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Abstract
This paper compares turn-taking in terms of timing and pre-
diction in human-human conversations under the conditions
when participants has eye-contact versus when there is no eye-
contact, as found in the HCRC Map Task corpus. By measur-
ing between speaker intervals it was found that a larger pro-
portion of speaker shifts occurred in overlap for the no eye-
contact condition. For prediction we used prosodic and spec-
tral features parametrized by time-varying length-invariant dis-
crete cosine coefficients. With Gaussian Mixture Modeling and
variations of classifier fusion schemes, we explored the task
of predicting whether there is an upcoming speaker change
(SC) or not (HOLD), at the end of an utterance (EOU) with
a pause lag of 200 ms. The label SC was further split into
LRs (listener responses, e.g. back-channels) and other TURN-
SHIFTs. The prediction was found to be somewhat easier for the
eye-contact condition, for which the average recall rates were
60.57%, 66.35% and 62.00% for TURN-SHIFTs, LR and SC
respectively.

Index Terms: Turn-taking, Back-channels

1. Introduction
In human-human conversation interlocutors take turns based on
generalized principles [1]. While such generalized principles
are helpful in understanding the essence of the phenomenon,
turn taking behavior vary as a function of many factors. At-
tempts of taking a turn has been found to be proportional to the
number of prosodic and syntactical cues [2] given by the inter-
locutor. In addition, visual cues such as gaze has been found to
be an important cue [3]. This result suggests that turn taking is
more evident when participants have eye-contact as compared
to when participant can not see each other. This has implica-
tions for a dialog with a virtual human. Adding the appropriate
turn-taking cues to a talking head has been found to elicit turn-
taking [4].

To mimic human speaker shifts, a dialog system should be
able to reproduce the response times between speaker shifts
seen in human-human interaction. While it is common to use
a pause duration threshold, usually around 0.5 s for end-of-
utterance (EOU) detection, it has been known for a long time
that response times (or gaps) are shorter in conversation. The
perhaps first study on this [5] showed a mean response time of
410 ms while the mode (the actual peak of the distribution) was
240 ms. A broader study on this [6] also discusses implications
for turn-taking and dialog systems. With a perceptually mini-
mum pause length of 200 ms (or minimum response time), they
have shown that 40% of all in between-speaker pauses are long
enough for the next speaker to react to cues immediately before
the silence. These are the speaker changes which is the scope in

this paper.

In human-human conversation, participants commonly ut-
ters responses such as “yeah”, “mhm”, “uhu”. Fujimoto [7]
points out the problem with the terminology for these tokens,
especially concerning the term back-channel and proposes to
call these short utterances Listener Responses. These are short
utterances or vocalizations which are interjected into the speak-
ers’ account without causing an interruption, or being perceived
as competitive of the floor. The turn-taking cues preceding Lis-
tener Responses has been found to be somewhat different than
the cues preceding regular turn-shifts [2][8]. While the general
prediction task is to determine at the EOU whether there is a
speaker change (SC) or not (HOLD), we here distinguish be-
tween speaker shifts which involve Listener Responses (LR)
and other turn shifts (TURN-SHIFT). This approach expands
previous attempts for prediction [9] [10]. We can formulate
these research questions as the following classification tasks:

(A) What is the predictability of TURN-SHIFTs vs. HOLDs?

(B) What is the predictability of LR vs. HOLDs?

(C) What is the predictability of SC (general speaker changes)
vs. HOLDs?

In this work, we seek a technical solution for on-line use
which relies on acoustic cues to achieve fast response times.
We rely on talkspurts [11] (also called Inter Pausal Units) and
predict the next pattern according to the mentioned tasks for
the conditions when there is eye-contact and when there is no
eye-contact. We explore a length-invariant time varying feature
parametrization which is formulated as a modified type II Dis-
crete Cosine Transform (DCT). This parametrization has many
useful properties, such as the separation of segment length (or
speaking rate) in the classifier or analysis, and the option of
modeling the relative shape of the feature trajectory instead of
the absolute shape. This parametrization has been successfully
used for analysis and classification of listener responses in pre-
vious studies [12][13].

