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Chapter 10

PER experiments

10.1 Introduction

This chapter reports on findings from an evaluation of the on-site and telephone
versions of the PER system described in Chapter 5. The evaluation was conducted
with speech data collected through actual use of the two system versions. The data
collection and data themselves were described in Section 6.3.

All our development of the speaker verification component of the PER system
before the collection of evaluation data was made using general purpose telephone
corpora Gandalf (Melin, 1996), Polycost (Hennebert et al., 2000), SpeechDat (El-
enius, 2000) and Switchboard, since the Department’s research was directed on
telephone applications of speaker verification (Lindberg and Melin, 1997; Melin,
1998; Melin et al., 1998; Nordström et al., 1998; Melin and Lindberg, 1999; Bimbot
et al., 1999, 2000; Neiberg, 2001). Hence, the system used to collect live evaluation
data was not optimized for the particular application it was used in. However,
in parallel to collecting evaluation data, separate, application-specific development
data were collected allowing for off-line simulation experiments with an optimized
system. In this chapter, results are presented both for the initial, general-purpose
system and the optimized, application-specific system.

Besides the variants of our own research system, a commercial speaker verifica-
tion system has also been tested on the collected corpus. Results from these tests
serve as calibration of the data and the recognition tasks.

Results from practical use of ASV technology for person authentication in on-
site applications have been reported in several publications. Test sites include Texas
Instruments corporate headquarters in Dallas (Doddington, 1985), Siemens in Mu-
nich (Feix and DeGeorge, 1985) , LIMSI in Paris (Mariani, 1992), AT&T Bell Labs
in cooperation with a large bank (Setlur and Jacobs, 1995), Fraunhofer Institute
in Erlangen (Wagner and Dieckmann, 1995), University of Frankfurt (Schalk et al.,
2001) and Panasonic Speech Technology Laboratory in Santa Barbara (Morin and
Junqua, 2003). At AT&T Bell Labs the application was an automated teller ma-
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2 Chapter 10. PER experiments

chine (ATM), while at all other sites it was a voice-actuated lock that secured access
to a physical room or building.

At Texas Instruments, a template based system was installed in the mid 1970s
(Rosenberg, 1976; Doddington, 1985). It was aurally text prompted using strings
of four words like “Proud Ben served hard”, and used a sequential decision strategy
where claimants were asked to speak new word sequences until a certain level of
confidence was achieved. False reject and false accept rates (casual impostors) of
below 1% are reported with on average 1.6 utterances required by the sequential
decision strategy. Users were required to step into a booth to use the system.

At LIMSI, a text-dependent, template based system was first publicly demon-
strated in 1985. It was installed in a voice-actuated door lock application at the lab
in 1987 and was used by about 100 users (Mariani, 1992). A second generation sys-
tem was installed in 1990 and a new generation, HMM-based system was developed
in 1997 which has so far only been used for data collection (Lamel, 2005).

At Panasonic Speech Technology Laboratory in Santa Barbara a biometric ter-
minal has been in service since April 2002 by the building’s main entrance door
(Morin and Junqua, 2003). It is a multi-modal access control system where any of
the three modes speech, fingerprint or keypad (10-digit account number) can be used
individually, or in combination for uncertainty recovery. The speech sub-system is
template based and operates on user-selected pass-phrases in an open-microphone
mode. Users can speak the pass-phrase at any time from within typically 0.3–
3 meters from the terminal. The system has been in use by about 35 enrolled users
and was reported to have about 8% FRR and 0.1% FAR (2.8% EER) for the speech
mode only. Some of the initial rejections were recovered via another mode reducing
the FRR to about 5%. Other results using data collected by this system have been
reported in (Bonastre et al., 2003).

AT&T conducted a six month field trial with an ATM application where a text-
prompted, HMM-based speaker verification system was used in addition to regular
PIN codes typed on a keyboard (Setlur and Jacobs, 1995). Claimants were asked
to repeat random 4-digit phrases into a handset connected to the ATM.

10.2 Development tests

This section describes what data was used for developing the PER system and how
it was used.

Table 10.1 shows results from the development experiment to determine em-
pirical values for weights ωξ used in combining scores from the HMM and GMM
subsystems (Eq. 3.23).

The value of the decision threshold θ (Eq. 3.25) was also determined empiric-
ally as the same-sex EER threshold with the combined ASV system on the same
development test set.
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Table 10.1: Equal error rate εξ, standard deviation σξ of score distribution and
combination weights ωξ for the HMM and GMM subsystems as determined from a
development experiment on Gandalf data.

subsystem (ξ) EER (εξ) stdev (σξ) weight (ωξ)
HMM (H) 7.51% 4.017 0.142
GMM (G) 6.11% 0.6747 0.858

10.2.1 Development data

Most experiments behind development decisions in the design of the HMM sub-
system were done on various partitions of the Gandalf (Melin, 1996) and Polycost
(Hennebert et al., 2000) corpora, e.g. (Melin and Lindberg, 1999) and (Nordström
et al., 1998). With particular development for the PER application in mind, a
PER-like development test configuration on Gandalf was created. It was used to
optimize the configuration of the GMM subsystem and to determine the a priori
score fusion weights and the decision threshold used during data collection.

The PER-like development test configuration uses one of two fixed sentences
in place of names. Half of the target speakers were assigned one sentence and the
other half the other sentence. Enrollment was performed with 10 repetitions of the
sentence and 10 five-digit sequences taken from two recording sessions from differ-
ent handsets (enrollment set d5+fs0x, cf. Table 6.8), while each test was performed
with a single repetition of the same sentence and an aurally prompted string of four
digits (test set 1fs+1r4-fs0x, cf. Table 6.9). All impostor tests used in development
experiments were same-sex attempts. True-speaker test sessions were recorded from
up to 10 different handsets per target, but at least half of the sessions came from
one of the target’s enrollment handsets. Impostor test sessions were generally not
recorded from one of the target’s enrollment handsets. Even though this develop-
ment test configuration was designed to simulate the PER application as well as
possible given the constraints of the already existing Gandalf corpus, it differs in
several aspects from real PER data as summarized in Table 10.2 for the telephone
version of PER. The on-site version of PER naturally adds the differences already
identified between the two PER versions (Table 5.1).

