
Real-time Handling of Fragmented Utterances
Linda Bell1,2, Johan Boye1 and Joakim Gustafson1,2

 1Telia Research 2Centre for Speech Technology
Vitsandsgatan 9 Drottning Kristinas väg 31

 123 86 Farsta, Sweden 100 44 Stockholm, Sweden

Linda.E.Bell@telia.se, Johan.X.Boye@telia.se, Joakim.K.Gustafson@telia.se

����� � ���
	��

In this paper, we discuss an adaptive method of
handling fragmented user utterances to a speech-based
multimodal dialogue system. Inserted silent pauses
between fragments present the following problem:
Does the current silence indicate that the user has
completed her utterance, or is the silence just a pause
between two fragments, so that the system should wait
for more input? Our system incrementally classifies
user utterances as either closing (more input is
unlikely to come) or non-closing (more input is likely
to come), partly depending on the current dialogue
state. Utterances that are categorized as non-closing
allow the dialogue system to await additional spoken
or graphical input before responding.

�� ��� ���
������� � ���
Spontaneous human conversation contains fragmented
utterances: utterances consisting of speech fragments
divided by silent pauses. These pauses often appear
within clauses, as can be seen in the following
example:

“ I would like a /pause/ three-room apartment in this area” 1

Spoken dialogue systems with certain characteristics
seem particularly likely to elicit such fragmented
utterances from its users. For example, systems with
an open-microphone speech recognizer (rather than
click-to-speak recognition) make it more difficult for
users to plan their utterances ‘off-line’ before
speaking. Instead, users might begin to speak and take
the floor before knowing exactly what to say. If in
addition the system produces multimodal output, users
will need more time to consider all the information
presented, which may further amplify this behavior.
Furthermore, a dialogue system that encourages user
initiatives opens up for a greater variability in input
responses. This means that users are more likely to

1 All examples were taken from the corpus described
in Section 4, and were translated from Swedish.

hesitate (as in the example utterance above) than if the
system keeps the initiative to itself.

Thus, when constructing spoken dialogue systems,
an important task is to analyze user utterances in real-
time and decide the appropriate moment to start
computing and generating the system’s response.
Fragmented utterances present the system with a
problem: Does the current silence indicate that the user
has completed her utterance, or is the silence just a
pause between two fragments, so that the system should
wait for more input?

An obvious question at this point is how fragmented
utterances to a dialogue system really should be
handled. The intuitive answer, as we understand it, is
first of all that a system should be flexible enough to
choose from several possible reactions when it detects
that the user is silent. More specifically, it should either
(1) start producing a response utterance, or (2) give no
reaction at all, as more input is likely to come, or (3)
produce some kind of back-channeling reaction,
encouraging the user to continue speaking.

In this paper, we will present how fragmented
utterances are handled by the Swedish speech-based
dialogue system AdApt. The system incrementally
interprets user input in real-time, and determines the
appropriate system reaction at every silent pause. As the
appropriate choice of system reaction turns out to be
highly dependent on the dialogue state, the system
continuously adapts this interpretation process to the
current state of the dialogue.

The paper is structured as follows: Section 2
provides a brief background and discusses some
previous work related to the current study. Section 3
presents the AdApt system and the user interface. In
Section 4, experiences from a Wizard-of-Oz collection
are described. Section 5 discusses the analysis of
fragmented utterances in the database. In particular, we
focus on two utterance types that can be interpreted as
either closing or non-closing depending on the previous
dialogue history. Section 6 presents the algorithm used
by the system for incremental interpretation of
fragmented utterances. Finally, future work is outlined
in Section 7.

������� ��� �� "!"#
$�%
The concept of incremental interpretation of user input
has received relatively little attention in the literature.
In a recent study, Allen et al. (2001) argue that
incremental interpretation of user input and flexible
turn-taking is necessary for the interaction with spoken
dialogue systems to become more natural. Arguments
for allowing asynchrony in human−computer dialogue
have previously been put forward by Boye et al.
(2000). Nakano et al. (1999) describe a combined
parsing and discourse processing method, where the
user’s utterance can be interpreted each time a word
hypothesis comes in from the speech recognizer. Their
implemented system interprets user input
incrementally in real-time, but does not take the
dialogue context into account. However, spoken
dialogue systems have traditionally assumed that a
silence of a certain length indicates that the system
should take the floor. The user has thereby been
charged with the task of producing unbroken,
continuous utterances turn after turn.

