HTK Tutorial

Giampiero Salvi

KTH (Royal Institute of Technology),
Dep. of Speech, Music and Hearing,
Drottning Kristinas v. 31,
SE-100 44, Stockholm, Sweden

giampi@speech.kth.se
Outline

- Introduction
- Data formats and manipulation
- Data visualization
- Training
- Recognition
Introduction

What is it?

- toolkit for Hidden Markov Modeling
- general purpose, but...
- optimized for Speech Recognition
- very flexible and complete (always updated)
- very good documentation
Introduction

ASR overview

Training

Recognition

HTK Tutorial
Giampiero Salvi, Nov. 2003
Introduction

things that you should have before you start

- familiarity with Unix-like shell
 - cd, ls, pwd, mkdir, cp, foreach...

- text processing tools:
 - perl, perl, perl, perl, perl, perl
 - grep, gawk, tr, sed, find, cat, wc...

- lots of patience

- the fabulous HTK Book

- a look at the RefRec scripts
Introduction
the HTK tools

data manipulation tools:
 HCopy HQuant HLEd HHEd HDMan HBuild

data visualization tools:
 HSLab HList HSGen

training tools:
 HCompV HInit HRest HERest HEAdapt HSmooth

recognition tools:
 HLStats HParse HVite HResults
Introduction
the HTK data formats

data formats:
- **audio**: many common formats plus HTK binary
- **features**: HTK binary
- **labels**: HTK (single or *Master Label* files) text
- **models**: HTK (single or *Master Macro* files) text or binary
- **other**: HTK text

![Diagram of HTK data formats](image-url)
Introduction
usage example (HList)

> HList

USAGE: HList [options] file ...

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Coerce observation to VQ symbols off</td>
</tr>
<tr>
<td>-e N</td>
<td>End at sample N 0</td>
</tr>
<tr>
<td>-h</td>
<td>Print source header info off</td>
</tr>
<tr>
<td>-i N</td>
<td>Set items per line to N 10</td>
</tr>
<tr>
<td>-n N</td>
<td>Set num streams to N 1</td>
</tr>
<tr>
<td>-o</td>
<td>Print observation structure off</td>
</tr>
<tr>
<td>-p</td>
<td>Playback audio off</td>
</tr>
<tr>
<td>-r</td>
<td>Write raw output off</td>
</tr>
<tr>
<td>-s N</td>
<td>Start at sample N 0</td>
</tr>
<tr>
<td>-t</td>
<td>Print target header info off</td>
</tr>
<tr>
<td>-z</td>
<td>Suppress printing data on</td>
</tr>
<tr>
<td>-A</td>
<td>Print command line arguments off</td>
</tr>
<tr>
<td>-C cf</td>
<td>Set config file to cf default</td>
</tr>
<tr>
<td>-D</td>
<td>Display configuration variables off</td>
</tr>
</tbody>
</table>

...
Introduction

command line switches and options

> HList -e 1 -o -h feature_file

Source: feature_file
Sample Bytes: 26 Sample Kind: MFCC_0
Num Comps: 13 Sample Period: 10000.0 us
Num Samples: 336 File Format: HTK

--------------------Observation Structure--------------------
x: MFCC-1 MFCC-2 MFCC-3 MFCC-4 MFCC-5 MFCC-6 MFCC-7
 MFCC-8 MFCC-9 MFCC-10 MFCC-11 MFCC-12 C0

---------------------------Samples: 0->1-------------------------------
0: -14.314 -3.318 -6.263 -7.245 7.192 4.997 0.830
 3.293 5.428 6.831 5.819 5.606 40.734
 0.812 0.630 5.285 1.054 8.375 40.778

---------------------------- END -------------------------------
Introduction
configuration file

> cat config_file
SOURCEKIND = MFCC_0
TARGETKIND = MFCC_0_D_A

> HList -C config_file -e 0 -o -h feature_file

Source: feature_file
Sample Bytes: 26 Sample Kind: MFCC_0
Num Comps: 13 Sample Period: 10000.0 us
Num Samples: 336 File Format: HTK

Observation Structure

x:
- MFCC-1
- MFCC-2
- MFCC-3
- MFCC-4
- MFCC-5
- MFCC-6
- MFCC-7
- MFCC-8
- MFCC-9
- MFCC-10
- MFCC-11
- MFCC-12
- C0
- Del-1
- Del-2
- Del-3
- Del-4
- Del-5
- Del-6
- Del-7
- Del-8
- Del-9
- Del-10
- Del-11
- Del-12
- DelC0
- Acc-1
- Acc-2
- Acc-3
- Acc-4
- Acc-5
- Acc-6
- Acc-7
- Acc-8
- Acc-9
- Acc-10
- Acc-11
- Acc-12
- AccC0

