlined, in Section 4 experiments using single and dual chain
Hidden Markov Models are reported, which is followed by Dis-
cussion and Conclusions.

2. The DEAL corpus
This study uses data from the DEAL corpus [11]. It consists of
dialog data recorded as informal, human-human, face-to-face
conversations. The data collection was made with 6 subjects (4
male and 2 female), 2 posing as shop keepers and 4 as potential
buyers. Each customer interacted with the same shop-keeper
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twice, in two different scenarios. The customers were given
a task: to buy items at the best possible price from the shop-
keeper.

The recordings were done with one microphone per
speaker, and recorded at 16 kHz in two channels. All dialogs
were first transcribed orthographically including non-lexical en-
tities such as laughter, breath and hawks (the sound of clearing
ones throat). Filled pauses, repetitions, corrections, restarts and
cue phrases were labeled manually.

The DEAL corpus is rich in fillers and feedback tokens.
The feedbacks are generally single words (99%) or non-lexical
units and appear in similar dialog contexts (i.e. as responses
to assertions). The feedbacks are labeled according to attitude;
news receiving, dis-preference or general feedback, but in this
study the attitude is not addressed.

To facilitate comparison with our previous results we use
the six first DEAL dialogs. The labels for silence, breath and
hawks are collapsed into the SILENCE label. Similarly, all
speech acts other than FILLER and FEEDBACK are collapsed into
the SPEECH label. With FILLER and FEEDBACK, this gives us
four labels in total.

3. Single- and Dual-Channel Statistics
As stated in the introduction, a coupled channel topology can
give a richer and more accurate description of a dyadic inter-
action compared to a single-channel topology. To give a grasp
of this, we demonstrate a few obvious statistical examples from
the corpus. To facilitate comparison, the labels are quantized to
a 50 ms frame rate by rounding the start and end points towards
the nearest 50 ms border.

First, the single-channel monogram probabilities are com-
puted. From these, a dual channel cross product is formed,
which is compared to the true dual channel monograms. The
three type of monogram probabilities are found in Table 1.
One can see that the most frequent single-channel labels in de-
scending order are SILENCE, SPEECH, FEEDBACK and FILLER.
When the two types of dual channel monograms are compared,
the most striking difference is the overestimation of SILENCE-
SILENCE for the cross-product. More differences can be ob-
served, but are not addressed since the point is to show the
inadequacy of both the single-channel and dual channel cross-
product monograms. The estimated dual channel monograms
shows that the two most probable events in descending order are
SPEECH-SILENCE and SILENCE-SILENCE. Thus, overwhelm-
ingly one speaks at a time or both are mutually silent. We
also observe that SPEECH-FEEDBACK is almost as common as
SPEECH-SPEECH. In fact, FEEDBACK represent 39% of all kind
of SPEECH in overlap.

These trivial observations clearly shows that modeling
cross-speaker dependencies should be superior compared to
modeling each participant in isolation. A similar study can also
be done for the frame bigram statistics, but this not shown due
to space restrictions.

4. Decoder Design
The decoder is an improved version of the one in [8]. In Sec-
tion 4.1 the acoustic features are briefly described and in Sec-
tion 4.2 the description of acoustic modeling is given.

4.1. Acoustic features

The following acoustic features are considered:

Table 1: Single- and dual-channel monogram probabilities in
percent, estimated from frames at a 50 ms frame rate. Each
sub-table sums to 100

Single channel monograms
SILENCE SPEECH FILLER FEEDBACK

62.10 32.38 1.16 4.35
Dual channel monograms by single channel cross-product

SILENCE SPEECH FILLER FEEDBACK

SILENCE 51.7 - - -
SPEECH 26.9 14.0 - -
FILLER 0.97 0.50 0.02 -
FEEDBACK 3.62 1.89 0.07 0.25

Dual channel monograms
SILENCE SPEECH FILLER FEEDBACK

SILENCE 30.27 - - -
SPEECH 55.89 3.15 - -
FILLER 2.01 0.18 0.01 -
FEEDBACK 5.76 2.39 0.12 0.21

• RASTA processed MFCCs, where the RASTA process-
ing removes spikes and channel bias.