State-of-the art commercial speech recognizers
support a method for adapting the end-of-speech
detection to the speech recognition grammar (see for
instance Nuance Application Developer’s Guide,
Version 7.0). The purpose of this is to make the system
seem more responsive and ‘alert’ . For example, a short
pause is sufficient to signal end-of-speech if the last
word recognized is identified as the last word of the
utterance as defined in the grammar. On the other
hand, if the last word recognized is not defined as an
end-of-utterance word, the system will wait longer
before signaling end-of-speech. This method is only
applicable in dialogue applications where the users’
responses are to a large extent predictable and a strict
grammar can be used. However, our system uses a
statistical grammar based on collected data which
makes this sort of feature difficult to use.

Segmentation methods have previously been
developed by several research groups. Stolcke and
Shriberg (1996) describe how word-level information
can be used to segment utterances into units. Other
studies have shown how prosodic cues can be used for
detecting sentence boundaries (Stolcke et al., 1998)
and for segmenting and classifying dialogue acts
(Mast et al., 1996). Hirschberg and Nakatani (1996)
describe the relationship between discourse structure
and intonational variation. Traum and Heeman (1997)
examine boundary tones and pauses, and how they are
related to grounding behavior in dialogue. Cettolo and
Falavigna (1998) propose a method in which a
combination of acoustic and lexical knowledge is used
to detect semantic boundaries. As far as we know,
these methods have yet to be applied in a real-time
interactive dialogue setting.

3 The AdApt system
The Swedish multimodal dialogue system AdApt was
developed at the Centre for Speech Technology (CTT)
(Gustafson et al., 2000). The system features an
animated talking agent that provides its users with
information about apartments currently for sale in
downtown Stockholm. The 3D-animated head, which
produces lip-synchronized synthetic speech, was
developed at KTH (Beskow 1995). Information about
the retrieved apartments is also displayed on a clickable
map and in a table. The system is designed to handle
multimodal input as well. The graphical input and the
textual output from the speech recognizer is jointly
interpreted by the multimodal parser before it is sent to
the dialogue manager. The AdApt system’s graphical
user interface can be seen in Figure 1.

Figure 1. The Adapt user interface.

4 Wizard-of-Oz simulation
Before implementing the final version of the system, we
performed a Wizard-of-Oz experiment, in which 16
subjects were given tasks that involved finding
apartments with certain criteria. A human operator
simulated the system’s key functionalities, i.e. the
analysis of the user’s verbal and graphical input,
dialogue management and multimodal response
generation. The simulation system’s verbal and
graphical output was generated by means of ready-made
templates. However, the simulated system’s dialogue
management abilities or turn-taking behavior were not
subject to comparable limitations. Instead, the human
acting as wizard was free to use his own intuitions about
when to take the turn and when to wait for the user to
complete or modify previous input. As a way of
signaling that the user’s input was being processed, the
animated agent responded with a ‘ thinking’ gesture
when silence was detected. Results of the subsequent
analyses of user data and details concerning the set-up
of the tool can be found in Bell et al. (2000).

5 Analysis of fragmented utterances
All utterances in the database were manually analyzed.
The purpose of the analysis was to assess at which
silent pauses an ideal system should start preparing its
response to the user’s input. An utterance in the corpus
is a sequence of fragments F1…Fn, divided by silent
pauses. Each utterance was given n tags reflecting its
status, at every pause, in the above regard. Two types
of status tags were used. Non-closing meant that the
utterance up to that point could not reasonably be
considered as complete, and that the system should not
yet begin preparing its response. All other fragment
sequences were labeled as closing. For example:

& ' & (&) & *+ , - . / 01/ 2 3 4 5�6�7 8 9 4 419 - - :;5 < 5 9 7 : 4 = 7 6>- = ? @ 0 4 9 : 5 / :;- 9 61A 5 B 5 B 7 5 = 6
C D C E F G D H I C J F G D H I C JKC D C E F G D H I C JLF G D H I C J

Our categorization of the 800 user utterances showed
that about 60% of all utterances contained a single
closing fragment, while 8% contained closing
fragments that were followed by at least another
fragment. However, as many as one third of the
utterances in the corpus were labeled as containing a
non-closing fragment followed by one or more
additional fragments. It therefore seemed important to
develop a method for handling these utterances in an
adequate manner.