Background models were trained on subsets of files from 960 speakers in the
Swedish landline FDB5000 SpeechDat corpus (Elenius, 2000). Background models
in the HMM subsystem were trained on a digits subset composed by five files per
speaker that may contain pronunciations of isolated or connected digits (corpus
and item identifiers with parentheses): a random 10-digit sequence (B1), a 10 or 7
digit prompt sheet number (C1), an 8-12 digit phone number (C2), a 16-digit credit
card number (C3), and a 6-digit PIN-code (C4). Background models in the GMM
subsystem were trained on a mixed subset composed by six files per speaker: a
random 10-digit sequence (B1), three phonetically rich sentences (S1-S3), and two
phonetically rich words (W1, W2). None of the 960 speakers occur in the Gandalf or
PER corpora.
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Table 10.2: Main differences between the PER-like development set on Gandalf
and telephone subset of PER evaluation data.

Aspect Gandalf development PER evaluation

Elicitation recording use of ASV system

Enrollment data two session, two
different handsets

single session

Test data (per target) multiple handsets;
cross-handset impostors

single handset;
same-handset
impostors

Impostors random
pseudo-impostors

dedicated impostors

Vocabulary sentence+digits proper name+digits

Passphrase variation 1 sentence/20 targets 1 name/1 target

Acoustic models for speech recognition were trained on 4016 speakers (gender-
balanced) in the referred SpeechDat corpus, including all files from each speaker
with the exception of files transcribed with truncated signal, mispronunciations,
unintelligible speech or phonetic letter pronunciations (Lindberg et al., 2000). The
number of used speakers is less than 5000 because 500 speakers were withheld for
testing, 37 more because they were included in the Gandalf corpus, and 10% of
the remaining speakers were set aside for development testing. Hence, there is no
speaker overlap between this data and the Gandalf data. There is also no speaker
overlap between used SpeechDat data and PER data. The total duration of speech
segments in this training data is approximately 120 hours.

Six of the subjects (M1003, M1005, M1015, 1032, F1025 and F1031) in the PER
test group participating as clients (five in group E and one (F1031) in group L)
and impostors are also included in the development set of the Gandalf corpus,
together with three subjects (M1002, M1166 and F1009) participating as impostors
only in the PER collection (one with gate-only data, the other two with gate and
telephone data). The unfortunate overlap between subjects in PER evaluation data
with respect to Gandalf development data is thus 11% of the 54 clients and 9% of
the 98 impostors in the PER gate-only test set and 19% of the 27 clients and 16%
of the 51 impostors in the condition-parallel test sets. More details about subjects
participating both in Gandalf and PER can be found in Section 6.4.
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Table 10.3: Statistics on the average number of attempts per enrollment item
and gross duration (minutes :seconds) of enrollment sessions, based on complete
enrollment sessions included in enrollment sets E2a_c.

Condition, c #Sessions Attempts Duration
Min Avg Max Min Avg Max

gate/hall 54 1.1 1.9 4.5 1:42 3:41 8:44
landline/office 54 1.0 1.1 2.1 1:35 2:18 4:32
mobile/office 29 1.0 1.2 1.7 1:49 2:26 3:48
mobile/hall 29 1.0 1.4 3.9 2:02 3:08 8:28

10.3 Field test results

10.3.1 Enrollment

During the data collection period, 56 subjects started enrollment. 54 of them suc-
ceeded to complete the enrollment sessions they were asked to do (enrollment in
two conditions for client group L and four conditions for client group E). Table 10.3
shows statistics on how many attempts per item they made and the total duration
of the sessions. Durations are measured from session start to completed enrollment,
including time for system prompts, system delays, etc. For all telephone enrollment
sessions this includes the entry of a 7-digit enrollment code by voice for authoriza-
tion, and for sessions from a mobile phone it also includes a sub-dialog to determine
if the call was made from the office or the hall. Attempts statistics are based on
the average number of attempts per enrollment item and session, e.g. 1.1 in the
Min-column for the gate/hall condition means the session with the least number
of attempts had 11 attempts total since there were ten items. Attempts are coun-
ted from the system point of view, disregarding whether users actually made an
attempt to speak an enrollment item or not.

In the longer enrollment sessions, users typically experienced problems with
a few of the enrollment items, which they had to repeat many times before the
speech recognizer was able to recognize their utterance correctly, or they opted to
skip the item. The skip-possibility was introduced as described in Section 5.5 as an
attempt to limit user frustration in these cases and to allow the enrollment process
to be completed despite such problems. Within the enrollment sessions that were
eventually completed, eight subjects (15%) skipped one item and one subject (2%)
skipped two items in the gate/hall condition, while a single subject (2%) skipped
one item in the landline/office condition. In the two mobile conditions, no items
were skipped.

39 of the 54 subjects who completed their requested enrollment sessions (72%)
completed all their enrollment session at the first attempt, while the remaining
15 (28%) had one or more failed or aborted enrollment sessions before the com-
plete ones. In failed sessions for nine of the latter, the actual enrollment procedure
was never started because either subjects had not enabled enrollment through the
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intranet or the enrollment window had expired (four cases); their name was incor-
rectly recognized (seven cases); or they did not have the enrollment code available
(two cases). Six subjects terminated the enrollment procedure of one or more en-
rollment sessions pre-maturely. Four of the six terminated one session each (three
in the gate/hall and one in the mobile/hall condition), probably after feeling dis-
turbed by other people passing through the gate or otherwise making noise in the
hall. One of the six, it appeared, had removed his last name through the web
interface so the ASR grammar contained only his first name while he was still
speaking his full name. After correcting this, his enrollment sessions were immedi-
ately successful. The last of the six had severe problems with getting the speech
recognizer to recognize his utterances. He terminated three enrollment sessions in
the gate/hall condition and one in the landline/office condition before succeeding
with enrollment. The source to the system’s problems with this subject appears to
have been a combination of the subject being a non-native speaker of Swedish and
him speaking very loudly to the system.