2. The MapTask Corpus
The HCRC Map Task Corpus [14] contains 128 dialogs. The
task is for one subject to explain a route to another subject. The
one who explains the route is denoted as the “giver” and the
one who receives the explanation as the “follower”. Half of the
dialogs were recorded under a face-to-face condition and the
other half under a non-visible condition. The speakers in the
“follower” role were excluded since their dialog moves mostly
consisted of acknowledgments and clarifications. Two conver-
sations, labeled q3ec1 and q3ec5, were discarded due to a
buzz in the speech signal, and q6ec2 was found to be trun-
cated and hence discarded.
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We used the official MapTask annotations concerning the
distinction between Acknowledgment Moves (MTACK) and
other talkspurts (NONMTACK). The precise definition of an
Acknowledgment Move is found in [15], which closely resem-
ble the term Listener Response and thus serve our purpose. It
is described as ‘a verbal response that minimally shows that the
speaker has heard the move to which it responds, and often also
demonstrates that the move was understood and accepted’. The
inter-label agreement of the Map Task Corpus annotations are
good (κ = .83).

2.1. Talkspurt segmentation

Based on the annotations provided (excluding the speaker noise
tokens ”noi”), we segmented the corpus into talkspurts [11],
defined as a minimum voice activity duration of 50 ms separated
by a minimum inter-pause of 200 ms. The resulting connected
speech segments are referred to as talkspurts, where the latter
threshold is approximately equal to the minimum perceptible
pause duration. If a talkspurt is comprised of more than one
dialog move, the talkspurt is labeled with the label from the
first dialog move included in the talkspurt. In 3.16% of the
cases, the merging procedure created talkspurts which started
as a (MTACK) and ended as a (NONMTACK). The occurrence
of these latter talkspurts are considered to be negligible.

2.2. Between Speaker Intervals

The between speaker interval, can be positive (gap) or negative
(overlap). To compute the gaps and overlaps, two cases of over-
lap are first considered. The first is interjection into complete
overlap and the second is partial overlap. The between speaker
interval was computed from the partial overlap case and the no
overlap case which is shown in Figure 1, where the tails are cut
at 2000 ms. The parameters for the distributions are given in Ta-
ble 1. The mean value for the non eye-contact condition is lower
than for the eye-contact condition, which is consistent with the
findings of [16] and [17]. However, our results for the standard
deviation does not resemble the latter study, which might be ex-
plained by the different definitions of a turn. To be able to react
to incoming speech in overlap one need around 200 ms to decide
whether to continue or stop. From the cumulative distributions
it was found that 37% of all speaker shifts occurred before 200
ms for the eye-contact condition, while the same proportion was
44% for the no eye-contact condition. This finding is elaborated
on in Section 6.

Condition MEDIAN MEAN STD. DEV.

Eye-contact 320 399 540
No eye-contact 240 313 501

Table 1: Parameters for between speaker interval distributions,
measured in ms.

2.3. Automatic labeling procedure

As prediction targets, we use two types of non-overlapped
observed speaker changes which are extracted by automatic
means. At the end of each NONMTACK talk spurt, the speaker
change labels are derived by measuring the silence duration for
both speakers, measured from the end of the talkspurt to the start
of the next talkspurt in respectively channel. Then a speaker
change is assigned if the pause is shorter for the interlocutor,
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Figure 1: The probability mass function of between speaker in-
tervals using bins of 200 ms. The no eye-contact function is
shifted to the left and slightly narrower.
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Figure 2: Examples of the three types of labels.

otherwise a non-speaker change is assigned. If the assigned
speaker change targets a NONMTACK, it is referred to as TURN

SHIFT. If the assigned speaker change targets a MTACK, it is
referred to as LR (Listener Response). The joint set of TURN

and LR is simply referred to as SC (speaker change) and a non-
assigned speaker change is denoted as HOLD. These definitions
are illustrated in Figure 2. The non-overlapped labels are cho-
sen as the ones which does not have any overlap in the last 500
ms of each talkspurt. In case the talkspurt is shorter than 500
ms, then the entire talkspurt is checked to ensure that there is no
overlap. In addition, if the between-speaker silence is shorter
than a minimum response time of 200 ms then it is also con-
sidered as an overlapped talkspurt, and is hence ignored. The
procedure produces non-overlapped labels for 71%-77% of all
talkspurts depending on condition.

3. Feature trajectories as length-invariant
Discrete Cosine Coefficients

To parameterize the trajectories of each feature through out a
talkspurt, we use DCT coefficients invariant to segment length:

Xk =
1

N

N−1∑
n=0

xn cos

(
π

N
(n+

1

2
)k)

)
k = 0, . . . , N−1

where N is the segment length, xn is the feature value at time
n and Xk is the k’th coefficient.