The average pause length, for closing as well as non-
closing utterances, was 1 second. Most (90%) of the
pauses after a closing fragment sequence were 2.5
seconds or less. The corresponding figure for the non-
closing cases was 3.5 seconds.

The non-closing fragment sequences in the database
were then analyzed in detail. The purpose of this
analysis was twofold: Firstly, we wanted to see in
which dialogue contexts the fragmented utterances
occurred. Secondly, we wanted to pinpoint the
properties of closing and non-closing fragment
sequences. The latter analysis was used as a basis for
the incremental interpretation algorithm presented in
Sect. 6.3.
 In the data collected using the Wizard-of-Oz tool,
certain dialogue contexts appeared to frequently elicit
fragmented user utterances with inserted silences. In
the rare cases where the system handed over the
initiative to the user, either by saying it had nothing to
present or by explicitly asking the user: “What else do
you want to know about the apartment?”, more than
half of all user responses contained a non-closing
fragment sequence. However, most non-closing
occurrences (63%) appeared after the system had
answered a question about some feature of a specific
apartment. They were almost always feedback cues of
the kind described in section 5.1 below. In 12% of all

cases, the non-closing occurrences appeared in contexts
where the system had found a number of apartments
that matched the preferences of the user, and presented
these options both graphically and verbally. These are
described in 5.2 below.

5.1 Feedback
The interpretation of user feedback cues in the Wizard-
of-Oz corpus, previously described in Bell and
Gustafson (2000), appeared to be dependent on the
dialogue context. Despite the fact that the simulated
version of system neither explicitly encouraged
feedback behavior nor made use of such cues itself, as
many as 18% of all user utterances in the corpus
contained positive or negative feedback. However, the
use of feedback was subject to great individual
variability. The feedback cues occurred in a separate
turn in no more than 6% of all cases. Instead, a silent
pause and an additional request for information
followed most of the feedback cues in the dialogues.
This example shows a typical dialogue excerpt:

System: In the area marked on the screen I found five
apartments (graphical information presented on the
screen)

User: Yes /silence/ ehh is there one with a stuccoed
ceiling?

In isolation, the positive feedback cue ‘yes’ would not
make a lot of sense in the dialogue context of the
example above. In this and similar cases, it seems clear
that the system should wait for more input.

5.2 Referring expressions
There are two possible interpretations of expressions
that refer to an object shown on the screen, followed by
a silent pause. In some dialogue contexts it would seem
reasonable for the system to wait for additional
information from the user after the first fragment:

System: I found seven apartments and will now display their
locations on the map (colored icons appear on the
screen and corresponding information with
addresses in a table)

User: Hagagatan 14 /silence/ when was the apartment built?

At this stage in the dialogue, it would be difficult to
come up with a useful interpretation of the referential
expression. In other dialogue contexts, however, the
referring expression supplies the system with sufficient
information:

System: This one has a balcony (highlights red icon)
User: The yellow one?

Here, the user’s verbal reference to an apartment icon
displayed on the screen in conjunction with the fact that

the feature “balcony” was mentioned in the previous
turn is enough for the system to be able to fill in what
is presupposed. The interpretation of the second user
utterance can then be spelled out as: “Does the yellow
apartment have a balcony?” Depending on the
dialogue context, one and the same referential
expression can thus be classified either as non-closing,
which implies that there is more to come, or as closing,
which means that the fragment can be given an elliptic
interpretation, and contains enough information in
itself.

6 Handling of fragmented utterances
The following section describes the parts of the system
that are most relevant for the topic of this article.

6.1 Semantic representation formalism
The system uses a flat semantic formalism for
representing the meaning of user utterances:
essentially slot-filler lists wrapped up inside one of a
small number of quantificational patterns. The
formalism is highly influenced by that presented in
Boye et al. (1999).

