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Abstract
Repetitions in Spoken Dialogue Systems can be a symptom of
problematic communication. Such repetitions are often due to
speech recognition errors, which in turn makes it harder to use
the output of the speech recognizer to detect repetitions. In this
paper, we combine the alignment score obtained using phonetic
distances with dialogue-related features to improve repetition
detection. To evaluate the method proposed we compare sev-
eral alignment techniques from edit distance to DTW-based dis-
tance, previously used in Spoken-Term detection tasks. We also
compare two different methods to compute the phonetic dis-
tance: the first one using the phoneme sequence, and the sec-
ond one using the distance between the phone posterior vec-
tors. Two different datasets were used in this evaluation: a
bus-schedule information system (in English) and a call routing
system (in Swedish). The results show that approaches using
phoneme distances over-perform approaches using Levenshtein
distances between ASR outputs for repetition detection.

Index Terms: spoken dialogue systems, repetition detection,
phonetic distance

1. Introduction
In human dialogues it is a common practice to use repetitions
as a mechanism to correct some message that was not correctly
understood. While this mechanism is smoothly handled in hu-
man communication, the same does not occur when humans
talk to machines [1]. The dialogue in Table 1 from the Let’s Go
system [2] has several examples where repetitions could not be
handled by the system and lead to miscommunication.

Several reasons may contribute to miscommunications in
the dialogue presented. First, humans tend to adapt their speech
in order to increase their chances of being understood, es-
pecially after an utterance that was not correctly understood.
Instead of computer-directed speech style, strategies such as
hyper-articulation (turns U14 and U16) or shouting [3] are com-
monly used in those situations. Besides hyper-articulation,
speech shifts lengthening were also reported as a mechanism for
error resolution in human-computer interaction [4]. Current di-
alogue systems may not be prepared to deal with this behaviour.
When facing these strategies, detecting repetitions using the
ASR output becomes a very difficult task given the amount of
errors introduced by speech recognition. Errors could also be
introduced by other modules, such as in turn U2 where the cor-
rectly recognized speech was incorrectly parsed. If the system
could detect that turn U4 is a repetition of U2, the ASR out-
put from U2 could be used to dynamically adjust the language
model that was used to recognize turn U4. The use of state-

S1: What is the time of your departure?
U2: SEVEN O’CLOCK [SEVEN O’CLOCK, 10:00]
S3: 10 in the evening. Is this correct?
U4: NO [NO SEVEN, no]
S5: What is the time of your departure?
U6: ELEVEN P M [SEVEN P M, 11:00]
S7: 11 in the evening. Is this correct?
U8: NO [NO, no]
S9: What is the time of your departure?
U10: ELEVEN P M [SEVEN P M, 11:00]
S11: 11 in the evening. Is this correct?
U12: NO [NO, no]
S13: What is the time of your departure?
U14: .SEVEN. [SEVEN, - ]
S15: What is the time of your departure?
U16: ELEVEN P M [SEVEN P M, 11:00]
S17: 11 in the evening. Is this correct?
U18: NO [NO, no]
S19: What is the time of your departure?
U20: SEVEN P M [SEVEN P M, 7:00]
S21: 7 in the evening. Is this correct?
U22: YES [YES, yes]

Table 1: Example of repetitions in Let’s Go data. Manual tran-
scription and parsing between square brackets.

specific grammars can also influence the speech recognition
output. For instance, in utterance U4 the user says “SEVEN”,
which was not expected by the grammar and thus could not be
recognized.

Repetitions are a sign of problematic turns. Once detected
during on-line interaction several actions could be taken: dy-
namically adjust the language models to improve recognition,
narrowing the user intentions or change the system action to
avoid hyperarticulation or shouting. They could also be used in
off-line data to select dialogues with series of repetitions so that
system developers can analyze them.

In this paper we propose an approach to detect repetitions
between turns that does not rely on the ASR output. Our ap-
proach is inspired by techniques used in Spoken-Term detec-
tion [5]. Our hypothesis is that this method is robust to the
noise introduced by the output of speech recognition in the ex-
amples described above. We expect to improve repetition detec-
tion when compared to methods that compare the ASR outputs
directly [6]. The method was tested in two different corpora,
in two different languages and in two different applications that
deal with real users with very promising results.

