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ABSTRACT 
In this paper, we present an experiment where two human subjects 
are given a team-building task to solve together with a robot. The 
setting requires that the speakers' attention is partly directed 
towards objects on the table between them, as well as to each 
other, in order to coordinate turn-taking. The symmetrical setup 
allows us to compare human-human and human-robot turn-taking 
behaviour in the same interactional setting. The analysis centres 
around the interlocutors’ attention (as measured by head pose) and 
gap length between turns, depending on the pragmatic function of 
the utterances. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine System – Human 
Information Processing; H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – Natural Language 

Keywords 
Situated dialogue; turn taking; multiparty human-robot dialogue 

1. INTRODUCTION 
Robots of the future are envisioned to help people perform tasks, 
not only as mere tools, but as autonomous agents interacting and 
solving problems together with humans. Such interaction will be 
characterised by two important features that need to be taken into 
account when modelling the spoken interaction. Firstly, joint 
problem solving is in many cases situated, which means that the 
spoken discourse will involve references to objects in the shared 
physical space. When speaking about objects, humans typically 
pay attention to these objects and gaze at them. To solve the task 
efficiently, interlocutors need to coordinate their attention, 
resulting in so-called joint attention [1]. Secondly, the robot 
should be able to solve problems together with several humans 
(and possibly other robots) at the same time, which means that we 
also need to model multi-party interaction. A central problem for 
spoken dialogue systems is turn-taking — i.e., to decide how to 
yield the turn and when to take the turn. In multi-party interaction, 

this becomes even more challenging. An obvious signal that 
humans use for yielding the turn in a face-to-face setting is to gaze 
at the next speaker. However, in situated interaction, where the 
gaze is also used to pay attention to the objects which are under 
discussion, it is not obvious how this shared resource is used.  

In this paper we present an experimental setup where two human 
subjects are given a team-building task to solve together with a 
robot, as shown in Figure 1. The task is an adaption of the “Desert 
Survivor” team-building game [2]. The team is to collaboratively 
prioritize a set of items based on their usefulness for survival in a 
desert after a hypothetical plane crash. Cards with pictures of the 
items are placed on the table by which the speakers are seated, 
thereby constituting an area for joint attention. The robot can 
direct its attention, using head pose and eye movement, to objects 
on the table as well as to the human interlocutors. Since all three 
interlocutors are seated in an equilateral triangle pattern, this 
symmetrical setup allows us to compare human-human and 
human-robot turn-taking in the same interactional setting. Thus 
we can use this setup to explore three different questions at the 
same time: 

1. How do humans behave when yielding and taking the turn 
between each other? This needs to be modelled in order for 
the robot to understand who has the floor, but also for the 
robot to employ a more human-like behaviour.  

2. By comparing the subjects' behaviour towards each other 
with that towards the robot, we can investigate to what 
extent they interact with the robot as if it was a human 
interlocutor.   

3. By comparing the robot's turn-taking behaviour with the 
subjects' behaviour, we can evaluate how human-like the 
robot's current behaviour is, and how it could be improved.   

 
Figure 1. The human-human-robot interaction setup. 
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2. BACKGROUND 
In spoken interaction, humans coordinate their turn-taking using 
several different signals, such as prosody, syntax and gaze. To 
yield the turn, speakers for example gaze at the interlocutor [3, 4], 
use syntactically complete phrases, and end the phrase with falling 
or rising pitch [5]. To keep the turn, they typically look away, use 
filled pauses, syntactically incomplete phrases, or a flat final 
pitch. There have been several attempts at building statistical or 
computational models of how turn-taking is coordinated (e.g., [6, 
7, 8]). However, with a few exceptions (e.g., [9]), little work has 
been done on building such models for turn-taking in multiparty 
settings or situated interaction, where the interlocutors’ attention 
to each other shares the same resources as their attention to the 
objects under discussion. 

Multi-party interaction differs from dyadic interaction in several 
regards [10]. First, in a dyadic interaction there are only two 
different roles that the speakers can have: speaker and listener. In 
multiparty interaction, humans may take on many different roles, 
such as side participant, overhearer and bystander [11]. Second, in 
dyadic interaction, it is always clear who is to speak next at turn 
shifts. In multiparty interaction, this has to be coordinated 
somehow. The most obvious signal is to use gaze to select the 
next speaker [12]. 

