
Creating Small Speech Recognizers Quickly

Björn Bringert

January, 2005

Abstract

Creating a speech recognizer from scratch can be quite daunting for the beginner.
We present a simple and economical method for creating speech recognizers. Our
goal is a favorable cost/benefit ratio rather than the best possible recognition score.
We are mainly interested in recognizers with restricted domains, for example for
use as input to a dialog system. We have created a number of tools which make the
process easier, and use a running example to illustrate how it is done. Our starting
point is a Grammatical Framework grammar, and we use HTK and ATK to create
the speech recognizer.

1 Introduction

The aim of this paper is to lower the barrier to getting started with creating speech rec-
ognizers. While it can hardly be called an introduction to the area, the hope is that the
reader can use this material to overcome the first hurdles.

The paper is written in a tutorial style, and each section is accompanied by the ex-
act commands used for that step, to make it easy for the interested reader to repeat the
experiments. The reader is assumed to be familiar with some basic speech technology
terminology and simple Unix shell scripting. After reading this paper, it might be appro-
priate to continue with the HTK book [16] or the SphinxTrain manual [12].

In order to use speech recognition in an application, a number of components are
needed. Typically, this includes:

• An acoustic model.

• A pronunciation model.

• A recognition grammar or statistical language model.

The following sections outline simple methods for creating the different components,
and introduce some tools which we have created to simplify the steps needed.

Once we have a speech recognizer capable of producing text from speech, the appli-
cation needs to interpret it. In this paper, we assume that this is done by parsing using a
grammar. Other possible methods include phrase spotting and statistical parsing. Further-
more, we assume that the parsing grammar already exists and is written in Grammatical
Framework, though the general approach taken here should be applicable to other gram-
mar formalisms as well.

1

This paper contains a running example: the creation of a speech recognizer for a
grammar for simple Swedish sentences using a limited vocabulary. The example in the
paper uses a Grammatical Framework (GF) [10] grammar to parse the input, and the Hid-
den Markov Model Toolkit (HTK) [16] and the Application Toolkit for HTK (ATK) [15]
are used to build the speech recognizer. Because of resource constraints, we create a
speaker-dependent recognizer, using recordings of only one subject, the humble author.

The HTK-specific parts of this paper are largely based on the tutorial chapter of the
HTK book [16]. The tools and the collected data for the example are available from:
http://www.cs.chalmers.se/˜bringert/darcs/atkswe/ .

2 A Quick Introduction to HTK and ATK

The Hidden Markov Model Toolkit (HTK) [16] is a general toolkit for Hidden Markov
Models (HMMs). It is mainly geared towards speech recognition, but can be used for
other tasks as well. HTK includes a large number of tools for training and manipulat-
ing HMMs, working with pronunciation dictionaries, n-gram and finite-state language
models, recording and transcribing speech, etc.

We found a small bug in the HTKHDManprogram. In order to generate a list of tri-
phones from the dictionary, you have to apply the patch which is available in the software
distribution accompanying this paper.

The Application Toolkit for HTK (ATK) is a C++ library for creating experimental
speech recognition systems using HTK. We use HTK for building and evaluating the
recognizer, and ATK to use the finished recognizer with other systems.

3 The Example Grammar

As an example, we will build a speech recognizer for theSwedish Stoneage grammar, an
example grammar included with the GF system. The grammar essentially consists of a
Swadesh list [13] (a list of basic words, used in glottochronology to determine the dis-
tance between languages), together with some simple function words and basic syntactic
constructs. There are Stoneage grammars available for 7 languages in the GF distribution,
all sharing a common abstract syntax.

In order to have a single grammar file to work with, we package the grammar and all
its dependencies instoneage-swe.gfcm , a single file in UTF-8 encoded GFCM format:

echo ’pm -utf8 | wf stoneage-swe.gfcm’ | gf StoneageSwe.gf

4 Pronunciation Model

The pronunciation model maps speech sounds to words in the language, or vice versa,
depending on how it is used. How difficult it is to produce such a model depends on the
relationship between the language’s orthography and pronunciation.

Pronunciation dictionaries for some languages are already available, for example for
British English [11]. If there is no existing dictionary for the language, we can either write

2

it by hand, generate it using pronunciation rules for the language, or use a combination
of the two approaches.