The remaining two of the 56 subjects (3.6%), one male and one female subject,
failed to complete any enrollment session. The female subject, a non-native speaker
of Swedish, tried to enroll in both the gate/hall condition and the landline/office
condition, with similar results in both cases: The speech recognizer consistently
failed on digit sequences including the digit 7, probably caused by her non-native
pronunciation of this digit (a typical Swedish pronunciation would be

� �������
or

� �	���
�
).

The male subject terminated his first (and only) enrollment session in the gate/hall
condition after being disturbed by noise from other people passing through the gate
at the time. He suggested to try another time, but never did so.

10.4 Simulation results

Results in this section are from off-line simulations of speech recognition and speaker
verification operations using the PER corpus (with recordings from actual use of
the PER system; cf. Section 6.3). Results are presented in terms of DET curves
and EER.

10.4.1 Baseline system

The original speech recognition and speaker verification components of the PER
system (as described in Chapter 5) used to collect data, without the use of a speech
detector, is designated as the baseline system.

Results for the baseline system in the gate/hall and landline/office conditions
using E2a_c and S2b_c enrollment and test sets for the respective condition, are
shown by the dashed DET curves in Figure 10.1. EERs are 6.4% for gate/hall
and 4.0% for landline/office. Error rates are lower in the telephone case as was
expected since both acoustic models (ASR) and background models (ASV) were
developed on telephone data. However, test sets S2b_G8 and S2b_LO are not
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Figure 10.1: DET curves for baseline and retrained systems in the a) gate/hall
(S2b_G8) and b) landline/office (S2b_LO) conditions. Baseline is with the original
speech recognition and speaker verification components used during data collec-
tion, while in the retrained case both components have been adapted to condition-
dependent data from background speakers. The remaining two plots show results
where only one of the speech recognition or speaker verification components has
been adapted.

directly comparable since they are based on different number of subjects, etc. A
more fair comparison is shown in Figure 10.2 using the condition-parallel test sets
S2b_Q:c. The comparison is more fair because, firstly, every test in a given condi-
tion has a corresponding test in all other conditions (Section 6.3.4.4), and secondly,
a name and four digits is used per test in all four conditions, with a digit in a ran-
dom position having been omitted from every test in the gate/hall data. Figure 10.2
confirms the lower error rates for landline/office than for gate/hall, however with a
smaller difference than in Figure 10.1, even though one digit less per utterance is
used in the gate/hall condition.

Figure 10.2 also indicates the operating points corresponding to the a priori
decision threshold determined using the EER point on the Gandalf development
test configuration. The resulting operating points are near the a posteriori EER
point in the telephone conditions, while it is clearly far-off in the gate/hall condition.

10.4.2 Retrained system

Models of the original (baseline) PER system were adapted to PER-specific data
from background speakers to create new, retrained, condition-dependent systems.
These systems are expected to perform better in the PER application than the
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Figure 10.2: A comparison between conditions using the condition-parallel test
sets (S2b_Q:c) and the baseline system. A name plus four digits is used in all
conditions. EERs are 6.4% (MH), 5.8% (MO), 4.3% (LO) and 5.1% (G8). Asterisks
(*) mark the operating points determined by the a priori threshold.

baseline system, but since background data was collected in parallel to evaluation
data, the retrained systems have only been tested using off-line simulations on
recorded data.

Acoustic models in the speech recognition component were not only trained
on the new data, but their structure were also changed in two respects: models
were made gender-dependent and the number of terms in the Gaussian mixture
was reduced from eight to four. The new models were created with the following
procedure. Gender-independent models with four terms per state were created with
the same procedure as the original (eight-term) models. The four-term models
were then cloned into male and female gender-dependent models and background
speaker files were tagged as male or female. Mean vectors of the gender-dependent
models were then adapted to the new data by a gender-independent Maximum
Likelihood Linear Regression (MLLR) transform followed by a single MAP iteration
using HTK (Young et al., 1999). The MLLR transform was made with a single
transformation matrix for both male and female models, while the MAP adaptation
was made with gender-dependent data.

Background models of the speaker verification component (both the HMM and
GMM subsystems) were adapted to new data with three iterations of the EM-
algorithm and the ML criterion, updating means, variances and mixture weights.
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Figure 10.3: A comparison between conditions using the condition-parallel test
sets (S2b_Q:c) and the retrained, condition-dependent systems. A name plus four
digits is used in all conditions. EERs are 5.3% (MH), 4.8% (MO), 3.5% (LO) and
2.6% (G8).

Original models were used as the starting point for the first iteration. The HMM
subsystem was trained on the digits subset of background speaker data, and the
GMM subsystem on the name and digits subset.

The solid lines in the DET plots of Figure 10.1 show results for the retrained
systems where both speech recognition and speaker verification components have
been retrained, while dotted and dash-dotted lines indicate the contribution from
retraining the individual components. The figure shows that adapting the speech
recognition component improves performance considerable in the gate/hall condi-
tion while no effect can be seen in the landline/office condition, while adapting
background models in the speaker verification component reduces error rates in
both conditions. EER for the solid lines in Figure 10.1 is 2.4% for gate/hall and
3.1% for landline/office. This corresponds to a 63 % relative reduction in EER
for gate/hall compared to baseline, and 23% for landline/office. Figure 10.3 shows
DET curves for the condition-parallel test sets and the retrained systems.1 Note
that with the retrained systems, performance is better in the gate/hall condition
than in the landline/office condition.

1See also 7.15 for an alternative comparison using parametric DET curves.
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Figure 10.4: DET curves for the retrained system and its individual subsystems
in a) gate/hall and b) landline/office conditions.

10.4.3 Fusion

Figure 10.4 shows DET curves for the individual HMM and GMM subsystems
along with the combined system, all retrained on PER background speakers. Score
combination weights are the a priori weights computed on Gandalf data. Clients
are enrolled using the full enrollment session (E2a_c) and test sets are the single-
condition test sets S2b_c. The GMM and HMM subsystems exhibit similar error
rates in both the gate/hall and landline/office conditions, but note that the GMM
subsystem uses more speech data than the HMM subsystem since it uses both the
name and the digits. EER in the gate/hall condition is 4.2% and 4.0% respectively
for the GMM and HMM subsystems and 2.4% for the combined system; 5.2% for
both subsystems and 3.1% for the combined system in the landline/office condition.

