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Abstract 
In this paper, we present a data-driven chunking parser for 
automatic interpretation of spoken route directions into a route 
graph that is useful for robot navigation. Different sets of 
features and machine learning algorithms are explored. The 
results indicate that our approach is robust to speech recognition 
errors.  
Index Terms: spoken language understanding, route directions, 
human-robot interaction 

1. Introduction 
Robots are increasingly finding place in our daily lives. This 
transition from constrained and well-controlled industrial 
settings into dynamic environments where the objectives and 
situations may change radically over time makes it infeasible to 
equip robots with all necessary knowledge a-priori. While robots 
can learn from experience, understanding something hitherto 
unknown remains a challenging task for them. Humans, 
however, are a rich source of information. By engaging in a 
spoken dialogue with humans robots can extract this information 
and gain knowledge about the unknown.   

How robots can be endowed with skills for spoken dialogue 
with humans and seek route directions to navigate their way in 
unknown real urban environments is the central research 
question that is being investigated in the IURO project1. A 
common way of representing navigational knowledge is the 
route graph. In a previous study [1] we presented a novel 
approach for data-driven semantic interpretation of manually 
transcribed route instructions (in Swedish) into route graphs. The 
results indicated that it is possible to get people to freely describe 
routes which can be automatically interpreted into a route graph. 
In this paper, we discuss and present the findings of three 
extensions to our previous work. First, we now also learn the 
route segments of a route graph. Second, we evaluate the 
usability of our approach on route instructions given in English. 
Third, we evaluate our approach on automatic speech recognition 
(ASR) results of spoken route instructions.  

2. Motivation and related work 

2.1. Data-driven semantic interpretation 
The problem of interpreting spoken route instructions into a 
route graph is that of semantic interpretation of spoken 
utterances – or Spoken Language Understanding (SLU), as it is 
commonly referred to – in dialogue system processing. The 
problem of SLU can be formulated as taking a speech 

1 Interactive Urban Robot (www.iuro-project.eu) 

recognition result and producing a semantic representation that 
can be used by the dialogue manager to decide what to do next. 
Automatic speech recognition is, however, prone to errors and 
poses challenges for SLU. The real world setting of the IURO 
robot makes this even more difficult. 

In a study [2] on human-human dialogue with an error prone 
speech recognition channel it has been shown that humans that 
have a very clear goal of the interaction may accurately pick out 
pieces of information (despite poor accuracy in speech 
recognition) from the speech recognition results that are relevant 
to the task, and ask relevant task related questions to recover 
from the problem. This may suggest that a data-driven approach 
to keyword spotting where specific words in the input are 
associated with certain concepts or slot-value pairs might server 
our purpose. However, the semantics of route directions is highly 
structured and cannot be treated as “bag of words/concepts”. For 
example, the route instruction “at the roundabout take the 
second exit eh on your left hand side” contains not just the 
concepts ROUNDABOUT, TAKE, EXIT and LEFT, but also the 
relationship between the concepts. That the action of changing 
direction should be taken at the roundabout and the direction to 
take is left and it is precisely the second exit and not any other. 
Any approach to automatically interpret this route instruction 
must preserve this structural relationship. 

Another demand for understanding freely spoken route 
directions is that the data-driven approach should be able to 
generalize to some extent when encountered with unseen 
concepts, and be able to back off to more general concepts, 
without breaking the conceptual structure. We therefore need a 
domain model (ontology) which defines concepts on different 
levels of specificity and specifies how they may be structured 
and the data-driven approach should take this domain model into 
account. 

An approach to SLU using Markov Logic Networks is 
presented in [3]. However, the resulting semantic representations 
are limited to a set of slot-value pairs (i.e., they are not 
structured). A Hidden Vector State model based approach in [4] 
is shown to learn deeply structured semantic interpretations in a 
travel-booking domain. However, it is not clear whether the 
approach may utilize an ontology and back off to more general 
concepts in order to learn generalizations. In another approach to 
SLU a context-free grammar (CFG) is augmented with semantic 
instructions [5]. However, the approach assumes that the input 
may be described with a CFG which makes it unsuitable for 
interpreting freely spoken route directions. In our previous work 
[1] we presented a data-driven approach that is able to interpret 
and represent the structural relations present in route directions, 
and learns generalization using a domain ontology. However, the 
problem of interpreting spoken route instructions was left as 
future task which we have addressed in our current work. 
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2.2. Route graphs for navigation 
A conceptual route graph (CRG) is a type of a route graph that 
represents the semantics of human route descriptions. In a 
scheme proposed in [6], the nodes in a CRG represent places 
where a change in direction takes place and edges connect these 
places. The CRG may be divided into route segments, where 
each segment consists of an edge and an ending node where an 
action to change direction takes place. Conceptually, segment 
consists of (i) controllers – a set of descriptions that guide the 
traversal along the edge, e.g., “go straight down”, (ii) routers – a 
set of place descriptors that helps to identify the ending node, 
and (iii) action – the action to take at the ending node in order to 
change direction. At least one of these three components is 
required in a route segment. 