There are several reasons for using this time-varying pa-
rameterization. 1) The DCT basis functions are periodic which
allows good interpolation of syllabic rhythm in speech. 2) In
general, the length-invariance gives a normalization for dura-
tion or speaking rate. If duration or speaking rate is added to
the final feature vector, then the machine learning algorithm can
determine whether it is a salient cue or just speaker variation.
For our turn-taking application, sometimes the actual talkspurt
is shorter than the look-back window length at the end of each
talkspurt, but since the parametrization is length invariant there
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is no problem to use the shorter talkspurt instead. 3) These DCT
coefficients are also faster to compute than polynomial regres-
sion coefficients, since polynomial regression require matrix in-
version. 4) The 0’th coefficient is equal to the arithmetic aver-
age, which means if it is omitted, then only the relative shape of
a trajectory is parametrized. This property is useful for param-
eterizing features such as F0 (which has a speaker dependent
additive bias) , Intensity (which is dependent on the distance
to the microphone) or MFCCs (which has an additive channel
bias).

Given previous studies on listener response elicitation and
turn-taking [2][8], we chose the following feature set: F0 EN-
VELOPE of the last 500 ms as computed by openSMILE, IN-
TENSITY of the last 1000 ms, SPECTRAL FLUX of the last 1000
ms, which is defined as the L2-norm of energy normalized FTT-
bin difference between two adjacent frames. Since spectral flux
has been used for estimating tempo in music [18], we hope to
capture up-step or down-step in speaking rate via spectral flux,
which is much more simple than speaking rate estimation via
syllable nucleus detection. Without further motivation, the fol-
lowing two features are also used: DURATION of the previous
talkspurt, MFCC of the last 1000 ms.

The acoustic features were extracted by openSMILE [19]
at a 10 ms frame rate, where the F0 ENVELOPES are computed
by the Sub-harmonic sampling method with octave correction.
All F0 ENVELOPES and INTENSITY are first filtered using a
moving average filter with a windows size of 3 frames, then the
F0 ENVELOPES, SPECTRAL FLUX and DURATION are trans-
formed by the log-operation: xlog = log2(1 + x). For F0 EN-
VELOPE the operation gives a perceptually relevant semitone
scale, but it also allows for a better fit for Gaussian modeling,
which applies to the other features as well. Finally, the features
are parameterized in the time dimension using length invariant
DCT-coefficients 1-6 (omitting the 0th coefficient, i.e the addi-
tive bias), except for DURATION for which the 0’th coefficient
(arithmetic average) is used.

4. Experiments
For all experiments, the training set TRAINSET consists of so-
called quads 1-4, the development set DEVSET holds quads 5-6
and the evaluation set EVALSET holds quads 7-8. The three
sets are speaker independent. By applying the automatic label-
ing procedure, the counts for the resulting labels are shown in
Table 2. For classification, the features were concatenated into
a single vector followed by N(0,1) normalization with the mean
and variance estimated on training data. Then classification was
done using bi-Gaussian Mixture Models (GMM) with diagonal
covariances (which was found to work better than Support Vec-
tor Machines for this task). The number of DCT coefficients
(i.e. the temporal resolution) per feature type are optimized be-
tween 1-9 on the development set. Then three ways to combine
each feature type is tried out: 1) feature space combination 2)
classifier fusion via linear addition of the log-likelihood ratios
for each feature type model 3) Linear Discriminant Analysis
(LDA) fusion of the log-likelihoods for each class and feature
type model, where the LDA prior distribution was set to uni-
form. Then the three combination schemes are tested for unseen
data on the evaluation set.

5. Results
The performance is measured by average recall, which is the
average along the diagonal in a confusion matrix. As a rule of

Eye-contact
Set HOLD TURN SHIFT LR

TRAINSET 1897 543 496
DEVSET 742 321 282
EVALSET 1606 473 366

No eye-contact
Set HOLD TURN SHIFT LR

TRAINSET 2412 833 784
DEVSET 983 359 351
EVALSET 865 239 255

Table 2: Counts of automatically extracted labels in the corpus.

thumb, the average recall should be higher than one divided by
the number classes.

The DEVSET results given the optimal number of coeffi-
cients is shown in Table 3. For both conditions, the features
giving the most contribution are in descending order: DURA-
TION, MFCC and INTENSITY. F0 ENVELOPES was found to
more important than SPECTRAL FLUX for the eye-contact con-
dition, while it was found to be the other way around for the non
eye-contact condition. Classifier fusion seems to be superior to
feature space combination, and the LDA fusion scheme outper-
forms the linear fusion scheme. Overall, prediction under the
no eye-contact condition seems to be more difficult than for the
eye-contact condition.