10.4.4 Enrollment length

All of the above results were produced using target models trained on the full enroll-
ment session represented by enrollment sets E2a_c. This includes 10 repetitions of
name and digits for most targets, and 8 or 9 repetitions for a few targets where one
or two enrollment utterances were skipped (cf. Section 10.3.1, p. 5). Figure 10.5
compares these results to the case with half of the enrollment data, exactly five
repetitions per target, and the retrained systems. Note that background models
were the same in both cases. They were trained on full enrollment sessions from
each background speaker. EER is 2.4% and 5.3% in the gate/hall condition and
3.1% and 8.8% in the landline/office condition, i.e. the EER is more than doubled
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Figure 10.5: Client enrollment using the full enrollment session (E2a_c) and
the first half of it (E1a_c) with the retrained system for the a) gate/hall and b)
telephone/office conditions. Test sets are the single-condition sets S2b_c.

in the former condition with the reduction in enrollment data, and almost tripled
in the latter condition.

10.4.5 Test utterance length

Test utterances collected in the gate/hall condition contain name plus five digits,
while those in telephone conditions contain one digit less. Results for single-
condition test sets are based on those test utterances directly, and thus the gate/hall
condition has a slight advantage over telephone conditions, offered by the use of a
display to prompt passphrases. To focus on speaker verification system perform-
ance in comparison between conditions, results on condition-parallel test sets in
this chapter are produced with one digit removed from every test utterance in the
gate/hall condition (with the exception of Figure 10.8 where all five digits were
used with the commercial system).

Figure 10.6 displays the effect of the test utterance length directly. In the
gate/hall condition, it compares DET curves for the retrained system with a name
and two, three, four or five digits. To produce test utterances with less than five
digits, digits in one or more random positions within each test utterance have been
ignored in the feature vector stream, i.e. delta parameters in feature vectors were
computed from the complete waveform to avoid discontinuities. The EER increases
from 2.4% for the full test utterance to 2.9%, 3.2% and 4.0% when dropping one,
two and three digits, respectively. These results for test utterances with less than
five digits should be interpreted as approximate estimates of error rates for real
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Figure 10.6: DET plots for the retrained system with the gate/hall single-
condition test set S2b_G8 and including the name plus two, three, four or five
digits in each test.

test utterances with the same number of digits, since synthetic short digit string
utterances created by omitting digits from a longer utterance cannot be expected
to be exactly equivalent to corresponding real utterances. Naturally, the prosody of
the synthetic utterances will not be correct, but it may also be that digits in short
strings are pronounced more clearly than longer strings. However, we believe the
influence on presented results is small because the ASV system does not explicitly
model sentence prosody or word context dependency.

10.4.6 Commercial system

Figure 10.7 shows DET curves for the commercial system for the single-condition
test sets S2b_c and the gate/hall and landline/office conditions. Results are presen-
ted with the full and half session enrollment. EERs are 6.8% and 8.4% in the
gate/hall condition and 6.0% and 7.6% in the landline/office condition (24% and
27% relative increase in EER for the two conditions with the reduction in enroll-
ment data). Operating points marked with asterisks in the figure correspond to the
EER-threshold determined from the Gandalf development experiment.

A comparison to Figure 10.5 shows that the commercial system performs better
with less enrollment data relative to the retrained research systems.

Figure 10.8 compares the four conditions with the commercial system with full-



10.4. Simulation results 13

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)
PER eval02, commercial system, ts=S2b_G8

 

 

half(E1a)
full(E2a)

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)
Fa

lse
 R

ej
ec

t R
at

e 
(in

 %
)

PER eval02, commercial system, ts=S2b_LO

 

 

half(E1a)
full(E2a)

a) b)

Figure 10.7: DET plots for the commercial system and client enrollment using the
full enrollment session (E2a_c) and the first half of it (E1a_c) for the a) gate/hall
and b) telephone/office conditions. Test sets are the single-condition sets S2b_c.
Asterisks (*) mark the operating points determined by the a priori threshold. The
speaker adaptation feature is turned off.

session enrollment and condition-parallel test sets. It also includes operating points
determined from the EER point on Gandalf development data. As for the baseline
research system (Figure 10.2), the operating point for the gate/hall condition is
further to the lower right relative to those for the telephone conditions. However,
all four points are shifted to the upper left compared to the same system.

10.4.6.1 Speaker adaptation

The commercial system has a speaker adaptation feature that allows a target model
to be adapted to a test utterance if the verification score is greater than an adapta-
tion threshold. Figure 10.9 shows DET curves for the commercial system on single-
condition test sets (S2b_c) with tests run in a random order, the full enrollment
session (E2a_c), and with the adaptation feature turned on. Since the adaptation
threshold is specified relative to the decision threshold, an ideal decision threshold
for the EER point was determined a posteriori for each condition from a previous
run on the exact same test data with the adaptation feature turned off. This de-
cision threshold was then used together with the default value on the adaptation
threshold. EER with adaptation turned on is 3.2% in the gate/hall condition and
4.0% in the landline/office condition. This is a 53% relative reduction in EER for
gate/hall and 27% for landline/office, compared to not using adaptation.
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Figure 10.8: A comparison between conditions using the commercial system
without speaker adaptation, full enrollment sessions (E2a_c), and the condition-
parallel test sets (S2b_Q:c). A name plus four digits is used in telephone conditions
and name plus five digits in the gate/hall condition. EERs are 8.4% (MH), 8.7%
(MO), 6.4% (LO) and 5.3% (G8). Asterisks (*) mark the operating points determ-
ined by the a priori threshold.

With speaker adaptation the order of tests is relevant (e.g. Fredouille et al.,
2000). In Figure 10.9 two cases were tested: random where all tests were run in
a random order, and optimistic where all true-speaker tests were run before any
impostor test. The latter case is an idealized situation for a speaker verification
system, and was meant to estimate a lower bound on error rates with speaker
adaptation. However, it turned out in Figure 10.9b that error rates are lower with
the random order test than with the optimistic.

Table 10.4 shows how many of true-speaker and impostor tests resulted in a
model adaptation (for each test the name and digits file were concatenated to form
a single file per test).