The first step is to decide on a set of phone transcription symbols. For our example
we use a version of the Speech Assessment Methods Phonetic Alphabet (SAMPA) system
for Swedish [14], slightly modified in order to use symbols more compatible with HTK.

For generating a Swedish pronunciation dictionary, we have modified Markus Fors-
berg’s Swedish transcription software [5], which produces IPA transcriptions of Swedish
words. This, together with a simple tool which extracts the list of word forms used in a
GF grammar, allows the user to automatically create a pronunciation dictionary contain-
ing every word form in the grammar:

mkwordlist.pl stoneage-swe.gfcm | gendict_swe > stoneage-swe.dict

Here is an except from the generatedstoneage-swe.dict file:

blommornas b l U m U rn a s
blommors b l U m U rs
bl åser b l o: s e r
bred b r e: d

Since the pronunciation rules for Swedish are quite complex and the transcription
program is still in an early stage, the transcriptions are less than perfect. This should be
corrected by improving the transcription software. The pronunciations for words unique
to the application in question, such as names, can be hand-edited if needed.

5 Acoustic Model

The acoustic model is used to recognize speech sounds given sound data. It is produced
by training it on recorded and transcribed speech. Creating the acoustic model appears
to be the most time and data consuming of the steps outlined here. Fortunately, a well-
trained acoustic model is to a large extent domain-independent.

The steps required for producing an acoustic model include:

• Selecting and recording the training utterances, or collecting training utterances
and transcribing them.

• Setting up data parametrization and creating an initial model.

• Training the model using the data.

5.1 Producing Transcribed Speech

There are several ways to produce the transcribed data set use to train the model. The
data can be recorded, for example from telephone conversations, and then manually tran-
scribed. This has the benefit that the speech is spontaneous and unrestricted. There are
existing such data sets for some common languages, for example the DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus [1]. If such a corpus is available, espe-
cially if it is already transcribed, this method should be the most economical. However,

3

few such corpora are available free of charge, and few are available for languages other
than English.

Another way to produce the data is to select or generate a number of utterances, and
record subjects reading them. Since we do not have access to any existing corpus of
Swedish speech, we will use this method.

Transcribing the data, for both of the methods described above, can be done on the
phone or word level. If it is done on the word level, the pronunciation dictionary can
be used to translate this to phone level transcriptions. This makes the transcription task
easier, and, in the case where the utterances are know beforehand, even eliminates it. If
there are several possible pronunciations of a word in the pronunciation dictionary, some
method is needed for deciding which one is used in a given recording. The phone level
transcriptions might also, depending on how the data is used for training the acoustic
model, need to be aligned with the sound data.

5.1.1 Generating Training Utterances from a Grammar

To select some sentences for recording, we could manually construct sentences which
cover the phonetic features of the language, to get as broad a coverage as possible over
the language. On the other hand, if we have a limited domain, it might be more beneficial
to select sentences within that domain to ensure good coverage of the relevant sound
combinations. Since we already have a grammar for parsing the speech input, we can use
that grammar to generate training utterances.

We have created a tool which uses GF’s built-in random generation facility to generate
training utterances. Duplicate utterances are eliminated, as these are expected to add little
new information.

genutts.pl stoneage-swe.gfcm 200 > train_utts.txt

This writes 200 numbered utterances to the filetrain utts.txt , and prints some
statistics about the grammar and generated utterances to the terminal.

Here is an excerpt from the generated file:

000020: han sl år djuren
000021: tre n äsor k änner lukten av de smutsiga v åta naglarna
000022: frun flyter

5.1.2 Recording the Utterances

Recording the utterances is simply a matter of giving the subject one utterance at a time
and recording the subject reading it. We have created a small tool which takes a file such
as the one created in the previous step, and prompts the user to record each one using the
HSLab tool from the HTK distribution. Each recording is saved to a file with the same
name as the label of the utterance.

mkdir train_data
cd train_data
HSLab noname &
prompt ../train_utts.txt

4

After the recording is completed, thetrain data directory will contain one sound
file for each utterance.

5.2 Building the Model

Following the HTK tutorial for building an acoustic model once we have recorded the data
and produced the pronunciation dictionary requires about 50 steps of various degrees of
automation.

We have created a script and some helper programs which automates all of these
steps, and creates the model given a GF grammar, a pronunciation dictionary, a list of the
recorded utterances, and the recorded speech files.