However, in situated interaction, speakers also naturally look at 
the objects which are under discussion. The speaker’s gaze can 
therefore be used by the listener as a cue to the speaker’s current 
focus of attention. Speakers seem to be aware of this fact, since 
they naturally use deictic expressions accompanied by a glance 
towards the object that is being referred to [13]. In the same way, 
listeners naturally look at the referent during speech 
comprehension [14], and their gaze can therefore be used as a cue 
by the speaker to verify common ground. Thus, eye gaze acts as 
an important coordination device to achieve joint attention in 
situated interaction. This has been shown to clearly affect the 
extent to which humans otherwise gaze at each other to yield the 
turn. Argyle and Graham [15] studied dyadic interactions 
involving additional targets for visual attention. Objects relevant 
to the task at hand were found to attract visual attention at the 
expense of the other subject.  

In order to model how a robot should be able to direct its attention 
in a human-like manner, and be able to understand human 
attentional behaviour, we need to study how humans coordinate 
turn-taking in situated multi-party interaction. However, we 
cannot assume that humans will automatically behave towards 
robots as they do towards other humans. Thus, we cannot 
exclusively rely on studies of human-human interaction. 

In [16], we originally presented the experimental setup also 
described here, together with an initial analysis of how the 
subjects direct their attention during turn changes. In this paper, 
we extend that analysis in two ways. Firstly, we label the data 
depending on the pragmatic function of the utterances that 
constitute the turn, and carry out a more detailed analysis based on 
these labels. Secondly, we investigate the gap lengths between the 
turns.  

3. METHOD 
3.1 Experimental Setup 
It is not trivial to utilize the subjects' gaze in a human-robot 
interactional setting. Gaze trackers can be very accurate, but they 
are also limited in field-of-view, or (if head worn) too invasive. In 
addition, they are not very robust to blinking or occlusion, and 
typically need calibration. In this study we instead rely on head pose 

tracking, which is a more simple and robust approach. This way, we 
will not be able to capture quick glances or track more precise gaze 
targets. However, previous studies have found head pose to be a 
fairly reliable indicator for gaze in multi-party interaction, given that 
the targets are clearly separated [17, 18, 19].  

The experimental setup (as described in the Introduction) was 
designed around a round table at which the two human subjects 
and the robot were placed. Subjects were seated on static chairs at 
fixed locations to have the triad placed in an equilateral triangle 
pattern. This setup has the advantage that the predicted target 
areas for visual attention are as separated as possible in order to 
elicit head rotation instead of only eye gaze. Each subject was 
monitored by a Microsoft Kinect sensor, responsible for tracking 
the head pose of its subject as well as the angle to the most 
prominent audio source.  

The robot in the experiment was the back-projected human-like 
robot head Furhat, which is capable of combining head pose and 
eye gaze to direct attention [20]. In controlled experiments on 
multi-party and situated interaction, it has been shown that 
subjects can infer the target of Furhat's gaze with a high accuracy 
[20, 21].  

The gaze of the robot was automated, whereas the speech was 
controlled by a wizard. The wizard decided when the robot should 
say something, and what it should say, by selecting one of several 
predefined utterances from an interface on a networked computer. 
When speaking, the gaze was directed either towards a subject or, 
while speaking about an item, towards the table. When not 
speaking, the robot’s gaze was directed towards the participant 
coinciding with the most prominent audio source detected by the 
Kinect sensors. 

The adapted “Desert Survivor” exercise comprised three iterations 
of five unique items to discuss and rank, each iteration starting 
with the robot asking the subjects to open a numbered envelope 
containing the items. The robot could then, during the discussion 
that followed, express opinions about the relative importance of 
two items, say one of two predefined positive or negative things 
about an item, ask the subjects for their opinions, answer 
questions with a yes or a no or confess that it did not know. The 
goal was to make the robot behave in a similar way as an average 
human subject and not take on any specific role. 

Eight subjects aged 23-41, divided into four pairs, participated in 
the data collection. The mean age was 30.5, with a standard 
deviation of 5.42. Three of the participants were female and five 
male. We recorded twelve iterations, three per pair of subjects. 
The recorded interactions, excluding instructions, lasted a total of 
78 minutes with an average iteration length of 6.5 minutes (SD = 
1.37). 