10.5 Discussion

10.5.1 Statistical significance

Table 10.5 summarizes EERs found in this chapter in the gate/hall and land-
line/office single-condition test sets. Table 10.6 show corresponding results for
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Table 10.4: Proportion of true-speaker and impostor tests that resulted in model
adaptation and the corresponding false reject (FRR) and false accept rates (FAR)
in the experiments presented in Figure 10.9.

Cond. Adapt Test order True-speaker
tests

Impostor
tests

FRR FAR

G8 off - - - 6.7% 6.8%
on random 97.4% 3.3% 0.75% 12.8%
on optimistic 98.1% 4.2% 0.39% 14.9%

LO off - - - 6.0% 6.2%
on random 96.7% 4.5% 0.57% 13.8%
on optimistic 96.2% 6.0% 1.55% 16.4%
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Figure 10.9: DET plots for the commercial system with and without its speaker
adaptation feature turned on for the a) gate/hall and b) telephone/office conditions.
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condition-parallel test sets. However, to allow the computation of post-trial con-
fidence intervals (CI) based on Section 2.5.2, where we only considered false reject
rates, we present EERs as if they were FRRs and compute CIs for the FRR. Basing
a CI on an FRR this way is not statistically sound since EER is based on an a pos-
teriori decision threshold determined after observing all the true-speaker test scores
we are analyzing, plus a series of impostor test scores. The a posteriori threshold
introduces a dependency between observations of decision errors. By treating ob-
servations of EER as observations of FRR we have basically assumed that previous
experiments on development data resulted in a threshold that exactly meets an
EER criterion on evaluation data (this was obviously not the case in most of our
experiments). We claim the method still gives an idea of the uncertainty in our
results.

The tables present 95% post-trial CIs for the “true” overall false reject rate
given an observation of a fraction of errors p̂ = x/N using two different methods.
In both methods, intervals are computed from the binomial distribution as defined
by 2.15. The methods differ in how the value for N in the binomial distribution
2.14 is determined:

• Method 1: N equals N ′ as determined by Eq. 2.18, i.e. such that the vari-
ance p̂(1 − p̂)/N ′ of the fraction of errors predicted by the binomial equals
the variance s2

p̂ in the estimate of p̂ estimated from Eq. 2.22. In the compu-

tation of ŝ2

p̂, false reject rate pi for target i is simply the fraction of errors
observed for this target (defined as the non-parametric ML method in Eq. 7.1;
pi = FRRd(i)). This is the “best practice” approach suggested by Mansfield
and Wayman (2002), but we use the binomial directly to compute intervals,
instead of its normal approximation.

• Method 2: N is fixed for a given test set and equals N ′ computed according
to Eq. 6.1 with ρ = 0.2.

Since the variance estimation step in Method 1 can be viewed as a way to determine
ρ, the resulting values of ρ are included in the tables. After estimating the variance
ŝ2

p̂ with 2.22, ρ was computed relative to the adjusted total number of tests N ∗

(defined in Section 6.3.4.6) using 2.20 and 2.19 with N substituted by N ∗ and n
substituted by bn̄c∗, i.e. by solving for ρ in

1 + (bn̄c∗ − 1)ρ =
N∗ŝ2

p̂

p̂(1 − p̂)
. (10.1)

Figure 10.10 shows the binomial distributions behind the confidence intervals for
the retrained research (combo) system and single-condition test sets. Appendix F
provides corresponding plots for condition-parallel test sets for the retrained combo
system (Table F.3) and for the baseline research system and the commercial system
(Table F.4 and F.5).
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Table 10.5: Summary of observed FRR (%) with 95% confidence intervals com-
puted from the binomial distribution with Methods 1 and 2 to select N . In all
cases, the threshold equals the a posteriori EER (EERd) threshold. Systems above
the dashed line within each method section of the table have been retrained on
PER-specific, condition-dependent background data.

Test set T2b_G8 T2b_LO
ASV system FRR interval ρa FRR interval ρb

<Method 1>

Combo, retrained

- full enrollment 2.4 (1.2–3.6) 0.066 3.1 (0.0–6.1) 0.285

- half enrollment 5.3 (3.5–7.2) 0.076 8.8 (3.8–14.3) 0.267

GMM, retrained

- full enrollment 4.2 (2.4–6.2) 0.101 5.2 (1.8–10.2) 0.259

HMM, retrained

- full enrollment 4.0 (2.4–5.8) 0.093 5.2 (2.1–8.7) 0.141

Combo, baseline

- full enrollment 6.4 (3.8–9.3) 0.156 4.0 (0.8–7.8) 0.240

Commercial system

- full enrollment 6.8 (4.0–9.9) 0.181 6.0 (1.1–11.2) 0.320

- half enrollment 8.4 (5.1–11.9) 0.214 7.6 (1.6–14.3) 0.463

<Method 2> ρ = 0.2 (k = 10.8) ρ = 0.2 (k = 8.8)
Combo, retrained

- full enrollment 2.4 (0.8–4.4) 0.200 3.1 (0.7–6.6) 0.200

- half enrollment 5.3 (2.8–8.4) 0.200 8.8 (4.4–14.0) 0.200

GMM, retrained

- full enrollment 4.2 (2.0–6.8) 0.200 5.2 (1.5–9.5) 0.200

HMM, retrained

- full enrollment 4.0 (1.6–6.4) 0.200 5.2 (1.5–9.5) 0.200

Combo, baseline

- full enrollment 6.4 (3.6–9.7) 0.200 4.0 (0.7–7.4) 0.200

Commercial system

- full enrollment 6.8 (4.0–10.0) 0.200 6.0 (2.2–10.3) 0.200

- half enrollment 8.4 (5.2–12.1) 0.200 7.6 (3.7–12.5) 0.200

aN∗ = 2700 in calculations of ρ (cf. Table 6.12)
bN∗ = 1200 in calculations of ρ (30 targets with bn̄c = 40 true-speaker tests/target)
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Table 10.6: Summary of observed FRR (%) with 95% confidence intervals computed from the binomial distribution
with Methods 1 and 2 to select N . In all cases, the threshold equals the a posteriori EER (EERd) threshold. Systems
above the dashed line within each method section of the table have been retrained on PER-specific, condition-dependent
background data.