To build the monophone and triphone models from our grammar, dictionary and train-
ing data, we run:

mkrec.pl stoneage-swe.gfcm stoneage-swe.dict \
train_utts.txt train_data

The script performs the following steps (quite simplified, see the comments inmkrec.pl
for more details):

1. Create phone level transcriptions of the training utterances by using the dictionary.
The transcriptions use the first available pronunciation for each word. This problem
will will be taken care of in a later step.

2. Parametrize the recorded data. We currently use the settings from the HTK tutorial:
Mel Frequency Cepstral Coefficients (MFCCs), 10 ms frames, a 26 channel filter
bank, and the output is 12 MFCC coefficients.

3. Create simple prototype models, and re-estimate them using the data.

4. Use the current models to for each word select the closest pronunciation from the
dictionary, and then re-estimate the models using the new data.

5. We now have a set of monophone models which can be used for recognition. We
will now proceed to build triphone models.

6. Create triphone models by copying the monophone models.

7. Re-estimate the triphone models, with the transcriptions converted to use triphones.

8. We now have a set of triphone models which can be used for recognition.

9. Here the HTK tutorial goes on to create tied-state triphone models, in order to make
more robust models. However, this would seem to require manually deciding which
triphones to cluster together and has been skipped to keep the process simple.

5

6 Language model

In order to guide the recognizer, a grammar or statistical language model is used. Speech
recognition grammars are normally regular or simple (for example non-left-recursive)
context-free grammars, for performance reasons. These grammars are only used for
recognition; no parse trees are produced. Speech recognition grammars are sometimes
weighted to allow selecting the most likely interpretation of the speech input. An alterna-
tive or complement to grammars is statistical language models, such as triword models.

We have added functionality to the GF system for generating finite-state networks in
HTK’s Standard Lattice Format (SLF). We can generate such a network from our gram-
mar with the following command:

echo ’pg -printer=slf | wf stoneage-swe.net’ | gf stoneage-swe.gfcm

This writes an SLF network to the filestoneage-swe.net . The finite automaton is
generated in the following steps:

1. A context-free grammar is generated from the GF grammar, as described by Peter
Ljunglöf [6].

2. The context-free grammar is approximated by a regular grammar using an algo-
rithm due to Mohri and Nederhof [7].

3. The regular grammar is compiled into a non-deterministic finite-automaton with an
algorithm described by Nederhof [8].

4. The non-deterministic finite automaton is minimized by forward and reverse de-
terminization, producing a deterministic finite automaton. This method is due to
Brzozowski [3].

7 Running the Recognizer

Once the recognizer has been built, we need to be able to run it and use it from our
application. ATK or HTK can be used directly, but in order to provide a simpler in-
terface appropriate for the most common situations we have created a library,libatkrec,
for running ATK recognizers from C or Haskell. The library is available fromhttp:
//www.cs.chalmers.se/˜bringert/darcs/atkrec/ .

We have then used the Haskell interface to add a speech input command to the GF
system. The command generates a finite state network for the currently active grammar
and starts the speech recognizer with it. This is an example GF session using English and
Swedish grammars for numerals:

> si -lang=english -tr | p -lang=english -tr | l -lang=swedish
three hundred and seventy - four
num (pot2as3 (pot2plus (pot0 n3) (pot1plus n7 (pot0 n4))))
tre hundra sjuttio fyra

6

Grammar L TS TW CS Acc CW D S I
Numerals 1 100 74 0.00 66.2 70.2 4.05 25.7 4.05
Numerals 3 100 74 35.0 73.0 79.7 4.05 16.2 6.76
Stoneage 1 200 92 15.0 58.7 78.3 0.00 21.7 19.6
Stoneage 3 200 92 25.0 66.3 78.3 0.00 21.7 12.0

Table 1: Evaluation results

Thesi command uses an ATK speech recognizer to get one utterance from the user.
The flag-flag=english makes it generate the recognition network from the loaded En-
glish grammar. The-tr option, which can be used with most commands, causes the
command to print its output to the terminal as well as passing it to the next command in
the pipeline. Thep command parses the output from the speech recognizer, again using
the English grammar. Finally, thel command linearizes the parse tree using the Swedish
grammar. The three lines printed by the commands are the speech recognizer output, the
parse tree, and the result of the linearization.