3.2 Data Annotation 
Each channel of the recorded audio was automatically segmented 
into Inter Pausal Units (IPUs) with a maximum of 500ms internal 
silence and then manually transcribed. The logged utterances from 
the robot were added as a third channel. A turn was defined as a 
sequence of one or more non-interrupted IPUs by the same 
speaker. A turn change was defined as two neighbouring turns by 
two different speakers, with a maximum overlap of 0.5 seconds 
and maximum gap of three seconds between the two turns. These 
thresholds were tuned in order to identify turns that were 
somewhat related to each other. Table 1 presents an example of a 
sequence of turn changes extracted from one of the dialogues. 

We also wanted to make a more in-depth analysis of the subjects' 
turn-taking behaviour, depending on the pragmatic function of the 
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constituting turns (i.e., their "dialogue act"). To this end, we used 
Amazon Mechanical Turk to assign labels to the two turns 
involved in each of the 682 detected turn changes. The utterances 
were presented as manually transcribed text and included the 
robot's utterances, without revealing if a specific utterance was 
made by a human or by the robot. The first turn was labelled 
based on its "forward-looking function" and the second turn on its 
"backward-looking function", inspired by the DAMSL coding 
scheme [22]. Thus, the same turn was in many cases annotated 
both in a forward-looking and a backward-looking context. 

Table 1. Short example from a dialogue. 

Speaker Extracted Turn 

Robot yes I do think so ... I would say the pistol 

Human 1 but I think this argument about being heard is 
quite strong actually. 

Robot yes 

Human 1 and you might want to put the gun somewhere 
further up 

Human 2 eh but water is more important than being heard 
and we do have the giant wreck which can be 
seen from the air 

Human 1 okay 

 

To make the annotation task simple, we restricted the number of 
labels to a minimum set of categories that we deemed interesting 
for the analysis. It should be noted that due to the automated turn 
change extraction, not all annotated turn changes involved two 
turns related to each other in a forward- or backward-looking 
context. Each turn change was labelled by three annotators, and 
the final label was based on the majority decision of the 
annotators. In total, there were 25 unique annotators, and majority 
decisions for all but 18 turns. For the yielding turns (Table 2), 
75% of the labels were unanimous decisions, and 52% for the 
taking turns (Table 3), yielding a 3-annotator Fleiss' kappa of 
0.619 and 0.463, respectively.   

Table 2. Labels for yielded turns. 

Label N Example(s) 

Question 211 is the flashlight useful 

what do you mean 

Non-question 453 the flashlight needs batteries 

yes / the flashlight is useful 

okay / I don’t agree 

Table 3. Labels for taken turns. 

Label N Example(s) 

Answer 146 yes / the flashlight is useful 

(Dis-)Agreement 150 okay / I don’t agree 

Clarification request 87 what do you mean 

Other 261 the flashlight needs batteries  

is the flashlight useful 

 

For this analysis, we will focus on the three most common label 
pairs: Non-question → Other (36%), Question → Answer (26%), 
and Non-question → Agreement (22%). The latter will henceforth 

be referred to as Statement → Agreement based on inspection of 
the utterances involved. 

4. RESULTS 
For statistical analysis, we have used two-tailed tests and chosen 
an alpha level of 0.05.  

4.1 Visual Focus of Attention 
First we analysed where the turn yielder's attention was directed at 
turn shifts. To do this, we defined a window between 2 seconds 
before the end of the turn until the next speaker started to speak. 
Then we analysed whether the head pose was directed at the other 
interlocutors somewhere during this window. This resulted in four 
categories: attention towards both interlocutors, only towards the 
next speaker, only towards the other interlocutor (which did not 
take the turn), or towards none of the interlocutors (i.e., only at the 
table).  

As seen in Figure 2, in a majority of the turn changes, the yielder 
does not give exclusive gaze towards the taker, which shows that 
head pose is not a very strict signal for turn-taking in this setting, 
and that it is generally quite open for both interlocutors to 
respond. A chi-squared test also shows that when a human yields 
the turn to the robot, it looks at the next speaker more often, 
compared to when yielding a turn to a human (χ2= 9.25, dF=3, 
p=0.026).