The paper is structured as follows. In the next section re-
lated work to repetition detection in Spoken Dialogue System
(SDS) data will be described. Section 3 describes the datasets
and annotation scheme. Section 4 presents the method. Section
5 shows the results. Section 6 discusses the results and Section
7 concludes the paper and points out future work.
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2. Related Work
Finding problematic turns in SDS dialogues is a very impor-
tant resource both to off-line processing and on-line systems.
Repetitions were used in [6, 7] as a clue to find miscommuni-
cations and correction strategies. In [7], repetition was even the
most common correction strategy found in their dataset. Thus
detecting repetitions might be useful to detect miscommunica-
tion. Martinovsky and Traum in their analysis of breakdowns
of human-machine communication [8] refer to repetitions as an
example of “continuous tedious miscommunication and also as
a cause for the breakdown”.

A first step towards detecting repetitions is to find which
features can distinguish repetitions from the other utterances.
In [1] acoustic-prosodic features in human-computer dialogue
were analyzed. Duration, pauses and pitch variability were con-
sidered as possible clues to detect corrections, including repeti-
tions. Since repetitions occurrence is highly correlated with hy-
perarticulation and strong emphasis [6], the properties of hyper-
articulated speech in human-compter error resolution [9] could
also be relevant to detect repetitions. According to this study,
repeated utterances were longer, and had longer and more fre-
quent pauses. The speech rate was also found lower. Average
pitch, intonational contour and phonological alternations were
found to be significantly different. The repeated utterances were
also less disfluent than the original ones.

Two different approaches have been used to built classifiers
for detecting repetitions in spoken dialogue system data. In [6]
a threshold based classifier using the Levenshtein distance be-
tween semantic representations of the utterances was employed.
The result was then used as an input to a miscommunication
detector. In [7] a classifier for corrections using features that
included prosody, ASR related information, the experimental
condition of the system and the distance to the correction was
trained. When they tried to classify the different types of cor-
rections annotated (instead of binary correction/non-correction
classification), repetition detection achieved 33.9% recall and
56% precision.

In our study, we use phonetic-distance based measures be-
tween turns as features to detect repetitions. We hypothesize
that phonetic-distances can deal with hyper-articulation and
lengthening phenomena, and avoid the noise introduced by the
speech recognizer.

3. Data Description
In this study we have considered two different datasets. The
first subset consists of 41 Let’s Go dialogues corresponding to
837 user turns, selected from the data released for the Spoken
Dialogue Challenge [10]. Dialogues were selected for having
turns with confidence scores below the threshold used by the
system to accept the turn as valid.

The second dataset comes from a Swedish commercial call
routing system which handles a very large number of calls on a
daily basis. A set of 219 dialogues was selected from the whole
dataset, corresponding to 1459 turns. Dialogues were selected
from the dataset if at least one of the turns was a “NO” and the
dialogue was longer than 4 turns, to have more repetitions in the
dataset. If there is a “NO” turn, it probably means that there is
some information that the system did not understand correctly.

3.1. Annotation

To annotate the data we have used 4 different labels. To in-
troduce them we use examples from the dialogue in Table 1.

Turns U6, U10, U16 and U20 have exactly the same content,
therefore they are considered total repetitions. Turn U14 re-
peats part of the content of turns U2, U6, U10, U16 and U20. In
these cases we used the label partial. Turns U6, U10, U16 and
U20 repeat “SEVEN” from turn U2. However, since the user
also says “NO”, we use the mixed repetition, instead of partial
repetition. All the pairs of utterances that do not have content
repeated were labeled as non-repetitions.

We adopted these labels since each of them might have a
different approach to its detection. The distribution of data per
annotation in each data set is presented in Table 2.

Datasets Total (%) Partial (%) Mixed (%) No Repetition (%)

Let’s Go 221 (5.1) 93 (2.1) 52 (1.2) 4005 (91.6)

SweCC 84 (5.7) 47 (3.2) 63 (4.2) 1292 (86.9)

Table 2: Distribution of the repetition types in the datasets.

4. Method for Repetition Detection
The proposed method consists of two phases. In the first phase,
we compute the pairwise distance between segments from two
different utterances using either the phoneme sequence or the
phoneme posterior vectors. In the second phase we try to find
the best alignment between the two utterances using the dis-
tance matrix computed in the first phase. The alignment returns
a score that corresponds to the acoustic distance between utter-
ances.