Samples: 0->1

0:
3.293 5.428 6.831 5.819 5.606 40.734 -0.107
-0.180 0.731 1.134 -0.723 -0.676 1.083 -0.552
-0.387 -0.592 -2.172 -0.030 -0.170 0.236 0.170
-0.241 -0.226 -0.517 -0.244 -0.053 0.213 -0.029
0.097 0.225 -0.294 0.051
Data formats and manipulation

file manipulation tools

- **HCopy**: converts from/to various data formats (audio, features).
- **HQuant**: quantizes speech (audio).
- **HLEd**: edits label and **master label files**.
- **HDMan**: edits **dictionary files**.
- **HHEd**: edits model and **master macro files**.
- **HBuild**: converts language models in different formats (more in recognition section).
Data formats and manipulation
computing feature files (HCopy)

> cat config_file

Feature configuration
TARGETKIND = MFCC_0
TARGETRATE = 100000.0
SAVECOMPRESSED = T
SAVEWITHCRC = T
WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = F
input file format (headerless 8 kHz 16 bit linear PCM)
SOURCEKIND = WAVEFORM
SOURCEFORMAT = NOHEAD
SOURCERATE = 1250

> HCopy -C config_file audio_file1 param_file1 audio_file2 ...
> HCopy -C config_file -S file_list
Data formats and manipulation

label files

```mlf
#!MLF!#
"filename1"
[start1 [end1]] label1 [score] {auxlabel [auxscore]} [comment]
[start2 [end2]] label2 [score] {auxlabel [auxscore]} [comment]
...
[startN [endN]] labelN [score] {auxlabel [auxscore]} [comment]

"filename2"
...
```

- [..] = optional (0 or 1);
- {..} = possible repetition (0, 1, 2...)
- time stamps are in 100ns units (!?): 10ms = 100.000
Data formats and manipulation

label file example 1

> cat aligned.mlf

#!/MLF!
"*/a10001a1.rec"

0 6400000 sil <sil>
6400000 8600000 f förra
8600000 10400000 oe
10400000 11700000 r
11700000 14100000 a
14100000 14100000 sp
14100000 29800001 sil <sil>

"*/a10001i1.rec"

0 2600000 sil <sil>
2600000 4900000 S sju
4900000 8300000 uh:
8300000 8600000 a
8600000 8600000 sp
8600000 21600000 sil <sil>

.
Data formats and manipulation

label file example 2 (HLEd)

> HLEd -l '*' -d lex.dic -i phones.mlf words2phones.led words.mlf

> cat words.mlf
#!MLF!
"*/a10001a1.rec" förra
"*/a10001i1.rec" sju

> cat phones.mlf
#!MLF!
"*/a10001a1.rec" sif foer a sp sil
"*/a10001i1.rec" sil S uh: a sp sil

> cat words2phones.led
EX IS sil sil

HTK Tutorial
Giampiero Salvi, Nov. 2003 15/36
Data formats and manipulation

dictionary (HDMan)

WORD [OUTSYM] PRONPROB P1 P2 P3 P4 ...

> cat lex.dic
förra f oe r a sp
sju S uh: a sp

> cat lex2.dic
<sil> [] sil
förra f oe r a sp
sju 0.3 S uh: a sp
sju 0.7 S uh: sp
Data formats and manipulation

HMM definition files (HHEd) 1/5

```
~h "hmm_name"
<BEGINHMM>
  <NUMSTATES> 5
  <STATE> 2
    <NUMMIXES> 2
      <MIXTURE> 1 0.8
        <MEAN> 4
          0.1 0.0 0.7 0.3
        <VARIANCE> 4
          0.2 0.1 0.1 0.1
      <MIXTURE> 2 0.2
        <MEAN> 4
          0.2 0.3 0.4 0.0
        <VARIANCE> 4
          0.1 0.1 0.1 0.2
  <STATE> 3
    ~s "state_name"
  <STATE> 4
    <NUMMIXES> 2
      <MIXTURE> 1 0.7
        ~m "mix_name"
      <MIXTURE> 2 0.3
        ~u "mean_name"
      <VARIANCE> 4
        ~v "variance_name"
  <TRANSP>
    ~t "transition_name"
(ENDHMM)
```
Data formats and manipulation
HMM definition files (HHEd) 2/5