8 Evaluation

In order to evaluate the recognizer, we record some more utterances as described in sec-
tion 5.1.2. We have created a small tool which uses runs the recognizer on the test utter-
ances, and uses tools from HTK to compare the output to the original utterance text:

eval_rec.pl stoneage-swe.dct stoneage-swe.net test_utts.txt \
test_data hmm_tri/hmmlist hmm_tri/macros hmm_tri/hmmdefs

Table 1 lists the evaluation data for four different recognizers. They were all evaluated
with 20 utterances from the same grammar from which the training utterances were taken.
All utterances were spoken by the same Swedish male. Note that no significance tests
have been made, and the number of digits shown in the table is not related to the number
of significant digits in the values. The table column headings mean:

Grammar The grammar from which the training and test utterances were taken. “Stoneage”
refers to the grammar used in the running example. It contains 837 lexical items.
“Numerals” is a grammar for Swedish numerals from 1 to 999999 which contains
40 lexical items. Both grammars are available in the GF distribution.

L The phone string lengths used, 1 for monophones and 3 for triphones.

TS Number of training utterances.

TW Total number of words in the 20 test utterances.

CS Percentage of whole test utterances which were recognized correctly.

Acc The accuracy, calculated asCW− I .

CW Percentage of the test words which were recognized correctly.

7

D Number of deletions as percentage of the number of test words.

S Number of substitutions as percentage of the number of test words.

I Number of insertions as percentage of the number of test words.

The recognition accuracy is quite poor for all of the recognizers, with the best one
getting more than one in four words wrong. However, considering the minimal effort
involved in building each recognizer (less than 30 minutes, with data collection taking up
most of the time once we had all the infrastructure in place), this seems like a good start.
We need to investigate the effect of increasing the size of the training sets, and experiment
with the settings to see how much this can be improved. It should also be noted that the
“Stoneage” results have been achieved using an unedited auto-generated pronunciation
dictionary with many errors.

9 Related Work

With most existing speech recognition systems, for example Nuance Recognizer [9], it is
easy to get an application-specific speech recognizer for an already supported language by
supplying a recognition grammar or network (though this task can be further simplified by
generating recognition grammars from grammars in higher-level formalisms as described
here and elsewhere [4, 2]).

However, if there is no available acoustic model and pronunciation dictionary these
will have to be created. The manuals for HTK [16] and SphinxTrain [12], two of the
freely available speech recognition toolkits, list large numbers of steps that need to be
taken to create even the most rudimentary acoustic model. We hope that our work can be
a small step towards simplifying this process.

10 Future Work

We have made no attempt to tweak the numerous parameters used when training and run-
ning the recognizer. Doing so is quite likely to yield better results. It would be interesting
to create a tool to automate the build-evaluate-tweak cycle.

The Swedish transcription system which we used needs more work in order to gener-
ate high quality transcriptions. From inspection of its current output it seems that vowel
quantity is one particular area which needs more work. Since we use the recognizer to
select the best pronunciation for each word in the data, the transcription tool could be
more liberal in outputting more than one pronunciation for each word.

Since it appears to require manual intervention, we skipped the creation of tied-state
triphones in the acoustic model creation. As we are training on very little data, cluster-
ing the triphones should make the triphone models more robust. Some (semi-)automatic
method for this should be investigated.

It would be interesting to try this method on a larger data set, to see how good a
system can be made with this simple method.

No effort is currently made to make the test sentences cover the phonetic variation in
the grammar. Thus it is likely that certain sound combinations are underrepresented or

8

missing in the recorded data. The utterance generator could take phonetic variation into
account.

We could use GF’s support for weighted grammars to generated weighted finite-state
recognition networks. Carrying the weight data though the transformation from a GF
grammar to a finite-state network while preserving the meaning of the weights seems to
be a non-trivial problem.

The data recording tool is somewhat primitive, and does for example not allow the
user to go back and re-record utterances where something went wrong. This tool would
have to be improved before any larger scale data collection could be done.

11 Conclusions

We were able to successfully build a speech recognizer in well under thirty minutes once
all the tools were created. This could help making speech recognizer prototyping more
accessible to users outside the immediate field of speech technology.

The quality of the produced recognizer is still low, but there are several avenues to
explore for achieving better results while maintaining the relative ease with which the
recognizer can be built.

The following tools and libraries have been created to support this work:

• A tool for generating training utterances from a GF grammar.

• A tool for generating a pronunciation dictionary for a Swedish GF grammar, using
Markus Forsberg’s automatic Swedish transcription system.