The results for the three feature merging classifiers us-
ing optimal time resolution evaluated on unseen data in the
EVALSET are shown in Table 4. The same trends as for the
DEVSET are observed where classifier fusion is better than fea-
ture space combination, and LDA fusion is the best performing
classifier (the only exception is for Eye-contact:TURN). In gen-
eral, prediction seems to be more difficult for the no eye-contact
condition while easier for the eye-contact condition, which the
exception of no eye-contact: LR. Further investigations may re-
veal if this latter exception is a fluke or a genuine property of
turn-taking when there is no eye-contact.

Eye-contact
Merging method TURN LR SC
Feat. space 56.12 57.60 56.17
Lin. Fusion 61.45 63.08 61.36
LDA Fusion 60.57 66.35 62.00

No eye-contact
Merging method TURN LR SC

Feat. space 57.62 56.07 52.76
Lin. Fusion 53.01 58.71 58.13
LDA Fusion 57.82 67.51 60.74

Table 4: Average recall rates in percent for the EVALSET for
the three two-class problems: (A) TURN SHIFT vs. HOLD, (B)
LR vs. HOLD, (C) SC (speaker change) vs. HOLD.

6. Discussion and Conclusions
This study has compared turn-taking in terms of timing and
prediction in human-human conversations under the conditions
when participants has eye-contact versus when there is no eye-
contact. For prediction we used prosodic and spectral features
parametrized by time-varying length-invariant discrete cosine
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Eye-contact No eye-contact

TURN LR SC TURN LR SC

F0 ENVELOPES 58.15 (3) 53.59 (1) 52.48 (1) 49.95 (7) 52.86 (4) 53.53 (1)
INTENSITY 61.73 (9) 62.30 (6) 62.17 (9) 54.02 (3) 58.64 (6) 55.62 (3)
SPECTRAL FLUX 55.48 (9) 55.59 (9) 55.59 (8) 52.31 (3) 55.60 (5) 52.37 (3)
DURATION 65.24 (1) 63.44 (1) 64.25 (1) 58.01 (1) 63.40 (1) 61.24 (1)
MFCC 61.76 (6) 64.39 (7) 64.04 (6) 58.35 (9) 59.84 (6) 59.84 (9)

Feat. space 60.76 64.77 62.87 53.60 55.41 54.00
Lin. Fusion 65.14 66.09 65.92 55.58 59.63 59.68
LDA Fusion 67.09 67.52 66.46 59.80 64.98 60.80

Table 3: Average recall in percent for the three types classification tasks on the DEVSET: TURN vs. HOLD, LR vs. HOLD, SC (speaker
change) vs. HOLD. The optimal time-resolution specified by the number of DCT coefficients are given in parenthesis.

coefficients. By omitting the 0’th coefficient, which is equal
to the arithmetic average, only the relative shape of the fea-
ture trajectory is parametrized. With Gaussian Mixture Model-
ing and variations of classifier fusion schemes, we explored the
task of predicting upcoming HOLDs, LRs (listener responses) or
TURN-SHIFTs, at a pause lag of 200 ms. The results showed that
we can indeed predict upcoming HOLDs from TURN-SHIFTs or
LR above chance. The features giving the most contribution
are in descending order: Duration, MFCC and Intensity fol-
lowed by either F0 ENVELOPE or SPECTRAL FLUX depending
on condition. The prediction was found to be somewhat eas-
ier for the eye-contact condition, which the exception of pre-
dicting upcoming LR, which was also the easiest task under
both both conditions. From the cumulative distributions of be-
tween speaker intervals measured up to 200 ms it was found
that 37% of all speaker shifts occurred in overlap for the eye-
contact condition, while the same proportion was 44% for the
no eye-contact condition. This means that for the no eye-contact
condition a larger proportion of of all speaker shifts are either
of a non-intrusive floor sharing style or due to interruptions.

The implication of these findings remains to be fully under-
stood, but a possible explanation is that if turn-taking in non-
overlap is more difficult in terms prediction under the no eye-
contact condition then the same might apply to turn-taking in
overlap. Then the larger proportion of speaker shifts in overlap
for the no eye-contact condition might be due to unintentional
interruptions since one, to a lesser degree, do not know when
to talk. Such an interpretation would be consistent with other
studies which has found that turn-taking is aided by visual cues.
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