Weighted Finite-State Transducers

Alexander Seward
Centre for Speech Technology
KTH
Stockholm, Sweden

Why Weighted Finite-State Transducers?

1. Efficiency and Generality of Classical Automata Algorithms

Efficient algorithms for a variety of problems (e.g. string-matching, compilers, parsing, pattern matching, process industri, design of controllability systems in aircrafts).

General algorithms: rational operations, optimizations.

2. Weights

Handling uncertainty: text, handwritten text, speech, image, biological sequences.

Increased generality: finite-state transducers, multiplicity/indeterminism.

3. Applications

Text: pattern-matching, indexation, compression.

Speech: Large-vocabulary speech recognition, speech synthesis.

Image: image compression, filters.

TRANSDUCERS IN AUTOMATIC SPEECH RECOGNITION

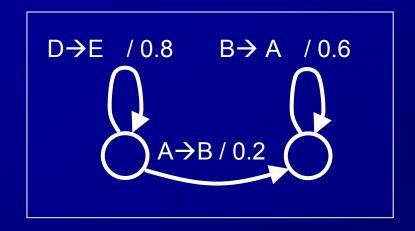
In ASR: Mathematical models for speech-to-text translation

A uniform composition of different information sources: HMM-data, lexica, language models, etc...

Flexible: reduces decoder depedencies, multiple layers, generic optimization methods.

Alexander Seward KTH

What is a Weighted Finite-State Transducer (WFST)?



A finite-state machine where each arc is a weighted transduction consisting of an input, an output, and a probability/weight

Simply put: A translation device

A WFSA is a transducer without output

Alexander Seward KTH

WFSTs in recognition

 I want a ticke..#noise"..Boston from New York

FST trained on acoustics and language corpus:

#noise" must be "t...to" !

WFSTs in recognition

The bare was bear naked?

- FST trained on language corpus:
- The bear was bare naked

Recognition Cascade (simplified)

I: Input feature vectors
 H: HMM
 C: Context-Dependency Model CD-HMMs
 L: Lexicon
 Transcr. syms
 Words
 Words

Use Weighted FST Composition to compose the parts into one

Weighted FST operations

Best-path Difference Weight pushing

Closure Equivalence Label pushing

Compaction Hadamard product Reversal

Composition Inversion Epsilon removal

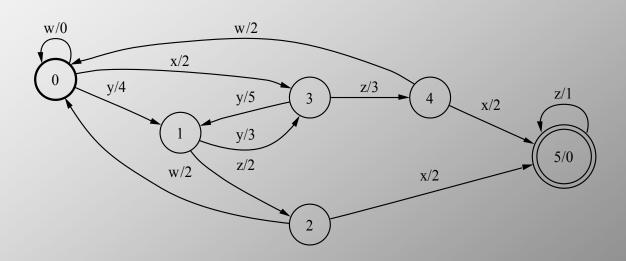
Concatenation Minimization Topological sort

Connection Projection Union

Determinization Pruning

Language model WFSA

Model a priori weights for different word sequences (n-grams)



4 fictitious words: w, x, y, z

LM WFSA - Minimized

Model a priori weights to different word sequences (n-grams)



4 fictitious words: w, x, y, z

Pronunciation knowledge

because			about		
IPA	ARPAbet	%	IPA	ARPAbet	%
[bikAZ]	[b iy k ah z]	27%	[əbau]	[ax b aw]	32
[bikAZ]	[b ix k ah z]	14%	[əbaut]	[ax b aw t]	16
[kAZ]	[k ah z]	7%	[baʊ]	[b aw]	99
[kəz]	[k ax z]	5%	[Abau]	[ix b aw]	.86
[bikəz]	[b ix k ax z]	4%	[ibaut]	[ix b aw t]	5
[bikaz]	[b ih k ah z]	3%	[ibæ]	[ix b ae]	4
[bəkaz]	[b ax k ah z]	3%	[əbær]	[ax b ae dx]	3
1 3	[k uh z]	2%	[baur]	[b aw dx]	3
[kuz] [ks]	[k s]	2%	[bæ]	[b ae]	3
[kiz]	[k ix z]	2%	[baut]	[b aw t]	3
	[k ih z]	2%	[əbaur]	[ax b aw dx]	3
[kiz] [bikʌʒ]	[b iy k ah zh]	2%	[əbæ]	[ax b ae]	3
L 0,1	[b iy k ah s]	2%	[ba]	[b aa]	3
[bikas]	[b iy k ah]	2%	[bær]	[b ae dx]	3
[bikA]	[b iy k aa z]	2%	[ibaur]	[ix b aw dx]	4
[bikaz] [əz]	[ax z]	2%	[ibat]	[ix b aa t]	2