The different quantificational patterns were
suggested by the analysis of our Wizard-of-Oz data.
For the purpose of this article, we distinguished
between the following kinds of expressions:

M1N O PRQ S T Find U with property V .W X Y ZR[\] Are there any objects ̂ with property _ ?` a b c d e�f g h
An utterance fragment, usually an NP,
describing an object i with property j .k l m n o p An acknowledgement of type q (where r
is “positive” , “neutral” or “negative”).

As discussed in the previous section, there are
essentially two types of utterance fragments where
contextual information is needed in order to decide
whether the fragment is closing or not: (1)
acknowledgements, and (2) references to objects,
usually definite NPs. The ack(T) expression type caters
for case (1), and the frag(X,P) expression type for case
(2).

The body of a semantic expression can contain
constraint items and referential items. Constraint items
specify the desired values of database slots, as well as
numerical relations between slot values and other
values. For instance, the utterances “ I would like to
have an apartment that costs less than two million”
would be represented by:
s1t u v w v x y z�{ | y } ~R� ��� � � � � | � y x v � | y u v w v x y z�{ | y } ~R� w x � � { � � � �

| � z�{ x � � v � � � � | � y x v � | y u �R�1� � � � � � � � �1�

Referential items indicate that an object X is associated
with referential information in the utterance. For
instance, “The apartment on Hagagatan... can you tell
me more about that?”, is represented by:

�1� � � � � � � ��� � � � �R�� ¡ ¢ £ ¤ � ¥ � � � ¦ � � � � � � � � ��� � � � ��� ¥ � � � � � ¢ � � ��� § � � ¨ � ¨ � � � � © �
� � ª � � � � � � ��� � � � ��� � ª ¦ � ¦ � � ¢ � � © « ©

However, the first part of the utterance above “The
apartment on Hagagatan...” would get the analysis:

¬ ® ¯ ° ® ± ® ² ³�´ µ ² ¶ ·�¸
¹ º » ¼ ½ ¾ µ ¿ ² ® À µ ² ° ® ± ® ² ³�´ µ ² ¶ ·�¸ ¿ ² ´ ´ ² ¼ µ ® ³�´ Á Â ® ¯ ® ¯ ® ² ® µ Ã ¸ ´ ¬ ° ® ± ® ² ³�´ µ ² ¶ ·�¸ º ´ ¬ À µ À ² ´ ¼ µ ± Ã Ä Ã

i.e. the type of the expression is frag rather than wh, as
the utterance only consists of a definite NP referring to
a (probably) already mentioned object.

6.2 Robust parsing
The system uses a two-phase robust shallow-processing
parsing algorithm to produce the semantic
representation of utterances. In its first phase, the parser
scans the string of words from left-to-right, and the
sequence of graphical events in time-order, collecting a
set of indicators triggered by syntactic patterns. For
instance, the word “Hagagatan” would produce
indicators that the user is talking about a street, that this
street is most likely part of an address; thus the user is
implicitly referring to an object that has an address, and
since apartments are (currently) the only known kind of
objects that has an address, the user is implicitly
referring to an apartment. The pattern “ I would like to”
would produce an indicator that the utterance should be
interpreted as an utterance of the wh-type, and so on.

In the second phase, the parser uses heuristics to
weigh all this information together, determining the
utterance type (wh, yn, frag,...), what the sought object
is (an apartment, a price, ...), the appropriate values of
database slots, and the referential information expressed
in the utterance. The final output of the parser is a
sequence of semantic expression, along with some extra
status information, labeling the utterance either as
closing or non-closing. An utterance will be classified
as non-closing either because it fails to match either of
the patterns received from the DM representing closing
utterance types (see below), or because there is an
indication that the utterance was cut off. Our data
suggests that words like “or” , “and” , “no”, and “a”, are
strong cues indicating a non-closing utterance.

6.3 Incremental interpretation of utterances
The general system architecture is shown in Figure 2,
and we will explain the parts that are relevant for the
incremental interpretation of utterances.

Figure 2 The system architecture

After each system utterance, the Dialogue Manager
(DM) sends the Input/Output-manager (IOM) a list of
utterance patterns, reflecting the kinds of user
utterances that should be considered to be closing in
the next turn. Utterances of types wh and yn are always
considered closing, but in certain situations also other
utterance types are regarded as closing, for example:
• If the system asks the user to supply a specific slot

value, then values of this type will be considered
closing. For instance, if the system asks “How
much are you willing to pay?”, then it is likely that
the user will answer elliptically, e.g. by saying
“Two million” , which would be represented by
frag(money-2000000,[]). Consequently, the DM
would inform the IOM that all utterances
matching the pattern frag(money-X,P) should also
be considered closing in the present situation.