Figure 1 illustrates a CRG. The nodes in the graph represent 
the concepts and the edges their attributes. The concepts, their 
attributes and argument types are defined in the type hierarchy of 
the domain model using the specifications in the dialogue 
framework Jindigo [7]. 

 

 
Figure 1: The conceptual route graph for the route 

instruction “go straight and take the second right after the 
church then eh take a left the post is on the right hand side” 

3. A Chunking parser for semantic 
interpretation 

In our previous work we presented a novel application of 
Abney’s chunking parser [8] to data-driven semantic 
interpretation. Inspired by the Chunker and the Attacher stages 
of the syntactic analyzer, we used the Chunker for finding base 
concepts in a given sequence of words. The Attacher is then 
given the task of assigning more specific concepts (given by the 
type hierarchy of the domain) and to attach concepts as 
arguments. For example, route instruction “turn right at the post 
office and eh continue till the church”, could be chunked as the 
following: 

 
[ACTION turn] [DIRECTION right] [ROUTER at] [LANDMARK the 
post office] [DM and] [FP eh] [CONTROLLER continue till] 
[LANDMARK the church] 

 
To turn chunking into a classification problem, we followed 

the common practice of assigning two labels for each type of 
chunk: one with prefix B- for the first word in the chunk and one 
with prefix I- for the following words. The Attacher takes a base 
concept (a chunk) and does two things: First, it may assign a 
more specific concept class (like CHURCH). To allow it to 
generalize, the Attacher also assigns all ancestor classes, based 
on the domain model (i.e., BUILDING for CHURCH; this, however, 
is not shown in the example). The second task for the Attacher is 
to assign attributes and assign them values. Some attributes are 
filled with new concepts (like property: LARGE), while others are 

attached to the nearest concept that fits the argument type 
according to the domain model (like direction: →, which means 
that the interpreter should look for a matching argument in the 
right context). The Chunker output from above could be 
modified by the Attacher as in the following example: 

 
[TAKE(direction: →) turn] [RIGHT right] [AT(landmark: →) at] 
[POSTOFFICE the post office] [DM and] [FP eh] 
[CONTINUE(landmark: →) continue till ] [CHURCH the church] 

 
The Chunker in our approach is a single-label classifier and 

the Attacher a multi-label classifier where none, one or several 
labels may be assigned to the chunk. Naive Bayes and a set of 
Linear Threshold Units algorithms were implemented for the 
classifiers and tested.  Only the latter can be used for the multi-
label learning in the Attacher. As a final step, heuristic rules 
were used to group the CONTROLLERs, ROUTERs and ACTIONs 
into SEGMENTs (and a ROUTE). The final result of the Chunking 
parser is basically a conceptual route graph (cf. Figure 1). 

In our previous study, we used data collected in a Wizard-of-
Oz experiment. Subjects first watched a recorded video of a 
route and then described (in Swedish) the route direction to the 
wizard. Cross-validations were performed on a set of 35 route 
instructions which were manually annotated with the correct 
chunking and attachments. To measure the performance of the 
Chunking parser we compared the resulting CRG with its 
reference CRG (the manual annotation). In analogy to the 
measure of Word Error Rate (WER) in evaluation of speech 
recognition results, we used Concept Error Rate (CER) as a 
measure of edits required in the reference CRG to obtain the 
generated CRG, by flattening the conceptual trees. A penalty 
metric was defined to assign weights to each type of edit 
operation based on the type hierarchy in our domain model. The 
weighted CER thus obtained was better representative of the true 
performance of the Chunking parser in contrast to simple edit 
distance. The best performance (CER of 21.47) for the Chunker 
was achieved with a Sparse Perceptron learner and for the 
Attacher (CER of 25.60) using a Sparse Averaged Perceptron 
learner. These figures indicated that it is possible to get people to 
freely describe routes which can be automatically interpreted 
into a conceptual route graph. 