Figure 5.7 The 16 most common pronunciations of *because* and *ahout* from the hand-transcribed Switchboard corpus of American English conversational telephone speech (Godfrey et al., 1992; Greenberg et al., 1996).



respective the transfer of E

diale migl talki choe exar pror both form

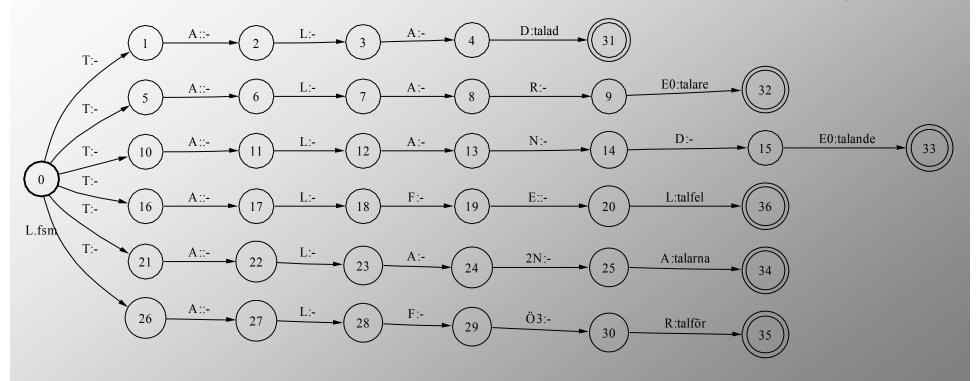
m

gen

She [m]

Use different weights to model likelihood of pronuciations!

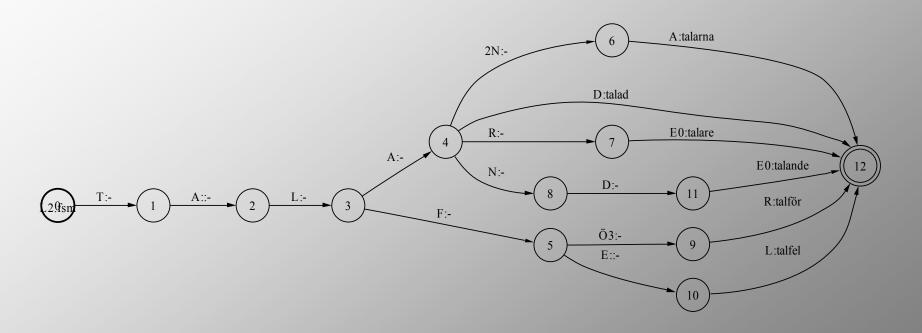
Lexicon transducer Some phonetically similar words