• If the system has described an apartment in the
previous turn, e.g. “The apartment on Kungsgatan
has a bathtub” , then elliptical fragments such as
“And the apartment on Hagagatan?” should be
considered closing. The latter utterance matches
the pattern frag(apartment-X,P); thus in this
situation all utterances matching this pattern
would be considered closing.

• If the system asks a yes/no question, then all
utterances matching ack(X) will be considered
closing.

When the IOM receives an utterance and/or a graphical
event, it calls the parser to retrieve a semantic
expression S and information about whether it can be
regarded as closing or non-closing. If S is closing,
IOM will pass it on to DM, which will compute the

system response. At the same time, the animated agent
will present a turn-taking facial gesture, which is
followed by a thinking gesture in some cases.
Conversely, if S is non-closing, IOM will wait up to 4
seconds for more input. To encourage the user to give
more input, the animated agent is used to give a
backchanneling reaction by raising its eyebrows and
assuming an attentive expression.

If more input does arrive before timeout, the IOM
simply appends it to the previous utterance fragment
and calls the parser to analyze the resulting utterance,
repeating the process described in the previous
paragraph. However, if no more input arrives, IOM will
send the non-closing expression to DM anyway (usually
this results in a “ I’m sorry, I didn’ t understand” answer
from the system).

For example, suppose the user says “The apartment on
Hagagatan...” and then pauses. As we have seen
already, this utterance is analyzed in the following way:

Å Æ Ç È É Ç Ê Ç Æ Ë Ì�Í Î Ë Ï Ð�Ñ
Ò Ó Ô Õ Ö × Î Ø Ë Æ Ç Ù Î Ë É Ç Ê Ç Æ Ë Ì�Í Î Ë Ï Ð�Ñ Ø Ë Æ Í Í Ë Õ Î Ç Ì�Í Ú Û Ç È Ç È Ç Ë Ç Î Ü ÑÆ Í Å É Ç Ê Ç Æ Ë Ì�Í Î Ë Ï Ð�Ñ Ó Í Å Ù Î Ù Ë Í Õ Î Ê Ü Ý1Ü

The IOM will first check whether this expression
matches any of the patterns for closing utterances. If it
does not, the IOM will wait. Now suppose the user
adds: “ ... how much does it cost?”. The two appended
fragments get the analysis

Þ1ß à á�â ã ä å æ ç èé ê ë ì í â ã î ï ð ñ ò ã ï à ñ ó ñ ð ï á�ä ã ï æ ô�è ó1ð ò í ä õ1ç ö èê ë ì í â ã î ï ð ñ ò ã ï à ñ ó ñ ð ï á�ä ã ï æ ô�è î ï ð ä ä ï ì ã ñ á�ä õ ß ñ ÷ ñ ÷ ñ ï ñ ã ö è
ð ä ø à ñ ó ñ ð ï á�ä ã ï æ ô�è ê ä ø ò ã ò ï ä ì ã ó ö ù1ö

Since the IOM always regards wh utterances as closing,
this expression will be passed on to the DM.

When IOM gets the proposed system response R from
DM, it has a second decision point, namely whether or
not to actually generate R to the user. If no more input
from the user has arrived during the time DM has been
computing R, IOM will call the animated talking head
and the GUI server to generate R. If more input has
arrived, IOM will let the parser analyze whether the
new input has modified the utterance in some
significant way. If the semantic expression S2 returned
from the parser is closing and different from S, IOM
will not let R be generated, but instead send S2 to the
DM in order to generate a new system response R2.

For example, suppose the user first says “ I want to
look at apartments in the Old Town”, and while the DM
is preparing the response adds “... with two bedrooms”.
In this case, the combined utterance has a different
analysis than the first fragment; hence the IOM would
let the DM prepare a new answer based on the
combined utterance. If, however, the user coughs or

ú û ü ý þ ÿ �Rý þ ü ý þ �
��� û � � � �

�
	 ú
� � � � � �

�û � ��� þ � �
� � � � � û ��� � � �

��ü � � � �
� � � � � û � � � �

� � � � � �

� � � � � � ý �
��� û � � � �

� � þ � � � � �
� � � � � �

� � � ü � û � �
� � û � � � þ � �

adds some arbitrary words, it is likely that the robust
parser would come up with the same analysis for the
combined utterance as for the first fragment. In that
case, the IOM will decide that there is no need to
prepare a new answer.