4.1. Distance Matrix Computation

The first step described in the Dynamic Time Warping (DTW)
query matching is to compute the distance matrix for each frame
of the utterances. In the algorithm proposed in [5] the distance is
computed using the cosine distance between the phone posterior
vectors produced by a phone recognizer for each frame. We fol-
lowed the same procedure. The phonetic posteriors for the Let’s
Go were obtained using the phonetic tokenizer described in [11]
for English, that uses the neural networks trained for the Au-
dimus Speech recognizer [12]. The phonetic posteriors for the
SweCC data were estimated with a Recurrent Neural Network
(RNN) described in [13], trained with the Swedish SpeechDat
telephone speech database [14]. To build the matrix, the silence
frames from both files were not considered in the computation
of the cosine distance between posterior vectors. We did this
to avoid that the best alignment provided in the second phase
corresponded to silence segments.

Besides the distance computed using the posteriors, we
also computed another distance using the phoneme sequence
obtained from the phoneme recognizers. To do this, we first
compute the confusion matrix following a similar procedure to
the one used in [15] to compensate the confusability between
phones. For the Let’s Go data we used one month of transcribed
data. To build the confusion matrix, we used the phoneme se-
quence recognized from turns where the user utterance had ex-
actly the same content. For instance, from the dialogue from Ta-
ble 2 turns U6, U10, U16 and U20 would be compared to train
the confusion matrix. For the SweCC dataset, the confusion
matrix was computed using the correlation between the phone
posterior vectors, under the assumption that the more correlated
the phone posterior vectors the more difficult it is to distinguish
between them.

The resulting distance matrix is an n ×m (where n > m)
matrix populated with the distance between the two utterances
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Figure 1: Distribution of the distances in the Let’s Go data. Left: computed using extended phoneme sequences and DTW-based
matching. Right: computed using the Levenshtein distance between the ASR outputs.

of length n and m respectively. For the phoneme sequence case
the element is simply the distance between the pair of phones,
whereas for the phoneme posterior case each element is the pair-
wise distance between posterior vectors.

In Let’s Go the phoneme sequence for each utterance was
already computed by the phoneme recognizer. In SweCC since
only the phoneme posterior vectors are available, the sequence
is built based on the maximum posterior found for each frame.

To evaluate the impact of hyperarticulation in repetition de-
tection we have also used a frame-based phoneme sequence
with the corresponding phoneme for each 20 ms frame.

4.2. Matching the utterances

Once we had the distance matrix, we tried to find the least costly
path in the matrix. We followed the DTW-based matching algo-
rithm proposed in [5] when using either phoneme posterior and
phoneme sequences. For the phoneme sequence case we have
also used a modified edit distance where the costs of substitu-
tions, deletions and insertions were taken from the confusion
matrix. An extra penalty factor was added for consecutive dele-
tions and insertions, since in our data, insertions and deletions
(i.e., replacing/being replaced by silence) were more frequent
than substitutions.

5. Experimental Results
Several versions of the proposed method were compared to a
baseline approach based on the Levenshtein distance between
ASR outputs.

In this study all the total and partial repetitions were treated
as repetitions and the non-repetitions were labeled as none. Fig-
ure 1 shows the normalized distributions of the distance scores
obtained using the phoneme sequence and DTW-based match-
ing and the scores obtained using the Levenshtein distance be-
tween ASR outputs. The phoneme sequence with one phoneme
per frame was used to compute the distance matrix and DTW-
based matching was used to find the best path.

Although there is still an overlap in the distribution in left
part of Figure 1, there is a clear separation between the distances
obtained for the repetition and the none categories, whereas the
same cannot be observed in the right part of the same figure.

A similar comparison is made in Figure 2 for the SweCC
data. Unlike the results for Let’s Go, the score computed using
the distance between posterior vectors achieved the best perfor-
mance in the SweCC data. Once more, the scores obtained us-

ing our method separate the two sets under analysis performed
better than the Levenshtein distance.