36 states

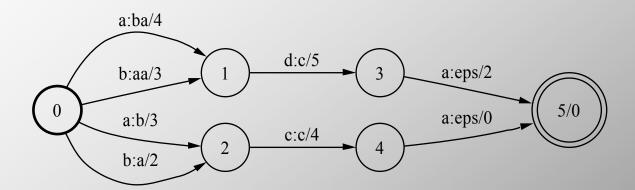
Euqivalent lexicon transducer

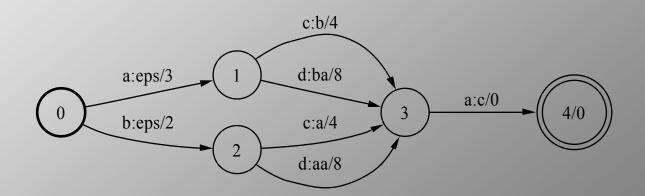
- Deterministic



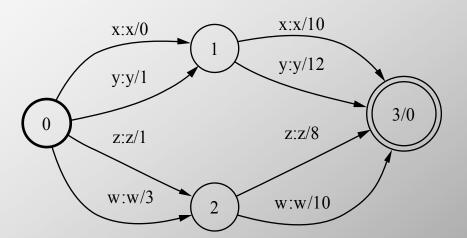
 $36 \rightarrow 13$ states

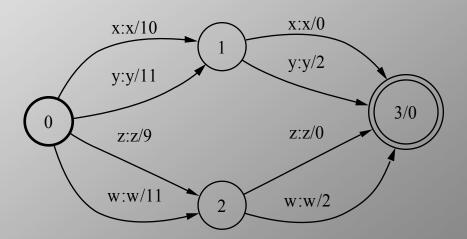
Weighted determinization



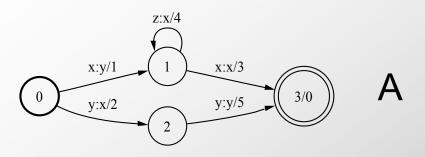


Weight pushing



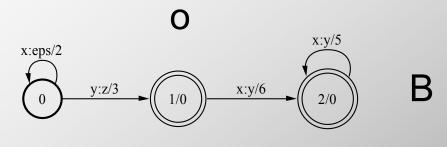


Weighted composition

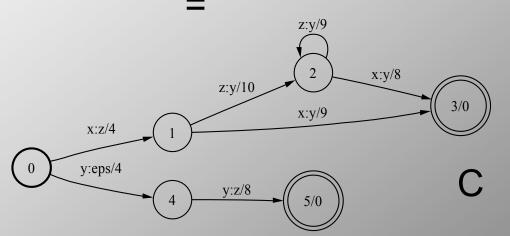


A: $(x, z, z, x) \rightarrow (y, x, x, x)$ weight: 1 + 4 + 4 + 3 = 12.

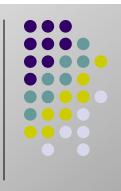
B: $(y, x, x, x) \rightarrow (z, y, y, y)$ weight: 3 + 6 + 5 + 5 = 19.

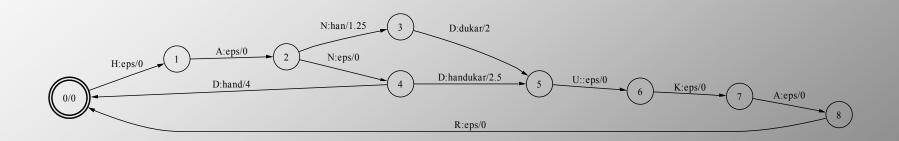


A \circ B: $(x, z, z, x) \rightarrow (z, y, y, y)$ total weight: 12 + 19 = 31.



C = A \circ B: $(x, z, z, x) \rightarrow (z, y, y, y)$ same total weight: 4 + 10 + 9 + 8 = 31.





han HAN (Eng: he)

hand HAND (Eng: hand)

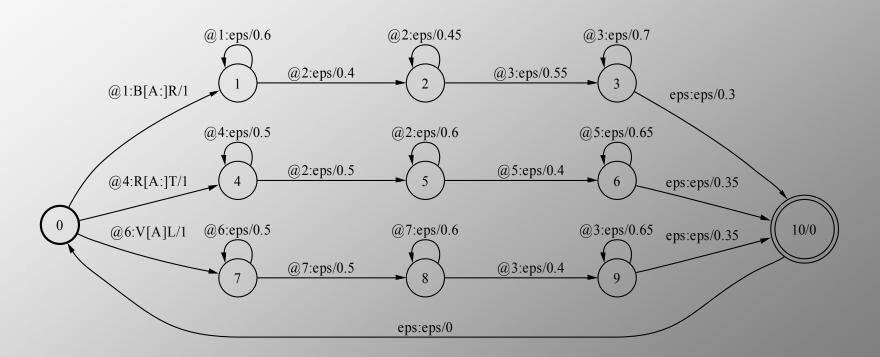
handdukar HANDU: KAR (Eng: towels)

dukar D U: K A R (Eng: set the table)

Sequence:

han dukar HANDU: KAR (Eng: he sets the table)

Alexander Seward KTH



Context-Dependendency Modeling

"...var i det..."