 
Figure 2. Distribution of the yielders' head pose at turn 

changes depending on taker. 

Figure 3 breaks down these figures for the most common label 
pairs. In the human-human scenario, statements followed by an 
agreement appear to be directed to the next speaker, as opposed to 
questions followed by an answer where the targets are more 
varied. This is also in contrast to the human-robot case where the 
Question-Answer pair is the combination that appears to be most 
clearly addressed to the robot. 

 
Figure 3. Distribution of the yielders' head pose for different 

label pairs 
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The difference in proportions for the target of visual attention 
among different labels in a human-human turn change is 
significant, χ2(6, N=204)=28.3722, p<0.001. This is however not 
the case with human-robot turn changes, χ2(6, N=203)=9.1038, 
p=0.168. 

This suggests that different pairs of pragmatic functions produce 
different head pose behaviour, and that the presented symmetrical 
setup can be used to capture such differences. The results also 
indicate that the robot is not triggering the same behaviour. This 
could be due to the robot’s behaviour or due to the subjects’ 
expectations of the system. 

4.2 Target Distributions near End of Turns 
Next, we made a more detailed analysis of the turn changes where 
the yielding speaker looked at the next speaker or both 
interlocutors, i.e. turn-shifts that were more clearly addressed.  In 
Figure 4, the average distribution of both the yielder's and the 
taker's head pose are plotted in a window two seconds before and 
after the end of the yielding turn.  

4.2.1 Question-Answer 
For the Question-Answer pairs, the head pose patterns of the 
yielding human speaker differed both in shape and proportion 
depending on who the next speaker was. In the human-human turn 
changes (Figure 4a), the yielding speaker appears to have shifted 
visual attention to and away from the table and both interlocutors, 
whereas the visual attention in human-robot turn changes mostly 
focused on the robot (Figure 4d). The more consistent and 

exclusive attention given to the robot compared to the human can 
be interpreted as the robot mostly answering directed questions 
while humans to a larger extent also answer open questions. 
Explanations for this difference could be the wizard’s behaviour 
when choosing to answer questions, or that the human 
interlocutors tried to address the robot more clearly. Similarly, the 
human answering a question asked by the robot looked at the 
robot to a high degree (Figure 4j), while a human answering a 
question from the other human mostly focused on the table 
(Figure 4g). 

4.2.2 Statement-Agreement 
In the Statement-Agreement pair, the yielding human speaker 
primarily looks at the next speaker and seldom at the other 
interlocutor (Figure 4be). This could be interpreted as a directed 
statement, where the speaker expects a reaction from a specific 
interlocutor. 

The human taking the turn by providing an agreement is initially 
focused mostly on the table and then transfers attention to the 
yielding human speaker at the end of turn (Figure 4h). Thus, for 
agreement, mutual gaze seems to be important. This is in stark 
contrast to the corresponding Question-Answer pattern (Figure 
4g). The pattern is also not present when the human expressed an 
agreement to a statement made by the robot (Figure 4k), once 
again suggesting that the robot is perceived differently.  

Figure 4. Distribution of human’s visual focus of attention near turn changes.  
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4.2.3 Non-question-Other 
For the third category, Non-question-Other, the distribution of 
attention is mostly flat in the human-human turn changes, both for 
the yielding speaker (Figure 4c) and for the turn taker (Figure 4i). 
This is not very surprising, since this category captures pairs of 
turns that are not as clearly related as the other categories. Once 
again, humans look more at the taker when it is the robot, as 
compared to when the other human takes the turn (Figure 4cf).  

4.3 Gap between Turns 
Next we wanted to explore the gap (response time) between the 
turns. We found the gap length to not be normally distributed, and 
therefore use median values and non-parametric tests. The median 
gaps for human-human and human-robot turn changes are shown 
in Figure 5.    

 
Figure 5. Median gap between turns. 

The results indicate that the response time for wizard-controlled 
robot was quite close to a human in the same situation. However, 
a Kruskal-Wallis test showed that the three combinations of 
speakers had different gap lengths (χ2=9.5593, dF=2, p=0.008). 
An adjusted follow-up multiple comparison test identified the 
Robot-Human as significantly different from the other two. Thus, 
the difference does not lie in the robot's response time, but rather 
in how the humans respond to the robot. The main difference 
seems to be in the Question-Answer exchanges. This could be due 
to the type of questions asked by the wizard, or due to the 
automated gaze not clearly signalling addressees when asking 
questions. 