4. Method 
In the study presented here, we made three extensions to our 
previous work. First, inspired by the performance of the Chunker 
in learning base concepts, we introduced another chunk learner – 
the Segmenter – to find route segments in the sequence of 
chunks. The Chunker output shown earlier can be segmented as 
follows: 
 
[SEGMENT [ACTION turn] [DIRECTION right] [ROUTER at] 
[LANDMARK the post office] ] [SEGMENT [DM and] [FP eh] 
[CONTROLLER continue till] [LANDMARK the church] ] 
 
The Attacher performs the same tasks as earlier, except that it 
now looks for attachments only within the current route segment. 
The Chunking parser output now contains route segments which 
were not learned in our previous work. This makes the semantic 
interpretation of route instruction into route graphs fully 
automatic. Second, we verified whether the Chunking parser can 
be applied for extracting CRGs from route instructions given in 
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English. Third, we addressed the problem of extracting CRGs 
from speech recognition results of spoken route instructions. In 
order to meet these two objectives we used the Instruction-Based 
Learning (IBL) corpora [9] of route instructions. The corpus 
contains manual transcriptions and audio recordings of 144 
spoken route instructions given in English. In IBL, 24 subjects 
were recorded as they gave route instructions to a miniature 
robot in a miniature town. The town environment comprised of 
various landmarks from real urban setup and provides a close 
approximation of the urban settings in IURO. The average length 
of instructions in IBL is 56 words. The manual transcriptions 
include filler pauses, self-corrections and repetitions. The audio 
recordings were made in a normal indoor setup, and contain 
speaker pauses and silences during route direction giving. 

As a first step, the Chunking parser’s performance was 
evaluated on the manual transcriptions to obtain the baseline for 
comparing its relative performance on the speech recognition 
results. A set of 30 IBL route instructions were manually 
annotated. This data, on an average, contained 31.1 words, 13.13 
concepts and 2 route segments per route instruction and was used 
as cross-validation set. 

Next, we trained the language model of an off-the-shelf ASR 
system with 113 route instructions (excluding those in the cross-
validation set) from the IBL corpora. The trained ASR had a 
vocabulary size of 213 words. The audio recordings of the route 
instructions in the cross-validation set were recognized by the 
trained ASR. The best hypothesis for each instruction was 
chosen for validating the Chunking parser’s performance. 

We tested the performance of the Chunking parser again on 
the Naive Bayes (NB) and Linear Threshold Units (LTU) 
algorithms. Two types of LTUs were tested: Sparse Perceptron 
(SP) and Sparse Averaged Perceptron (SAP) [10]. For the 
Chunker the following features were used: word instance: the 
word itself, word window: one previous and two next words, 
previous tags: chunk tags of the two previous words, and POS 
window: part of speech of the words in the word window. For the 
Segmenter and the Attacher we used: bag of words: an ordered 
set of words in the chunk, bag of POS: an ordered set of POS of 
words in the chunk, and chunk label window: a window of chunk 
labels of two previous and one next chunk.   

5. Results 
For drawing comparisons we used the baseline performances of 
the Chunking parser corresponding to a keyword spotting based 
method (shown in Table 1 in bold figures). 

 
 Features CERNB CERSP CERSAP 
Chunker Word instance 50.83 46.15 45.17 
Segmenter Bag of words 77.22 60.83 53.06 
Attacher Bag of words -- 77.62 77.70 

 
Table 1: Baseline performances of the Chunking parser. 
  
In general, the LTUs performed better than Naive Bayes for 

the chunking task. The best performance for the Chunker is 
achieved with the Sparse Averaged Perceptron learner, as shown 
in Table 2, where the CER is shown with additive feature sets for 
the three algorithms.   

For the Segmenter the best performance is achieved with the 
Sparse Perceptron learner and using the chunk label window 
feature, as shown in Table 3.  

Features CERNB CERSP CERSAP 
Word instance 50.83 46.15 45.17 
+ Word window 17.31 21.33 20.82 
+ Previous tags 18.16 10.86 10.64 
+ POS window 19.61 11.01 11.81 

Table 2: Chunker performances with additive features. 

Features CERNB CERSP CERSAP 
Bag of words 83.89 64.17 59.44 
+ Bag of POS 98.33 67.50 64.17 
Chunk label window 31.67 25.83 28.89 

Table 3: Segmenter performances with additive features. 

The best performance for the Attacher was achieved with the 
Sparsed Averaged Perceptron learner and using the bag of words 
feature alone, as shown in the first two columns of Table 4. 

A closer look at the route segments indicated that poor 
placement of route segment boundaries resulted in a restricted 
search space for finding attachments. In order to get an estimate 
of the Attacher’s performance independently from the 
Segmenter, we compared only the sub-graphs in all the route 
segments of a CRG with their counterparts in the reference CRG. 
The last column in Table 4 presents the Attacher’s performance 
following this scheme.  

