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Head Pose Patterns in Multiparty

Human-Robot Team-Building Interactions

Martin Johansson, Gabriel Skantze, and Joakim Gustafson
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Abstract. We present a data collection setup for exploring turn-taking
in three-party human-robot interaction involving objects competing for
attention. The collected corpus comprises 78 minutes in four interactions.
Using automated techniques to record head pose and speech patterns, we
analyze head pose patterns in turn-transitions. We find that introduction
of objects makes addressee identification based on head pose more chal-
lenging. The symmetrical setup also allows us to compare human-human
to human-robot behavior within the same interaction. We argue that
this symmetry can be used to assess to what extent the system exhibits
a human-like behavior.

Keywords: focus of attention, human-robot interaction, turn-taking.

1 Introduction

Robots of the future are envisioned to help people perform tasks, not only as
mere tools, but as autonomous agents interacting and solving problems together
with people. These future robots could interact with humans in a way similar
to the way humans interact with each other, or they could make use of more
simple, machine-like interaction patterns. Some situations could call for the robot
to be a human-like artificial conversational partner capable of participating in
a multiparty dialogue. One way of measuring human-likeness is by measuring
the behavior of the human interlocutor[1]. The closer the behavior of the human
interlocutor in the interaction with the robot to that of interaction with other
humans, the more human-like this interaction is.

Aside from being human-like or not, there are some fundamental problems a
robot will have to deal with to engage in dialogue with multiple humans. Two
of these are to manage turn-taking in order to know when it is acceptable to
say something, and to figure out to whom an utterance is directed. Previous
studies have found head pose[2] to be a useful indicator to identify the addressee
in three-party interaction, especially in combination with acoustic cues[3]. The
problems future robots could help solve might however include visible objects
competing for attention, possibly affecting head pose behavior.

Edlund et al.[1] proposed to evaluate human-likeness in human-machine in-
teraction using a two-way mimicry target. In order for the machine’s behavior to
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be deemed human-like, it should behave like a human interlocutor in a human-
human conversation, and the human speaking to it should behave like when
speaking to another human. Any difference in the human’s behavior is seen as a
result of the machine’s behavior. In a multiparty setting with two humans and
a robot in similar roles, a two-way mimicry target can be evaluated using, for
example, symmetry in behavior between the human-human and human-robot
interactions.

This paper presents a data collection setup for three-party conversations with
two humans and one robot, designed to allow comparisons between the robot and
human participants through symmetry. The purpose of this study is to test the
setup by exploring head pose patterns surrounding turn changes when we involve
more targets for visual attention than just the participants. We also evaluate the
human-likeness of the robot by comparing head pose patterns between human-
human and human-robot interactions.

2 Background

The function of gaze in interaction has been found to serve multiple functions,
one of them being turn-taking control. Kendon[4] found that speakers look away
at beginning of turns, and look back at their interlocutors towards end of turns.
Gaze behavior has also been found to provide information about the target of
attention. Vertegaal et al.[5] found eye-gaze to be a good predictor of conversa-
tional attention in multiparty conversations, while Katzenmaier et al.[3] found
head pose to be a cue for identifying addressee in human-human-robot interac-
tion. Stiefelhagen and Zhu[6] showed that head pose is a reliable cue to estimate
focus of attention in a small meeting scenario. Ba and Odobez[7] expanded the
small meeting scenario to include more targets for attention, and concluded
that good separation of targets is essential for accuracy. Automated means of
recording gaze in conversational settings are available, using, for example, eye
trackers[8], or head pose tracking[7] for estimated gaze. Both methods could con-
ceivably be used by a robot to monitor interlocutors. Estimating gaze through
head pose instead of tracking eye-gaze, however, has the advantage of being more
robust in regard to head movement and blinking.

Argyle and Graham[9] studied dyadic interactions involving additional targets
for visual attention. Objects relevant to the task at hand were found to attract
visual attention at the expense of the other subject.

3 Method

We conducted a laboratory experiment in a human-human-robot setup for this
exploratory study. The intention was to gain an understanding of symmetry in
collaborative human-robot problem solving when objects relating to the task
that is discussed are present. In order to elicit engagement in interaction, the
task needs to be fun and interesting. One way of achieving this is to use games.
The Speech group at KTH has initiated collections of a series of multi-party
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games for interactional corpus collections, the KTH games corpora[10], of which
the current study is the first human-human-robot corpus.