 
Figure 6. Breakdown of median gap length in human-human 

turn changes 

Figure 6 contains a breakdown of the median gap between two 
turns in a human-human turn change based on the most common 
label pairs. 

A Kruskal-Wallis test showed that the gap lengths are 
significantly different among the four classifications of visual 
focus of attention (χ2=13.8919, dF=3, p=0.003). An adjusted 
follow-up multiple comparisons test identified the targeting of 
both interlocutors as significantly different from targeting only the 
robot. The short response time for the human taker when the 
yielder is looking at the robot is probably because the taker needs 
to start speaking faster to grab the turn.    

5. CONCLUSIONS AND DISCUSSION 
We can now revisit the three questions we posed in the 
Introduction and see to what extent the experimental setting 
presented here allows us to address these.  

Firstly, simply by looking at the two humans' behaviour towards 
each other, it is clear that the attention is often directed towards 
the objects on the table and utterances are often not clearly 
directed towards a specific interlocutor. However, the focus of 
attention (as measured by head pose) is clearly different 
depending on the pragmatic function of the utterances that 
constitute the turn. At the end of questions, the speaker gaze more 
at both interlocutors, which means that they are typically not very 
directed. The interlocutor who answers the question pays more 
attention to the object under discussion, and very little attention to 
the person asking the question. This is quite different from 
statements followed by an agreement, where the speaker more 
clearly attends to one interlocutor, seeking agreement. The 
addressee, in turn, gazes back while giving the agreement.  
Looking at gap length, we can see that when an interlocutor wants 
to take the turn, but is not clearly attended by the turn yielder, the 
response time is much shorter, which indicates that the 
interlocutors monitor the current speaker's focus of attention in 
order to grab the turn.   

The second question was whether the humans behave differently 
towards the robot, compared to how they behave towards each 
other. In general, they attend much more clearly to the addressee 
when yielding the turn to the robot, regardless of the type of 
exchange. The gaze is also much more stable, which is especially 
clear when looking at the Question-Answer category. Also, when 
taking the turn, humans look much more towards the turn yielder 
when it is a robot than when a human is yielding the turn (except 
for the Statement-Agreement category). Looking at gap length, we 
could also see that questions asked by the robot are not answered 
as quickly as questions asked by a human. These discrepancies 
indicate that humans to do not respond to the robot in exactly the 
same way as the other human when it comes to turn-taking. If the 
goal is not to create a fully human-like robot, this could of course 
be exploited, since it makes the detection of when the human is 
actually addressing the robot easier.  

Regarding the third question, we can see that despite the Wizard-
of-Oz setup, the robot manages to have a response time that is 
quite similar to the humans. The robot's automated gaze behaviour 
on the other hand differed in comparison to that of the humans. 
The robot's gaze was automated using readily available cues; if 
the robot said something about an item, its gaze was directed 
towards the table for the duration of the utterance, and in all other 
cases the robot directed its gaze towards the most prominent audio 
source. This is in stark contrast to the humans, who as listeners 
mostly looked at the table. In addition, the humans also exhibited 
different gaze behaviour for different dialogue acts, like looking at 
interlocutors when asking questions, or looking at the previous 
speaker when expressing agreement. This calls for a more 
sophisticated model for controlling the robot’s gaze behaviour, if 
a more human-like behaviour is desired. 
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6. FUTURE WORK 
The study presented here is just a first step towards building a 
model of situated multi-party interaction. The goal is to fully 
automate the robot's behaviour using the dialogue system 
framework IrisTK [23]. To this end, we will collect more data 
using the current setup, and then use machine learning to build 
models of where the focus of attention should be targeted, as well 
as how quickly the robot should respond, depending on the types 
of utterances exchanged. 

We think that the symmetrical setup presented in this paper serves 
as an excellent test bed for evaluating such a model. By 
conducting analyses similar to the ones we have done here, we 
can measure to what extent the robot behaves similarly to the 
human interlocutors, and to what extent it triggers human 
responses which are similar towards the robot as those towards the 
other human.  
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