~h "hmm_name"
<BEGINHMM>
 <NUMSTATES> 5
 <STATE> 2
 <NUMMIXES> 2
 <MIXTURE> 1 0.8
 <MEAN> 4
 0.1 0.0 0.7 0.3
 <VARIANCE> 4
 0.2 0.1 0.1 0.1
 <MIXTURE> 2 0.2
 <MEAN> 4
 0.2 0.3 0.4 0.0
 <VARIANCE> 4
 0.1 0.1 0.1 0.2
 <STATE> 3
 ~s "state_name"
 <STATE> 4
 <NUMMIXES> 2
 <MIXTURE> 1 0.7
 ~m "mix_name"
 <MIXTURE> 2 0.3
 <MEAN> 4
 0.3 0.2 0.3 0.0
 <VARIANCE> 4
 0.1 0.1 0.1 0.2
 <TRANSP>
 ~t "transition_name"
 <ENDHMM>

State definition (~s)

HTK Tutorial
Giampiero Salvi, Nov. 2003
Data formats and manipulation

HMM definition files (HHEd) 3/5

~h "hmm_name"
<BEGINHMM>
 <NUMSTATES> 5
 <STATE> 2
 <NUMMIXES> 2
 <MIXTURE> 1 0.8
 <MEAN> 4
 0.1 0.0 0.7 0.3
 <VARIANCE> 4
 0.2 0.1 0.1 0.1
 <MIXTURE> 2 0.2
 <MEAN> 4
 0.2 0.3 0.4 0.0
 <VARIANCE> 4
 0.1 0.1 0.1 0.2
 <STATE> 3
 ~s "state_name"
 <STATE> 4
 <NUMMIXES> 2
 <MIXTURE> 1 0.7
 ~m "mix_name"
 <MIXTURE> 2 0.3
 <MEAN> 4
 ~u "mean_name"
 <VARIANCE> 4
 ~v "variance_name"
 <TRANSスポ> ~t "transition_name"
<ENDHMM>

Gaussian mixture component definition (~m)

1 2 3 4 5

HTK Tutorial
Giampiero Salvi, Nov. 2003
Data formats and manipulation
HMM definition files (HHEd) 4/5

~h "hmm_name"
<BEGINHMM>
 <NUMSTATES> 5
 <STATE> 2
 <NUMMIXES> 2
 <MIXTURE> 1 0.8
 <MEAN> 4
 0.1 0.0 0.7 0.3
 <VARIANCE> 4
 0.2 0.1 0.1 0.1
 <MIXTURE> 2 0.2
 <MEAN> 4
 0.2 0.3 0.4 0.0
 <VARIANCE> 4
 0.1 0.1 0.1 0.2
 <STATE> 3
 "s "state_name"
 <STATE> 4
 <NUMMIXES> 2
 <MIXTURE> 1 0.7
 "m "mix_name"
 <MIXTURE> 2 0.3
 <MEAN> 4
 "u "mean_name"
 <VARIANCE> 4
 "v "variance_name"
 <TRANSPOSE>
 "t "transition_name"
 <ENDHMM>

Mean vector definition (~u)
Diagonal variance vector definition (~v)
Data formats and manipulation

HMM definition files (HHEd) 5/5

```
~h "hmm_name"
<BEGINHMM>
  <NUMSTATES> 5
  <STATE> 2
    <NUMMIXES> 2
    <MIXTURE> 1 0.8
      <MEAN> 4
        0.1 0.0 0.7 0.3
      <VARIANCE> 4
        0.2 0.1 0.1 0.1
    <MIXTURE> 2 0.2
      <MEAN> 4
        0.2 0.3 0.4 0.0
      <VARIANCE> 4
        0.1 0.1 0.1 0.2
  <STATE> 3
    ~s "state_name"
  <STATE> 4
    <NUMMIXES> 2
    <MIXTURE> 1 0.7
      ~m "mix_name"
    <MIXTURE> 2 0.3
      ~u "mean_name"
    <VARIANCE> 4
      ~v "variance_name"
  <TRANSP>
    ~t "transition_name"
</ENDHMM>
```

Transition matrix definition (~t)
Data visualization

- **HSLab**: graphical tool to label speech (use WaveSurfer instead).
- **HList**: gives information about audio and feature files.
- **HSGen**: generates random sentences out of a regular grammar.
Intermezzo
what do we know so far?

Training

Recognition
Initialization procedure depends on the information available at that time.

- **HCompV**: computes the overall mean and variance. Input: a prototype HMM.