We selected an adaption of the “Desert Survivor” team-building game[11] as
the task in this study. The team is to collaboratively prioritize a set of items
based on their usefulness for survival in a desert after a hypothetical plane crash.
We chose to use the Desert Survival game since it is an engaging social task that
elicits intra-group communication, thus allowing us to study group dynamics
and multi-party interaction phenomena.

AWizard-of-Oz setting was selected for initial data collection to give the robot
some sense of intelligence in the dialogue via the wizard, while maintaining the
physical appearance of the robot and limiting its range of actions compared to
a human.

3.1 Experiment Setup

The experiment setup, overviewed in Fig. 1, was designed around a round ta-
ble at which the two human subjects and the robot were placed. Subjects were
seated on static chairs at fixed locations to have the triad placed in an equilat-
eral triangle pattern, with equal distances and angles between all participants.
The objective of this placement was to allow for conclusions regarding attention
behavior between human-human and human-robot interactions. This setup also
has the advantage that the predicted target areas for visual attention are as
separated as possible from a head pose rotation frame of reference, as suggested
by Ba and Odobez[7]. The complete setup in action is shown in Fig. 2 with a
snapshot from one of the sessions.

Fig. 1. Spatial configuration Fig. 2. The robot and two subjects

Each subject was monitored by a Microsoft Kinect sensor, responsible for
tracking the head pose of its subject as well as the angle to the most prominent
audio source. The use of one sensor per subject limits the expected head pose yaw
to around ±30◦ from the Kinect’s point of view, avoiding problematic extreme
angles yielding low accuracy. Another benefit is the symmetry of the recorded
data for both subjects.
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High quality audio was recorded using headsets worn by the subjects, keeping
the table available for use by the subjects as they saw fit when discussing the
items in the scenario. In this adapted exercise, the items to discuss were given
physical presence in the form of stylized pictures, each on an individual sheet
of paper. Video was recorded using two high-definition video cameras. The first
camera oversaw the interaction from behind the human participants, whereas
the second one recorded the interaction from the robot’s point of view.

Furhat[12] was chosen as the robot participant in the experiment. Furhat is a
back-projectedhuman-like robot head using speech synthesis1 and state-of-the-art
facial animation, mounted on a robotic neck. This makes it capable of combining
head pose and eye gaze to direct attention[13]. The facial animation architecture
allows for speech with accurate synchronized lip movements, as well as for control
and generation of non-verbal gestures, eye movement and facial expressions.

3.2 Methodology and Experimental Design

The robot in this experiment was partly automated and partly controlled by a
wizard. The gaze of the robot was automated, whereas the speech was controlled
by a wizard. The wizard decided when the robot should say something, and what
it should say, by selecting one of several predefined utterances from an interface
on a networked computer. When speaking, the gaze was directed either towards a
subject or, while speaking about an item, towards the table. When not speaking,
the robot’s gaze was directed towards the participant coinciding with the most
prominent audio source detected by the Kinect sensors.

Each session started with the robot giving instructions about the task, placing
emphasis on its collaborative nature, before proceeding to the first iteration of
items to rank. No instructions concerning the roles of the robot and the subjects
were given, other than that it was a team-building exercise, and that they were
to discuss and reach a unanimous decision about the ranking of the items. The
instructions regarding collaboration and consensus were intended to encourage
the subjects to affiliate with the robot as a team[14].

The adapted exercise comprised three iterations of five unique items to discuss
and rank, each iteration starting with the robot asking the subjects to open
a numbered envelope containing the items. The robot could then, during the
discussion that followed, have opinions about the relative importance of two
items, say one of two predefined positive or negative things about an item, ask
the subjects for their opinions, answer questions with a yes or a no or confess
that it did not know.

During the course of the three-party conversation, the goal was to have all in-
terlocutors actively involved in order to collect comparable data for both human-
human and human-robot interactions. The wizard’s strategy to keep the robot
involved in the discussion and, if necessary, both human subjects involved, was
to try to answer directed or open questions and to either make a statement or
pose a question when given opportunity.

1 CereProc ltd: http://www.cereproc.com/
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3.3 Participants

Eight subjects aged 23-41, divided into four pairs, were used in the data col-
lection. The mean age was 30.5, with a standard deviation of 5.42. Three of
the participants were female and five male. All subjects were employees at the
Department of Speech, Music and Hearing, KTH.

3.4 Measurement

We captured the subjects’ behavior using an audio recorder with headsets, Kinect
sensors and high-definition cameras. Two Kinect sensors were used to record
head positions and rotations in 3D space, as well as a set of face expression pa-
rameters and the angle to the most prominent sound source. The video record-
ings could be used when annotating the dialogues in the future, and the audio
recordings can be processed with, for example, automatic speech recognition or
prosody extraction.