Test set T2b_Q:G8a T2b_Q:LO T2b_Q:MO T2b_Q:MH
ASV system FRR interval ρ FRR interval ρ FRR interval ρ FRR interval ρ

<Method 1>

Combo, retrained

- full enrollment 2.6 (0.0–5.5) 0.277 3.5 (0.0–7.4) 0.314 4.8 (1.0–9.4) 0.261 5.3 (2.7–8.0) 0.067

Combo, baseline

- full enrollment 5.1 (2.0–8.2) 0.113 4.3 (1.1–8.9) 0.280 5.8 (2.3–9.1) 0.130 6.4 (3.6–9.9) 0.096

Commercial system

- full enrollment 5.3b (2.5–8.5) 0.110 6.4 (1.2–12.0)0.306 8.7 (4.2–14.4)0.207 8.4 (3.0–14.1)0.252

<Method 2> ρ = 0.2 (k = 8) ρ = 0.2 (k = 8) ρ = 0.2 (k = 8) ρ = 0.2 (k = 8)
Combo, retrained

- full enrollment 2.6 (0.0–5.0) 0.200 3.5 (0.8–7.5) 0.200 4.8 (1.6–9.1) 0.200 5.3 (1.6–10.0)0.200

Combo, baseline

- full enrollment 5.1 (1.6–9.1) 0.200 4.3 (0.8–8.3) 0.200 5.8 (1.6–9.9) 0.200 6.4 (2.5–10.8)0.200

Commercial system

- full enrollment 5.3c (1.6–9.9) 0.200 6.4 (2.5–10.8)0.200 8.7 (4.1–14.1)0.200 8.4 (4.1–13.3)0.200

ausing name and four digits, where not otherwise specified
busing name and five digits
cusing name and five digits
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Figure 10.10: Binomial distributions used to compute confidence intervals for
the retrained research system, test sets T2b_G8 and T2b_LO and full enrollment
(E2a_c). ρ (rho) for solid lines with diamonds are computed with Method 1, while
the distributions for ρ = 0.20 (dashed lines with circles) correspond to Method 2
with an a posteriori choice of ρ. The normal approximation to each binomial is
shown as a dotted line.

For Method 2, we have chosen2 a constant intra-speaker correlation coefficient
ρ = 0.2 corresponding to values for k between 8 and 11 for the different test
sets. Our prior belief about k was that a constant k = 2 would be a good value.
Compared to values for ρ (and k) resulting from Method 1 based on an estimated
variance, we chose to show intervals for a constant ρ = 0.2 instead, being the average
over all ρ values found with Method 1 within Tables 10.5 and 10.6, respectively.
Thus, the CIs shown for Method 2 in the table are based on an a posteriori choice
of ρ.

The potential usefulness of Method 2 lies in predicting pre-trial CIs rather than
estimating post-trial CIs. We include results from Method 2 here for comparison.
The motivation for a constant ρ in Method 2 is that the “intra-speaker correlation”
should depend mainly on the speakers and not so much on the particular test set
or ASV system under test.

The evaluation strategy of Bolle et al. (2004) (applied to fingerprint data) should
be applied also to ASV data to evaluate post-trial CI estimation methods. With this
strategy, a corpus is randomly divided into two disjunct halves. CIs are estimated
with each method on one half and compared to the “true” error rate estimated on
the other half. The procedure is then repeated a number of times to estimate the
coverage, i.e. the probability that a CI covers the true error rate3.

2this choice is discussed in Section 11.2
3ideally, a 95% confidence interval should have a coverage of 95%.
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Given confidence intervals from Method 1 in Tables 10.5 and 10.6, we can get
an idea of which experimental differences observed in this chapter are statistically
supported, and which are not, by comparing confidence intervals. Well separated,
non-overlapping confidence intervals indicate strong support for the difference, while
intervals that overlap to a great extent indicate no support for a difference. Note
that to make formal conclusions about differences being statistically significant
or not, the results normally require more rigorous analysis. In particular, our
confidence intervals are derived to say something about measurements on one ASV
system compared to some underlying “true” value. Comparing two systems on the
same speech data, or comparing the performance of a single system on different
types of data, requires other types of statistical tests, for example McNemar’s test
(e.g. Siegel, 1956).

Informally comparing4 confidence intervals in the tables, we find for example:

• A positive effect from retraining the (combined) research system on PER-
specific, condition-dependent tuning data is well supported in the gate/hall
condition by results on the single-condition test set T2b_G8, while it is not
supported in the telephone conditions. On the condition-parallel gate/hall
test set (T2b_Q:G8) this difference is weakly supported.

• Performance degradation from halving the amount of enrollment data with
the retrained (combined) research system is supported in the gate/hall and
landline/office conditions.

• An improvement from combining the (retrained) HMM system with the GMM
system (including the additional use of proper names for verification) is weakly
supported in the gate/hall condition, and not support in the landline/office
condition.

• Difference in performance of the retrained (combined) research system between
the four conditions are not supported, except for the difference between the
gate/hall and mobile/hall condition which is weakly supported.

10.5.1.1 McNemar tests

McNemar’s test for the significance of changes (e.g. Siegel, 1956) is a non-parametric
test that can be applied to pair-wise related measures on a nominal scale (labeled
data). To apply this test in speaker verification with good theoretical justification,
FRR and FAR should be treated jointly somehow (Bengio and Mariéthoz, 2004).
For simplicity, however, we will take the same approach as above and compare false
reject error rates only, at a global a posteriori EER threshold. The problem is

4We used the following definitions: Call two cases under comparison case A and case B, and
the estimated false reject rates and confidence intervals from the two cases p̂A, p̂B, ĈIA and ĈIB.
A difference is well supported when ĈIA and ĈIB are non-overlapping; supported when p̂A /∈ ĈIB

and p̂B /∈ ĈIA; weakly supported when p̂A /∈ ĈIB but p̂B ∈ ĈIA; and not supported if p̂A ∈ ĈIB

and p̂B ∈ ĈIA.



10.5. Discussion 21

again that FRR observations are then dependent through the threshold and also
depend on impostor tests.