• Joint Maximum Cross-Correlation (JMXC), i.e the max-
imum cross-correlation between channels, normalized
by the energy of the non-target speaker and computed
with a 75 ms window;

• A Normalized Fundamental Frequency Cepstral Repre-
sentation. The procedure of finding correlates to pitch
starts with calculating a Constant-Q filter bank [12] in a
semitone scale. The filter-bank spans a total of 81 bins
between 60 Hz and 6458 Hz, which is below the Nyquist
frequency. The mean F0 is estimated based on harmonic
summation and without the need for a voicing decision.
Then the filters which are located up to 8 semitones from
the estimated mean F0 are retained. These filters are fi-
nally used to obtain a normalized fundamental frequency
cepstrum, where the first 6 coefficients are retained. The
procedure used is the same as for [8], which is the frame-
based one-dimensional version of the two-dimensional
segment based approach used in [9], and more details
are found in [13].

For both the normalized F0 cepstra and the MFCCs, we
add the delta along with delta-delta coefficients calculated over
a window of 5 frames (HTK-type delta).

4.2. Acoustic Modeling

Single-channel experiments are conducted using standard Hid-
den Markov Models with emitting distributions modeled as
Gaussian Mixtures. A standard 3-state left-to-right topology is
adopted for each label. A global HMM is constructed from the
single HMMs, with the help of bi-gram statistics calculated for
the labels in the training data. Since the coupled HMMs require
high computational effort and put high demands on memory re-
sources, we reduce the feature dimension by principal compo-
nent analysis. The F0 cepstra is reduced from 18 to 10 dimen-
sions and the MFCCs are reduced from 39 to 15 dimensions.

A fully dual coupled Hidden Markov Model [14] is ba-
sically two standard HMMs where each emitting density is a
function of two state variables and the state transition proba-
bilities are conditioned on the previous states in both Markov
chains using a joint transition matrix, see Fig. 1. This type
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Figure 1: Inference graph for a coupled double chain HMM
with joint feature space.
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GMM 2
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GMM 1

Figure 2: A Cartesian product between the mean parameters
of two states with two Gaussians per state each modeling a d-
dimensional feature space, forming 2d dimensional Gaussians
in a coupled HMM with a joint channel feature space. The di-
agonal covariances are constructed similarly.

of HMM is a natural extension to capture interaction in dyadic
conversations.

Consider two Markov chains, one for each of the two chan-
nels Q and R. Let q be a state in channel Q and let r be a state
in channel R. Then let a joint cross-channel emitting distribu-
tion bq,r(ot) connect each state q in channel Q with each state
r in channel R. To clarify, there is not a single emitting dis-
tribution for each single state, but one emitting distribution for
each possible pair of q and r. This is a consequence of form-
ing a Cartesian self product to a joint channel feature space, see
Figure 2, so ot = [oqt , o

r
t ]. The likelihood of the observation

sequence O = {o1o2...oT } and the two state sequences q and
r given the model is

P (O, q, r|λ) = πq1,r1bq1,r1(o1)

T∏
t=2

aqt−1,rt−1,qt,rtbqt,rt(ot)

where π is the probability of the occurrence of the state at the
first time instant (t = 1) and a is the coupled probability of
transition from a pair of states in the two channels, qt−1 and

rt−1 at time t − 1 to another pair of states qt and rt at time
t. If the model is supposed to be channel-symmetric then the
cross-chain conditional probabilities and emitting distributions
have to be symmetric for the two channels, i.e. bqt,rt = brt,qt ,
aqt−1,rt−1,qt,rt = art−1,qt−1,rt,qt and πq1,r1 = πr1,q1 .

The coupled training procedure goes as follows: First the
state sequences for each label are estimated by a Viterbi search
for each speaker channel using the single-channel HMMs. Then
the necessary statistics are accumulated symmetrically for the
two channels. The Cartesian product is formed. Specifically,
the Gaussian Mixtures from two states, each belonging to two
different Markov chains, are merged to a joint feature space and
the individual Gaussians are combinatorially assembled, squar-
ing the number of parameters, see Figure 2. The GMM weights
are normalized such that they sum to one. The joint transition
matrices and initial probabilities are formed by cross products.
The joint transition matrix and emitting distributions are then
updated by using the sufficient statistics from the Viterbi search
as an approximation for the expectation step in a single EM-
iteration.