For this initial analysis, we employed an automated approach where Kinect
sensor data was used to estimate target of visual attention based on head position
and rotation. The regions of interest as potential target of attention for a subject
were the robot, the other subject and the table. No attempts were made to
distinguish between different individual items on the table.

We employed automated segmentation using a voice activity detector to ex-
tract utterances from the recorded audio. The extracted utterances were then
used to locate instances of turn changes. A change of turn was defined as having
two consecutive non-overlapping utterances, not shorter than one second each,
belonging to two different speakers. Utterances shorter than one second were not
included in this analysis of turn changes for robustness reasons. In our case, this
means that no change of turn took place; the current speaker continued to speak
as the interlocutor with the very short utterance was not claiming the floor.

We recorded twelve iterations, three per pair of subjects. The recorded in-
teractions, excluding instructions, lasted a total of 78 minutes with an average
iteration length of 6.5 minutes (standard deviation 1.37). Next, we segmented the
recorded audio through automated means, resulting in a total of 1312 segments
of human subject speech encompassing 38 minutes.

4 Results

4.1 Observations

All subjects interacted with the items on the table during the dialogues, even
though the only instruction given related to the physical items was to open the
envelope containing them. The interaction ranged from active spatial organi-
zation of the items to signaling which items were considered, for example by
picking them up or pointing at them.
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4.2 Target of Attention Around Turn Changes

For each change of turn, the participants were labeled with one of the following
roles: current speaker, the speaker who finished the utterance in the ending turn;
next speaker, the one who was taking the turn; other, the one not speaking. The
targets of attention for each subject in a time frame of three seconds before
and after the end of the last utterance in a turn were estimated. Head pose
data was split into intervals of fifty milliseconds, each with one single target
defined by majority classification. The possible targets were either one of the
other participants in their current role or the table, harboring the items.

Human → Human Human → Robot Robot → Human

Fig. 3. Visual attention of the current speaker near the end of turn, all instances

We evaluated the overall distribution of the speakers’ visual attention in the
specified window at end of turns for the different combinations of robot and
human speakers (Fig. 3). The robot as the current speaker exhibited an over-
all distribution of attention resembling the humans’, suggesting that the robot
did not behave completely different as a speaker. There was no dominant visual
attention towards the next speaker in any of the three combinations of interlocu-
tors. The largest share of looking at the next speaker was when the next speaker
was the robot.

4.3 Speakers Looking at the Next Speaker

Many turn changes occurred without the current speaker looking at the next
speaker. To compare symmetry in the situation where the current speaker looked
at the next speaker, we analyzed the instances where the current speaker did
look at the next speaker at least once in a time frame spanning one second before
to one second after the end of the turn.

First we investigated the estimated target of visual attention for a human
ending a turn while looking at the next speaker (Fig. 4). Results indicate that
humans address the robot clearly. However, since the robot’s decision on when
to speak was made by a wizard, the human-to-robot patterns are likely affected
by the turn-taking strategy employed by the wizard. Due to the criterion used
to select instances, the peaks in attention towards the next speaker around the
end of turn were expected.

Next we investigated the estimated target of visual attention for the hu-
man taking the turn, when looked at by the speaker who previously had the
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Human → Human Human → Robot

Fig. 4. Visual attention of the current speaker near the end of turn. Instances where
the current speaker was looking at the next speaker.

Robot → Human Human → Human

Fig. 5. Visual attention of human taking the turn near the end of preceding turn.
Instances where the current speaker was looking at the next speaker.

turn (Fig. 5). The majority of the turn taker’s visual attention was directed to-
wards either the current speaker or the table. More visual attention was directed
towards the speaking robot than when the speaker was human.

Human → Robot Robot → Human

Fig. 6. Visual attention of human neither ending nor taking the turn, near the end of
turn. Instances where the current speaker was looking at the next speaker.

Finally we investigated the estimated target of visual attention for the human
neither ending nor taking the turn (Fig. 6), when the next speaker was looked at
by the current speaker. The distributions appeared more similar in shape, with
more attention to the first speaker towards the end of turn and more attention
to the next speaker afterwards.
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5 Discussion

We analyzed turn changes in the data collected during the pilot experiment,
working from the idea that head orientations could be used for estimation of
focus of attention as was concluded by Stiefelhagen and Zhu[6].