6.4 Some practical experiences
Given that the algorithm described in the previous
section is motivated by simulation data, it is interesting
to assess how well it performs in the real system. In
particular, we were interested in what impact speech
recognition errors would have on the performance of
the system in general, and on the interpretation of
fragmented utterances in particular. In this context,
recognition errors might cause one of two undesired
effects:

1. Closing utterances are classified as non-closing
2. Non-closing utterances are classified as closing

A major reason for situation 1 to occur is that some
word in a wh-indicating (or yn-indicating) pattern is
misrecognized. For example, a common error with the
current recognizer is that “ jag vill ha” (“ I would like to
have”) is misrecognized as “ ja vilja” (“yes want”).
This has the effect that the parser determines the type
of the utterance to frag rather than wh; however the
propositional content is not changed in any way. In
some dialogue contexts, the erroneous frag tag might
delay the answer by 4 seconds (the IOM waits for
more input until timeout, as described in the previous
section). The DM does not distinguish between wh
utterances and frag utterances, so the system’s answer
will not be affected by the erroneous frag tag.
Nonetheless, the delay is of course annoying from the
user’s point of view, especially since the system in
general reacts fast.

There are several possible solutions to the problem
described above. An obvious suggestion is to add
common misrecognitions such as “ ja vilja” to the list
of wh-indicating patterns. However, for every such
pattern that is added, there is an increased risk of
erroneously tagging non-closing utterances as closing.
Another possibility is to be more liberal when deciding
which utterance types are to be considered as closing
utterances. Some experiments lead us to the conclusion
that in most dialogue contexts, utterances whose
analyses match the pattern frag(apartment-X,P) should
also be considered closing, in order for the system to
perform well (those are the utterances where the parser
at least could determine that the user is specifying an
apartment). An exception is the kind of dialogue
context shown in the first example of Section 5.2,
where the system has presented the user with a new set
of apartments. Here, the fragment “Hagagatan 14” (the
analysis of which matches the pattern frag(apartment-

X,P)) is evidently not closing. Therefore, the system
only considers wh and yn utterances to be closing in
such dialogue contexts.

Yet another problem can arise when closing
utterances are wrongly categorized as non-closing. The
user may get tired of waiting and decide to add some
more input before the timeout. This is not necessarily a
bad thing; more input can turn a non-closing utterance
into a closing utterance, as previously described. But it
is a well-known phenomenon that the absence of a
response, or an unexpected response, from the system
might influence the user to adapt her way of speaking.
Such user adaptations sometimes result in input that
causes even more problems for the system to handle,
e.g. hyperarticulation (Oviatt et al., 1998). In a system
such as AdApt, the effect might be that the user’s
utterance repeatedly fails to be analyzed as closing, so
by adding more input the user just resets the timeout
period, and the system stays silent for a long time.
Future experiments will reveal whether this is indeed a
real problem with our system.

When a non-closing utterance is categorized as
closing the user might feel she is being interrupted.
These situations rarely seem to be caused by
misrecognitions; rather the system breaks in before the
user has finished speaking. In the previously presented
example

& ' & (&) & *+ , - . / 01/ 2 3 4 5�6�7 8 9 4 419 - - :;5 < 5 9 7 : 4 = 7 6>- = ? @ 0 4 9 : 5 / :;- 9 61A 5 B 5 B 7 5 = 6
! " ! # $ % " & ' ! ($ % " & ' ! ()! " ! # $ % " & ' ! (*$ % " & ' ! (

the system would take the floor after fragment F2, not
giving the user the opportunity to specify the desired
geographic location of the apartment. Again, more user
studies are needed to find out whether this type of
system behavior is found to be annoying to the users.