- **HInit**: Viterbi segmentation + parameter estimation. For mixture distribution uses K-means. Input: a prototype HMM, time aligned transcriptions.
Training tools
training and adaptation

- **HRest**: Baum-Welch re-estimation. Input: an initialized model set, time aligned transcriptions.
- **HERest**: performs *embedded* Baum-Welch training. Input: an initialized model set, timeless transcriptions.
- **HEAdapt**: performs adaptation on a limited set of data.
- **HSmooth**: smoots a set of context-dependent models according to the context-independent counterpart.
Training tools

training example: RefRec

first pass:

- prototype HMM → HCompV → cloning → HERest →
- realignment (HVite) → HERest → increase MC (HHEd) →
- HERest → realignment (HVite)

second pass:

- prototype HMM + aligned transcriptions → HInit →
- HRest → HERest → increase MC (HHEd) → HERest
Recognition tools

grammar generation

- **HLStats**: creates bigram from training data.
- **HParse**: parses a user defined grammar to produce a lattice.

decoding

- **HVite**: performs Viterbi decoding.

evaluation

- **HResults**: evaluates recognition results.
Recognition tools
grammar definition (HParse)
Recognition tools

grammar definition (HParse)

> cat grammar.bnf
$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$item = char | word | line | page;
$dcmd = delete [$item];
$icmd = insert;
$ecmd = end [insert];
$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;
({$noise} < $cmd {$noise} > quit {$noise})

- [.] optional
- {.} zero or more
- (.) block
- <.> loop
- <<.>> context dep. loop
- .|. alternative
Recognition tools

grammar definition (HParse)

> cat grammar.bnf

```plaintext
$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;

$item = char | word | line | page;
$dcmd = delete [$item];
$icmd = insert;
$ecmd = end [insert];
$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;
($noise{.} < $cmd {$noise} > quit {$noise})

- [.] optional
- {..} zero or more
- (. ) block
- <.> loop
- <<.>> context dep. loop
- .|. alternative
```
Recognition tools

grammar definition (HParse)

> cat grammar.bnf
$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;

$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$cmd = delete [page];
$dcmd = delete [$item];
$icmd = insert;
$ecmd = end [insert];
$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;
({$noise} <$cmd {$noise}> quit {$noise})

- [.] optional
- {x} zero or more
- (.) block
- <.> loop
- <<<.>> context dep. loop
- .|. alternative
Recognition tools

grammar definition (HParse)

> cat grammar.bnf
$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$item = char | word | line | page;
$dcmd = delete [$item];

$icmd = insert;
$ecmd = end [insert];

$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;

({$noise} < $cmd {$noise} > quit {$noise})

- [.] optional
- {.} zero or more
- (.) block
- <.> loop
- <.>> context dep. loop
- .|. alternative
Recognition tools

grammar definition (HParse)

> cat grammar.bnf
$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$item = char | word | line | page;
$dcmd = delete [$item];
$icmd = insert;
$ecmd = end [insert];
$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;

({$noise} < $cmd {$noise} > quit {$noise})

- [.] optional
- {.} zero or more
- (.) block
- <.> loop
- <.<>> context dep. loop
- .|. alternative
Recognition tools

grammar definition (HParse)

> cat grammar.bnf

$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$item = char | word | line | page;
$dcmd = delete [$item];
$icmd = insert;
$ecmd = end [insert];
$cmd = $mcmd | $dcmd | $icmd | $ecmd;
$noise = sil | fil | spk;

([$noise] < $cmd {$noise} > quit {$noise})

- [.] optional
- { . } zero or more
- (.) block
- < . > loop
- << . >> context dep. loop
- . | . alternative
Recognition tools

grammar parsing (HParse) and recognition (HVite)

Parse grammar
> HParse grammar.bnf grammar.slf

Run recognition on file(s)
> HVite -C offline.cfg -H mono_32_2.mmf -w grammar.slf
 -y lab dict.txt phones.lis audio_file.wav

Run recognition live
> HVite -C live.cfg -H mono_32_2.mmf -w grammar.slf
 -y lab dict.txt phones.lis
Recognition tools

evaluation (HResults)

> HResults -I reference.mlf ... word.lst recognized.mlf

====================== HTK Results Analysis =======================
 Date: Thu Jan 18 16:17:53 2001
 Ref : nworkdir_train/testset.mlf
 Rec : nresults_train/mono_32_2/rec.mlf

------------------------ Overall Results --------------------------
SENT: %Correct=74.07 [H=994, S=348, N=1342]
WORD: %Corr=94.69, Acc=94.37 [H=9202, D=196, S=320, I=31, N=9718]

\[N = \text{total number}, \ I = \text{insertions}, \ S = \text{substitutions}, \ D = \text{deletions} \]

\[\text{correct: } H = N - S - D \]

\[\%\text{correct: } \%Corr = \frac{H}{N} \]

\[\text{accuracy: } Acc = \frac{H-I}{N} = \frac{N-S-D-I}{N} \]