Introduction of objects makes visual attention tracking less useful for ad-
dressee detection and turn change prediction. Like Argyle and Graham[9], we
found that objects relevant to the task attract a great deal of attention. Visual
attention close to turn changes (Fig. 3) was placed on the table in a large por-
tion of the collected instances. The head pose being directed towards the table in
many cases, at the expense of the other participants, indicates that detection of
addressee based on the speaker’s head pose is more complicated in this situated
dialogue than in, for example, the one evaluated by Skantze and Gustafson[2].
When the human speaker’s visual attention actually was directed towards the
next speaker at some point close to the end of turn (Fig. 4), our data show an
increased amount of head orientation towards the next speaker around the end
of turn, no matter who the next speaker was. The human speaker looking at
the next speaker increasingly towards the end of turn in these situations is in
line with the findings of Kendon[4], but the trend may be predisposed by the
employed selection criterion.

Human-robot and robot-human turn changes were clearer than human-human
turn changes. Comparing the head pose distribution patterns between human-
human and human-robot turn changes (Fig. 4), the human-robot distribution
was more consistent with fewer peaks, and had the main peak located at the end
of turn. The difference could be related to the wizard, as the robot’s decisions
on when to speak were made by the wizard. It could also be related to the robot,
due to, for example, the subjects’ expectations on a robot dialogue system, or
the robot not making use of visual cues. When the speaker’s visual attention
was directed towards the next speaker at some point close to the end of turn
(Fig. 5), we observed a transfer of the next speaker’s visual attention away from
the current speaker to the table near the end of turn. This was the case for both
human and robot current speakers, albeit an earlier transfer in the case of a
human speaker and differing overall proportions. The disparity could be related
to differences between the humans and the robot in signaling intentions with,
for example, prosody or visual cues, or to differing dialogue strategies or types
of utterances.

The behavior of the human speakers was not symmetrical between robot and
human interlocutors (Fig. 4 and 5). The human not involved as one of the speak-
ers, on the other hand, exhibited a similar distribution of attention (Fig. 6) close
to turn changes regardless of the robot being the first or the second speaker.
Visual attention towards the table remained fairly constant, while a transfer
of attention from the current speaker to the next speaker took place. Using the
mimicry target[1] to define human-likeness, we employ the distributions of visual
attention as a measure of human-likeness. This gives us a measurable target to
work towards in order to make the robot more human-like in the aspect of visual
attention by a human interlocutor. As mentioned, we found differences in the
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human speakers’ head pose patterns surrounding turn changes when the turn
taker was another human, compared to when it was the robot. Thus, we need to
modify the robot’s behavior in order to bring the distribution of visual attention
of its human interlocutor closer to the one exhibited for two human interlocu-
tors. Matching distributions is however only a first step towards human-likeness.
The distributions provide an overall view, they do not reveal if any individual
actions were human-like or not.

Our observation that all subjects interacted with the objects on the table,
combined with a large part of the interlocutors’ attention directed towards the
table, suggests that exploration of more detailed targets of attention could be
worthwhile. A dialogue system could conceivably make use of estimations about
which objects the interlocutors are paying attention to. Additionally, comparing,
for example, the dialogue acts leading to the change of turn for different targets of
attention might also be useful when designing a dialogue system for this setting.

6 Future Work

With the continued goal of exploring the symmetry of turn-taking, the next
step is to adjust the robot’s behavior to see if we can get it to trigger more
human-like turn-taking behavior from humans talking to it, compared to when
the humans talk to each other. The long-term goal is to build an automated
system capable of improving the symmetry of an ongoing dialogue by adjusting
the robot’s behavior.

Another interesting goal is to replace the wizard with an autonomous system
that appears to be intelligent. One first step in that direction is to improve
the robot’s ability to deduce where the visual attentions of the interlocutors are.
Having a fine-grained sense of attention to task-related object could help provide
the robot with valuable insights on the intentions of its interlocutors.

7 Conclusions

In this paper we presented a setup for collecting multimodal data from three-
party human-robot interaction, and used the setup to create an initial corpus
collected in a Wizard-of-Oz setting. We explored the symmetry of head pose
patterns in turn-taking between human and robot participants, finding both
similarities and differences. The robot attracted different head pose patterns
from humans during turn changes than what humans used between each other.
The differences can be useful when implementing a dialogue system, but also
indicate a disparity between robot and human interlocutors. In other words, the
robot’s behavior needs to be changed to make it more human-like in this aspect.
We can use symmetry in behavior as a target to evaluate progress. We also in-
vestigated the question about implications of introducing task-related objects
into the dialogue. Objects attract visual attention at the expense of interlocu-
tors, possibly affecting the usefulness of head pose as an indicator for addressee
identification.
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