5.1. Building a repetition detector

The fact that there is a visible separation in the datasets does
not mean that repetition can be detected automatically. In or-
der to verify it, we compared different methods for detecting
repetitions where we used different combinations of the scores
derived from the methods proposed with other features avail-
able from system logs. For each corpus we present results with
a phoneme posterior vector based score (PP), a phoneme se-
quence based score (PS), combined with system independent
features (SI), number of words and turn duration; and system
dependent features (SD), system act and grammar used.

To train the repetition detection we used JRip and SVMs
available in Weka [16]. We first trained the classifiers using
10-fold cross-validation scheme (10-f CV). Since our data was
skewed, we also split the dataset into 70% for training and 30%
for testing and oversampled (OS) the training data using the
algorithm described in [17] . We also report the results obtained
using a simple threshold tuning (TT) procedure for the different
scores tested. The threshold was tuned using the 70% of the
data used for training (without oversampling) and the results
are reported in the test set.

Figure 3 compares the different Unweighted Average Re-
call (UAR) [18] for the different features sets and evaluation
methods. This performance measure was chosen since our
datasets were skewed. The results for Let’s Go show that the
distance based on PS performed better than the one based on
PP. When combined, the detection performance increases. The
combination of the distance features with features from the sys-
tem logs also improves the performance by 10% absolute UAR.
Compared with the performance achieved using only the system
dependent features we have a 5% absolute UAR improvement.

In the SweCC case the gains in performance are not so clear
when adding system log features. In fact, using a simple TT
procedure with the phoneme posterior based distance the UAR
obtained is 81%. Using the OS procedure and combining SD
and SI features, the performance increases to 86%. The com-
bination of all the features only improves the UAR over the SD
features when using the original dataset without oversampling.
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Figure 2: Distribution of the distances in the SweCC data. Left: computed using phonetic posteriors vectors distance and DTW-based
matching. Right: computed using the Levenshtein distance between the ASR outputs.
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Figure 3: Results for repetition detection. Top: Let’s Go. Bot-
tom: SweCC.

6. Discussion
The presented results confirm that the phonetic distances are ro-
bust to the noise introduced by the ASR and improve repetition
detection compared to the previously proposed methods that use
ASR outputs to find repetitions

Interestingly, different versions of the PS and PP lead to bet-
ter results depending on the dataset. We believe this is due to the
different phoneme recognizers used. Whereas in Let’s Go the
phoneme sequence is restricted by the phonotactic information,
in SweCC the phoneme sequence is extracted directly from the
phoneme posterior vector making it more noisy and hindering
the performance of the PS-based distance in this dataset.

Figures 1 and 2, show that DTW-based matching using
acoustic based distances globally improves repetition detection.
The fact that the method accommodates partial repetition detec-
tion might have contributed to this result.

Another restriction that we added when using the PP score
that improved the performance was to discard all the alignments

that were shorter than 750 ms. Since we are interested in detect-
ing repetitions of content that can be used to fill the system slots,
this threshold eliminates all the false alarms that correspond to
irrelevant information for slot filling.

In cases where we do not have access to SD dependent fea-
tures, our method can be very useful. In SweCC if we use only
the PP features the MRR is only 5% below the performance
achieved using only SD features. In Let’s Go if we combine
PP+PS features the performance is even better than using just
SD features. The SD features seem to be more powerful in
SweCC which is an indication that repetitions may have oc-
curred in the same dialogue state using the same grammar.

Finally, it is interesting to observe that the results using
the Levenshtein distance between ASR outputs are better in the
SweCC data (0.51 vs. 0.35). Considering the figures for WER
in both datasets SweCC is 21.3% and Let’s Go 33.3%. This
means that using the Levenshtein distance between ASR out-
puts might be appropriate in systems where the ASR perfor-
mance is better. However, current state-of-the art speech recog-
nition in SDSs is far from being perfect, which suggests that our
method might be more appropriate for some systems.

7. Conclusions and Future Work
In this paper we have presented an approach for repetition de-
tection in SDSs. The performance for detection of repetitions
greatly improves when compared to the performance obtained
using the Levenshtein distance between ASR outputs. This con-
firms our hypothesis the method presented is robust to the noise
introduced by the ASR output. The performance of the method
was comparable to the performance using system dependent
features in SweCC data and even better in Let’s Go data.

In the future we plan to evaluate the method including
mixed repetitions. We also plan to implement the method in
a live system and test recovering strategies using the repetition
detection information during live interaction.
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