To compare two cases, say A and B, with the McNemar test, we compare in-
dividual FRR for each target speaker and determine if the FRR is higher or lower
in case B than in case A, assuming each target has the same number of tests in
both cases. Denote as pAi and pBi the FRR for target i in the two cases. Denote
as MAB the number of targets for which pAi < pBi (better result in case A than in
case B)5, and as MBA the number of targets for which pBi < pAi. Designate as the
null hypothesis H0 that there is no difference between cases A and B. Under H0,
expected values of both MAB and MBA would then equal (MAB + MBA)/2. The
McNemar test tests if observed values MAB and MBA are sufficiently different from
their expected values. It proceeds by computing the test statistic

Tχ2 =
(|MAB − MBA| − 1)2

MAB + MBA

(10.2)

and the probability of the value Tχ2 , or a more extreme value, under the χ2-
distribution with one degree of freedom (df = 1). If this probability is less than
(1−α)/2 (two-sided test), H0 is rejected in favor of the alternative hypothesis, that
there is a difference between cases A and B. We use the same level of significance
α = 0.05 as with confidence intervals above.

Table 10.7 shows the results of applying McNemar’s test to some of the com-
parisons made in this chapter. Note that the results from McNemar are consistent
with findings from our comparisons of confidence intervals above. All differences
that were found to be at least weakly supported in the comparison of confidence in-
tervals were found statistically significant with the McNemar test, while differences
that McNemar tests did not find statistically significant were found not supported
by confidence interval comparison.

Note that the McNemar test does not take into account the magnitude of differ-
ences in individual FRR between the two cases, only the sign. Since our measures
are ordinal (FRR differences can be ranked with respect to their magnitude), the
Wilcoxon matched-pair signed-ranks test (e.g. Siegel, 1956) could also be used,
which does take the magnitude of differences into account. This is a more powerful
statistical test. However, since our approach of comparing FRR at case-dependent
a posteriori thresholds introduces dependencies between speakers, and thus the as-
sumptions behind both tests are not quite true, we decided to use the more “blunt”
McNemar test instead.

10.5.2 Length of enrollment and test data

It is clear from Figure 10.5 and confidence intervals in Table 10.5 that the (retrained)
research system benefits from the rather large number of repetitions of name and

5MAB is equivalently the number of targets for which fewer false reject errors are observed in
case A than in case B, given our assumption about an equal number of tests per case for each
target.
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Table 10.7: Results of McNemar’s test of differences at 5% level of significance.

case A case B common test set pa diffb

Effect 1: retraining on PER condition-specific background data

baseline retrained combo system, T2b_G8 <0.001 x

full enrollment T2b_LO 1.0 -

T2b_Q:G8 0.016 x

T2b_Q:LO 1.0 -

T2b_Q:MO 0.24 -

T2b_Q:MH 0.45 -

Effect 2: reducing enrollment data by a factor two

full half combo system, retrained T2b_G8 <0.001 x

T2b_LO 0.002 x

commercial system T2b_G8 0.015 x

T2b_LO 0.34 -

Effect 3: combining HMM subsystem with GMM subsystem

HMM combo retrained systems, T2b_G8 0.004 x

full enrollment T2b_LO 0.043c -

Effect 4: changing PER condition

G8 LO combo system, retrained T2b_Q:c 1.0 -

G8 MO 0.30 -

G8 MH 0.006 x

LO MO 0.15 -

LO MH 0.015 x

MO MH 0.33 -

aprobability that test statistic x has observed value T
χ2 or greater (P

χ2 (x >= T
χ2 ))

b’x’ indicates a statistically significant difference detected by a two-sided test at α = 0.05
cdifference would have been significant with a one-sided test
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digits in the full enrollment session, since cutting it to half more than doubled
the EER. The same is not true for the commercial system, for which the EER
increased by only about 25%. This difference between the two systems can be
partly explained by target model size: gross model size is about five times larger
for the research system than for the commercial system after compressing each
model set using Lempel-Ziv coding to partly compensate for an ineffective storage
format used with the research system. The research system was dimensioned to
operate with rather large amounts of enrollment data.

Test utterances in this study are an order of magnitude shorter than the total
length of enrollment and consist of a name and a string of digits. It was argued
in Section 5.3 that it is difficult to collect digit strings with more than four digits
from users in a telephone application through aural prompts, but collecting longer
digit strings through visual prompts as in the gate case should be feasible. In this
study we collected only five digits per utterance in the gate/hall condition, and
simulated the use of two, three and four digits per utterance with the results in
Section 10.4.5 (p. 11) and Figure 10.6. Figure 10.11 shows a prediction of EER for
test utterances with longer digit strings, based on an exponential fit to the EERs
of Figure 10.6 extended with the EER for the corresponding experiments with a
name only, and a name plus a single digit. It suggests that the EER with a name
plus six digits would be 1.8%, a 37% relative reduction compared to 2.8% for a
name plus four digits. The prediction of 1.1% EER for a name plus eight digits is
uncertain because, firstly, it is not evident that the exponential prediction model is
valid for longer digit strings; and, secondly, it is also not evident that users would
accept such long strings, and it is likely that they would generate significantly
more disfluencies, such as substitutions, hesitations, repairs, etc. Such disfluencies
are likely to generate errors in the speech recognition process and the resulting
segmentation used by the speaker verification system.

A complementary approach for collecting more test data efficiently is to rely on
a sequential decision strategy such as a heuristic method (Furui, 1981; Naik and
Doddington, 1986) or one based on Wald’s sequential probability ratio test principle
(Lund and Lee, 1996; Surendran, 2001).

10.5.3 Effects of fusion

Fusion results in Section 10.4.3 (p. 10) show a large error rate reduction from each
of the individual systems to their combination. This may be surprising since both
subsystems are based on similar features, classifiers and normalization techniques,
and their output score should therefore be correlated and not be very good candid-
ates for score fusion. However, one major difference is their use of data: the GMM
subsystem uses both names and digits, while the HMM subsystem ignores the name
and uses the digits only. To understand/explain the underlying factors, we tested
the separate and combined systems on the individual and combined parts of the
gate/hall test utterances. In all cases were clients enrolled using the full name plus
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Figure 10.11: The EER values for the retrained system with the gate/hall single-
condition test set S2b_G8 and including the name plus zero through five digits in
each test (bars) and a prediction (dashed line) of EER values for a different number
of digits using an exponential model (cf. Figure 10.6).

digits enrollment set (E2a_c). EERs are shown in Table 10.8, where cases C, D
and F match the DET curves included in Figure 10.4a.