• A GF command for generating finite-state recognition networks from a GF gram-
mars.

• A simple tool for facilitating the recording of prepared utterances.

• A tool for easily creating and training an acoustic model for a simple speech rec-
ognizer, given a GF grammar, a pronunciation dictionary, and recorded training
utterances with transcriptions.

• A simple tool for evaluating speech recognizers.

• C and Haskell libraries for running simple ATK speech recognizers.

• A GF command for getting input in the current grammar from an ATK speech
recognizer.

References

[1] DARPA TIMIT acoustic-phonetic continuous speech corpus.http://www.ldc.
upenn.edu/Catalog/LDC93S1.html .

[2] BRINGERT, B. Embedded grammars. Master’s thesis, Chalmers University of Tech-
nology, Gothenburg, Sweden, February 2005.

[3] BRZOZOWSKI, J. A. Canonical regular expressions and minimal state graphs for
definite events. InMathematical theory of Automata. Polytechnic Press, Polytechnic
Institute of Brooklyn, N.Y., 1962, pp. 529–561. Volume 12 of MRI Symposia Series.

9

[4] DOWDING, J., HOCKEY, B. A., GAWRON, J. M., AND CULY, C. Practical issues
in compiling typed unification grammars for speech recognition. InMeeting of the
Association for Computational Linguistics(2001), pp. 164–171.

[5] FORSBERG, M. Automatic transcription of swedish.http://www.cs.chalmers.
se/˜markus/transcription/gtp.cgi .

[6] LJUNGLÖF, P. Expressivity and Complexity of the Grammatical Framework. PhD
thesis, G̈oteborg University, Gothenburg, Sweden, November 2004.http://www.
cs.chalmers.se/˜peb/pubs/p04-PhD-thesis.pdf .

[7] MOHRI, M., AND NEDERHOF, M.-J. Regular approximation of context-free
grammars through transformation. InRobustness in Language and Speech Tech-
nology, J.-C. Junqua and G. van Noord, Eds. Kluwer Academic Publishers, Dor-
drecht, 2001, pp. 153–163.http://www.coli.uni-sb.de/publikationen/
softcopies/Mohri:2001:RAC.pdf .

[8] NEDERHOF, M.-J. Regular approximation of cfls: A grammatical view. InAd-
vances in Probabilistic and other Parsing Technologies, H. Bunt and A. Nijholt, Eds.
Kluwer Academic Publishers, 2000, pp. 221–241.http://www.coli.uni-sb.de/
publikationen/softcopies/Nederhof:2000:RACa.p%df .

[9] NUANCE COMMUNICATIONS, INC. Nuance Speech Recognition System 8.5: In-
troduction to the Nuance System. Menlo Park, CA, USA, December 2003.

[10] RANTA , A. Grammatical Framework, a type-theoretical grammar formalism.The
Journal of Functional Programming 14, 2 (2004), 145–189. http://www.cs.
chalmers.se/˜aarne/articles/gf-jfp.ps.gz .

[11] ROBINSON, T. British english example pronunciations dictionary, 1997.http:
//www.speech.cs.cmu.edu/comp.speech/Section1/Lexical/beep.html .

[12] SINGH, R. SphinxTrain documentation.http://fife.speech.cs.cmu.edu/
sphinxman/scriptman1.html .

[13] SWADESH, M. Lexico-statistic dating of prehistoric ethnic contacts.Proceedings
of the American Philosophical Society 96(1952), 452–463.

[14] WELLS, J. SAMPA for Swedish.http://www.phon.ucl.ac.uk/home/sampa/
swedish.htm .

[15] YOUNG, S. ATK - An Application Toolkit for HTK, 1.4.1 ed. Machine Intelli-
gence Laboratory, Cambridge University Engineering Dept, Trumpington Street,
Cambridge, CB2 1PZ, United Kingdom, July 2004.http://mi.eng.cam.ac.uk/
˜sjy/ATK_Manual.pdf .

[16] YOUNG, S., EVERMANN , G., GALES, M., HAIN , T., KERSHAW, D., MOORE, G.,
ODELL , J., OLLASON, D., POVEY, D., VALTCHEV, V., AND WOODLAND, P. The
HTK Book (for HTK Version 3.3). Cambridge University Engineering Department,
April 2005. http://htk.eng.cam.ac.uk/prot-docs/htkbook.pdf .

10