The following configurations are considered:

S: Single-channel modeling with vector valued F0 correlates
(as computed in 4.1) and RASTA processed MFCC, both
computed either at a 10 ms or 50 ms shift-rate (with
scaled window sizes for the latter) and combined in the
same feature vector with PCA projection creating a 25
dimensional feature space;

CS: Same as the S 50 ms configuration above but with the
JMXC as an additional feature, i.e the maximum cross-
correlation normalized by the energy of the non-target
speaker computed with a 75 ms window, creating a 26
dimensional feature space;

CDT: A Cartesian product of CS creating a 52 dimensional
feature space, followed by coupled channel symmetric
training of the joint transition matrix

CDTA: Same as CDT, followed by coupled channel symmet-
ric training of the emitting distributions (GMMs)

5. Experiments and Results
The evaluation is done by leave-one-out training on dialog level
with round-robin rotation. Performance is measured in F-scores
for SPEECH, SILENCE, FILLER and FEEDBACK on frame level,
as well as the average of the four. F-score is defined as the
harmonic mean between precision and recall. The results are
presented as three types of comparisons to balance for fairness,
understanding, overview and detail.

In the first comparison, the average F-score of all five con-
figurations given the same number of Gaussians per state before
Cartesian product are shown in Table 2. It is clear that per-
formance increases in order of appearance from top to down:
increasing frame rate to 50 sm, adding the cross-correlation
feature CS, adding a channel symmetric joint transition ma-
trix CDT, and channel symmetric coupled GMM re-training.
A saturation at 12 Gaussians per state is observed for CDTA.
However, this comparison is not entirely fair, since the CDTA
GMMs in fact has the square the number of retrained Gaussians
per state as for the other models.

In the second comparison, the single- and dual-channel
HMMs CS and CDTA are compared for the same number of
trained Gaussians per state. The results are shown in Table 3
and it is clear that coupled retraining outperform single channel
models.
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Table 2: Average unweighted F-scores in percent for five con-
figurations and the same number of pre-coupled Gaussians per
state.

Gaussians per state
Configuration 4 8 12 16
S (10 ms) 57.2 58.5 59.5 59.7
S 57.8 59.7 60.8 61.1
CS 65.9 67.9 68.9 68.7
CDT 70.7 73.0 74.7 76.2
CDTA 77.7 83.8 86.9 85.7

Table 3: Average unweighted F-scores in percent for the same
number of retrained Gaussians per state.

Gaussians per state
Configuration 16 64 144 256
CS 61.1 69.3 67.1 65.2
CDTA 77.7 83.8 86.9 85.7

In the third and last comparison, the best performing config-
urations are selected based on average F-score. Then the num-
ber of retrained Gaussians per state are varied. The per class
and average F-score for the best three different configurations
with the cross-correlation feature are shown in 4. While the
average F-score increases as one inspect the table from left to
right, i.e. from CS, CDT to CDTA, there is little improvement
for SPEECH and SILENCE, especially between CS, CDT, while
a dramatic improvement for FILLER and FEEDBACK.

Table 4: F-scores for the three best configurations.

Configuration (G.per state)
Act CS (64) CDT (16) CDTA (144)
SILENCE 93.6 93.4 96.8
SPEECH 85.0 85.6 92.4
FILLER 42.3 68.6 80.9
FEEDBACK 46.2 53.4 76.7
Avg. 69.3 76.2 86.9

6. Conclusions
Analysis and experiments for automatic segmentation and clas-
sification of SILENCE, SPEECH, FILLER and FEEDBACK have
been reported. We show examples of rather simple cross-
speaker dependencies which are possible to model by cross-
channel Markov chains. Based on our previous approach, we
start presenting a single-channel baseline which uses a feature
combination of PCA projected normalized F0 Constant-Q Cep-
stra and MFCCs for standard Hidden Markov Modeling. For the
same number of Gaussians per state, we have shown improve-
ment in terms of average F-score for the successive addition of
1) increased frame rate from 10 ms to 50 ms 2) JMXC features
in a single channel decoder 3) a joint transition matrix which
capture dependencies symmetrically across the two channels 4)
coupled acoustic model retraining symmetrically across the two
channels. The improvement between step 2 and 3 is only due
to FILLER and FEEDBACK, while SILENCE and SPEECH has the
same F-scores for the two configurations. The final fourth step
shows improvement for all four classes, and gives a relative im-
provement of over 100% compared for FILLER and FEEDBACK

compared to our previous published results. The F-scores are in
the range to make it possible to use the decoder as both a voice
activity detector and an illucotary act decoder. The final sys-
tem is currently used for semi-automatic annotation of a large
conversational corpus recored at our lab.
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