Using the cases in the table, the formation of the final result (case F) can be illus-
trated with the two alternative paths of information fusion shown in Figure 10.12.
Each path consists of conceptual information fusion along two axes: score fusion
of separate systems and vocabulary fusion of the name and the digit parts of the
test utterance. The lower path (via case E) consists of one fusion step along each
axis: a system fusion on the digits part of the test utterance, followed by fusion of
the two parts of the utterance. Hence, each step combines independent sources of
information. The upper path (via case C) more closely reflects the actual structure
of the ASV system, but it contains the fusion (C,D)→F with simultaneous fusion
along both axes, since it combines system scores based on different parts of the
test utterance, and hence combines information sources that are not independent.
We propose that the lower path better explains the formation of the system output
(from a conceptual point of view).

10.5.4 On-site vs. telephone use of ASV

Is there a greater potential for well-performing ASV in an on-site application than
in a telephone application? This is a very general question, and of course we don’t
have a foundation to answer it in a general sense, but we do have some clues for
our particular application instances.
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Table 10.8: EER for the individual subsystems and their combination applied
to digits-only or name-only subsets of the S2b_G8 test set, or the complete test
set using both name and digits. The enrollment set is the full (name and digits)
E2a_G8. The combined system in case E uses the same score combination weights
as the system in case F.

Case System Vocabulary EER
A gmm name 7.3%
B gmm digits 6.9%
C gmm name, digits 4.2%
D hmm digits 4.0%
E combo digits 3.4%
F combo name, digits 2.4%

gmm:digits
(6.9%)

hmm:digits
(4.0%)

combo:digits
(3.4%)

gmm:name
(7.3%)

combo:name+digits
(2.4%)

gmm:name+digits
(4.2%)

A

B

D

E

F

C

Figure 10.12: Two alternative conceptual information fusion paths that explain
how the output of the ASV system is formed. Numbers within parentheses are
the measured EERs for the gate/hall condition with the system and test utterance
content represented by each box.
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We believe our comparison between ASV in the on-site and telephone version
of PER is fair. First, the design differences introduced between the on-site and
telephone versions of PER are well founded. For example, verification based on
a client’s proper name and a digit sequence collected in a single utterance, where
the digits are visually prompted, works well in the on-site application, while the
name and digits must be separated in the telephone case. Aural prompts are the
only alternative with most telephones (since they don’t have a display). Second,
our data collection procedure and design of the condition-parallel test sets based on
series of sessions recorded in chronological proximity in the four conditions, allow
for similar prerequisites in the four conditions. If a subject suffered a head cold
during a gate session, the same was true in telephone sessions within the same series.
If there was a noisy background, it was probably there both during a gate session
and a corresponding mobile telephone session in the hall. Random between-session
variation in for example background noise will naturally have occurred, but such
variation can only be excluded by stereo recordings, and stereo recordings in our
case would have meant a more artificial context for the recordings. Systematical
differences between conditions may also have occurred, however. For example, in
many series the gate/hall session was made before telephone sessions because it
was recorded when the subject arrived to work in the morning. Since a number of
steps had to be climbed to reach the gate, (true-speaker) subjects might have been
more out-of-breath at the gate than after arriving in the office and sitting down
to make the landline/office call. There is also the possible difference in motivation
in subjects, since the gate version of PER could actually open the door, while
telephone calls were made for recording purposes only.

Results from the condition-parallel test sets indicate that, provided acoustic
models in the speech recognition and speaker verification components are tuned
using proper development data, ASV error rate may be lower in the on-site condition
than in all three telephone conditions, though a statistically significant advantage
was measured only relative to the mobile/hall condition (Table 10.7). With acoustic
models trained on a general-purpose telephone corpus, little or no difference was
seen between the conditions. The performance difference introduced by tuning on
proper development data was large for the on-site application and non-significant
for the telephone application. This highlights an important difference between
using a variety of ubiquitous telephone handsets vs. using a single microphone in
a particular room in an on-site application: the need for dedicated tuning data is
larger for the on-site application than for telephone applications. It should be easier
to create an ASV system that will perform consistently at a near optimum error rate
between instances of telephone applications without tuning it for every particular
application, while tuning data will be important for any on-site application. To
achieve the best possible performance, however, tuning data from the application
will usually be needed in either case.

Our point estimates of EER in the gate/hall and landline/office conditions were
2.6% vs. 3.5% on the condition-parallel test sets using the same number of digits in
the test utterance. While this corresponds to a 25% relative reduction for the on-
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site application, the statistical uncertainty in the estimates is large and we can not
infer a difference between the two conditions based on these measurements alone.
But that was with the same number of digits. In our on-site version of PER we used
five digits that caused no apparent trouble for subjects, and we believe six digits
would have worked well too. Considering Figure 10.11, we would expect a 37%
relative reduction in EER for six digits compared to four, suggesting the 2.6% EER
for the on-site application could be reduced to 1.6%6. We are then up to a 54%
reduction for gate/hall relative to the landline/office condition. The corresponding
reductions are 67% relative to mobile/office and 70% relative to mobile/hall.

We can further speculate into factors we have not tested. In our experiments
with on-site data, we used a downsampled 8 kHz version of the original wide-band
audio recordings made at 16 kHz. Given good development data for wide-band
speech and a proper modification of the system’s speech feature representation to
operate with 16 kHz data, it should be possible to achieve a further reduction in
error rate in the on-site system. Furthermore, we saw in Section 6.3.4.5 that the
proportion of different-number calls (test calls from a different telephone number
than the target’s enrollment call) was higher in the impostor part of the telephone
condition test sets (around 25%) than in the true-speaker part, suggesting that in
a fully same-channel test set error rate in telephone conditions could have been
higher than what we saw in our data.

To conclude the discussion on the potential for well-performing ASV in an on-
site application vs. in a telephone application, our data suggests that, given the
availability of application-specific tuning data, ASV error rate may be less than
half in an on-site application than in a corresponding telephone application.
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