7 Concluding remarks
We have described a multimodal spoken dialogue
system capable of incremental interpretation of user
input. This incrementality is achieved by a carefully
designed interplay between the speech recognizer, the
graphical interface and the parser. In addition, the
incrementality of the interpretation process is adapted to
the current state of the dialogue, resulting in a less strict
and more natural communication between the user and
the system.

Future work includes exploring methods of improving
end-of-turn detection in real-time by using a
combination of acoustic, lexical and discourse context
cues. It would be interesting to see whether techniques
for extracting several such cues could be incorporated
into a more advanced algorithm for incremental real-
time analysis of fragmented utterances. We would also

like to apply machine learning techniques to the
closing/non-closing tagging of fragments, to see
whether a learning system would outperform our
handcoded tagging rules.

Acknowledgements
The authors would like to thank the other members of
the AdApt group at the Centre for Speech Technology,
in particular Jens Edlund who has implemented parts
of the system. Thanks also to our colleagues at Telia.
We are especially grateful to Mats Wirén for many
interesting discussions and to Nikolaj Lindberg for
useful comments on previous drafts of this article.

References
Allen, J., Ferguson, G. and Stent, A. (2001). An architecture

for more realistic conversational systems. Proceedings of
Intelligent User Interfaces, 1-8.

Bell, L., Boye, J, Gustafson, J and Wirén, M. Modality
Convergence in a Multimodal Dialogue System.
Proceedings of Götalog 2000, Fourth Workshop on the
Semantics and Pragmatics of Dialogue, 29-34.

Bell, L. and Gustafson, J. (2000). Positive and Negative User
Feedback in a Spoken Dialogue Corpus. Proceedings of
ICSLP ’00, I: 589-592.

Beskow J. (1995). Rule-based Visual Speech Synthesis,
Proceedings of Eurospeech '95, 299-302.

Boye, J., Hockey, B.A., Rayner, M. (2000). Asynchronous
dialogue management: Two case-studies. Proceedings of
Götalog 2000, Fourth Workshop on the Semantics and
Pragmatics of Dialogue, 51-55.

Boye, J., Wirén, M., Rayner, M., Lewin, I., Carter, D.,
Becket, R. (1999). Language-processing strategies for
mixed-initiative dialogues. Proceedings of IJCAI ’99
Workshop on knowledge and reasoning in practical
dialogue systems, 17-24.

Cettolo, M. and Falavigna, D. (1998). Automatic detection of
semantic boundaries based on acoustic and lexical
knowledge. Proceedings of ICSLP’98, 1551-1554.

Gustafson, J, Bell, L, Beskow, J, Boye, J, Carlson, R,
Edlund, J, Granström, B, House, D and Wirén M. (2000).
AdApt – a multimodal conversational dialogue system in
an apartment domain, Proceedingsof ICSLP ’00, II: 1732-
1735.

Hirschberg, J. and Nakatani, C. (1996). A prosodic analysis
of discourse segments in direction-giving monologues.
Proceedings of ACL-96, pages 286-293.
Mast, M., Kompe, R., Harbeck,. S., Kiessling, A., Niemann,

H., Nöth, E., Schukat-Talamazzini, E. G., Warnke, V.
(1996). Dialog act classification with the help of prosody.
Proceedings of ICSLP ’ 96, 134-137.

Nakano, M., Miyazaki, N., Hirasawa, J., Dohsaka, K.,
Kawabata, T. (1999). Understanding unsegmented user
utterances in real-time spoken dialogue systems.
Proceedings of ACL-99, 200-207.

Nuance Application Developer’s Guide, Version 7.0.2 (2000).

Oviatt, S., MacEachern, M., and Levow, G-A. (1998).
Predicting hyperarticulate speech during human-computer
error resolution. Speech Communication 24: 87-110.

Stolcke, A. and Shriberg, E. (1996), Automatic linguistic
segmentation of conversational speech. Proceedings of
ICSLP ’96, 1005-1008.

Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M. Hakkani,
D., Plauche, M. Tur, G and Lu, Y. (1998), Automatic
Detection of Sentence Boundaries and Disfluencies based
on Recognized Words. Proceedings of ICSLP ’98, 2247-
2250.

Traum, D. and Heeman, P. (1997). Utterance units in spoken
dialogue. In Elisabeth Maier, Marion Mast, and Susann
LuperFoy (eds). Processing in Spoken Language Systems,
125-140.