 
Features CERSP CERSAP sgCERSAP 
Bag of words (BW) 29.42 29.11 19.99 
Chunk label window 49.32 49.74 50.93 
+ BW 29.62 29.44 21.75 
BW + Bag of POS 30.85 31.48 21.69 

Table 4: Attacher performances with additive features. 

The learning curves in Figure 2 show that while the Chunker, 
the Segmenter and the Attacher were able to perform well with 
little training (just 15 samples) their performance continues to 
improve with more training data. 

 

 
Figure 2: The learning curves for the Chunking parser. 
  
The performance of the Chunking parser on the recognized 

hypotheses of spoken route instructions is illustrated in Figure 3. 
While the first eight points on the horizontal axis represent the 
Chunking parser performances w.r.t. various ASR performances 
(obtained by varying the language model parameters), point nine 
is the performance on transcribed route instructions, i.e., WER of 
0. The CER curves suggest that the performance of the Attacher 
follows the WER. Against the best ASR performance, WER of 
25.02, the Attacher achieved the CER of 40.55. In contrast to the 
Attacher CER of 19.99 on transcriptions, the introduction of a 
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WER of 25.02 resulted in a relative CER of 15.53. This is 
comparable with the Attacher’s original performance (CER of 
19.99). The rather steady relative CER curve (R-CER) in Figure 
3 highlights the robustness of our approach in dealing with errors 
in speech recognition and the irregularities of spoken language. 
The following example from the validation set highlights the 
strength of the Chunking parser:  
 
Human: “okay if you erm if you get to the university and then 
take the third first exit just past the university and then turn right 
erm boots is on your left”  
ASR hypothesis: “go front again the university and then take the 
third first exit just past the university and then turn right and 
trees is on your left”,  
Chunking parser output:  
[CONTINUETO(landmark:→) go front again] [UNIVERSITY the 
university] [DM and then] [TAKE(count: →, landmark:→) take] 
[NUMBER the third] [EXIT first exit] [AFTER(landmark:→) just 
past] [UNIVERSITY the university] [DM and then] 
[TAKE(direction:→) turn] [RIGHT right] [DM and] [LANDMARK 
trees] [AT(direction: →,landmark: ←) is] [LEFT on your left] 
 
The Chunking output shows that, (i) despite errors in the 
recognized hypothesis the conceptual information about going to 
the university present in spoken utterance was identified and 
represented (CONTINUETO(landmark:→)) in the route graph, and 
(ii) on encountering the unseen concept “trees” that doesn’t exist 
in our domain model, the Attacher has backed off and assigned 
the more general concept LANDMARK to it. In this way, the 
Attacher has not only preserved the fact that a landmark has been 
mentioned, but also maintained its structural relationship to the 
concept AT and LEFT in the route graph. This is where a spoken 
dialogue could be used to clarify the unknown concept. 
 

 
Figure 3: The performance of the Chunking parser w.r.t 

ASR WER (R-CER: relative CER). 

6. Conclusions 
The encouraging performance scores of the Chunking parser on 
the English corpus (CER of 19.99 vs. baseline 77.70) and the 
Swedish corpora (CER 25.60 vs. baseline 83.34) indicate that 
our data-driven approach could be easily used for understanding 
route instructions in other languages using simple features. 
Features such as affixes and part of speech which were found 
informative for interpreting route instructions in Swedish were 
not useful for English. This might be explained by the fact that 
Swedish has a richer morphology in comparison to English.  
      In contrast to the baseline performance of keyword spotting 
based method for route instruction interpretation (CER of 77.70) 
the Attacher’s performance (CER of 19.99) is very promising. 
Moreover, the rather steady relative CER on recognized route 

instructions shows that the presented framework is robust to 
speech recognition errors. These are encouraging results for 
using Chunking parser in a spoken dialogue system. 

The performance of the automatic Segmenter was not in line 
with the performance of the Chunker, which means that we still 
might need to use heuristics for this task. To find better 
algorithms for automatic segmentation is a topic for future work. 

Our next step is to evaluate the usability of the route graphs 
generated by the Chunking parser. One way to do this is asking 
human subjects to follow the paths in the IBL miniature town 
using the conceptual information present in CRGs. How close 
the subjects reach to the goal could indicate the utility of the 
route graphs. The information about the key concepts that 
subjects find useful in navigation may indicate the information 
they would incorporate when giving directions. This could help 
in user modeling and for designing dialogue strategies for the 
IURO robot when seeking route directions from passersby. 

The reasonably good performances of the Chunker and the 
Attacher with little use of right context encourages us to train the 
Chunking parser on the left context only, and evaluate its 
performance on the Jindigo framework for incremental dialogue 
processing [7]. 
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