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Abstract

This paper presents a short description of work recently done at Uni-
versity of Tartu to construct a word–based speech recognition system.
The experimental settings used in our experiments are very basic: a sim-
ple trigram language model with cross–word triphone acoustic models are
used by one–pass best hypothesis recognizer to perform the decoding of
test data. The best accuracy reported in this paper has a word error rate
(WER) of 40.4% which is a common figure for languages like Estonian.
The system described in this paper will be used as a baseline for our
subsequent experiments on Estonian speech recognition.

1 Introduction

Estonian belongs to a family of inflectional and agglutinative languages – one
of many other Slavic [Byrne et al., 2001, Maučec et al., 2003], Arabic [Kirchhoff
et al., 2003, Choueiter et al., 2006] and Asian [Kwon et al., 1999, Sinha et al.,
2006] languages which received a particular attention in recent years. A single
base word form by means of inflections and compounding may have a huge
number of derivative words. This greatly complicates the problem of building
a speech recognition system with comparable WER performance to English
systems. A common approach is to employ some type of subword systems, the
goodness of which can be then compared to each other and/or a word–based
system. This paper is devoted to the building of such word–based system and
reports on results we obtained.

The first comprehensive description of work done on Estonian speech recog-
nition appeared only recently [Alumäe, 2006]. A huge number of experiments is
conducted on two databases: Estonian part of Babel multi–language database
[Eek and Meister, 1998] and Estonian SpeechDat–like database [Meister et al.,
2003]. The language modeling is performed both on a word and subword level.
Our set of experiments is much more modest as compared to that work. How-
ever, we do not replicate the work already done but provide a completely inde-
pendent set of results on Estonian part of Babel multi–language database.

The rest of the paper is organized as follows: in Section 2 we describe dif-
ferent language models we built and evaluate them on a testing part of corpus
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Training Part Testing Part
Total words 76,823,686 1,182,376

Unique words 1,689,206 141,724
No. sentences 5,727,566 82,814

Table 1: Statistics of training and testing parts of MCE

used for language modeling. Section 3 introduces speech database we used for
acoustic modeling. Audio data preprocessing is described comprehensively. Two
ways for unit selection choice is presented. The section ends with a detailed de-
scription of acoustic model training procedure. Section 4 describes experimental
settings and reports on results we obtained. Section 5 makes conclusions drawn
from this study.

2 Language Modeling

2.1 Mixed Corpus of Estonian

Experimental work on language modeling is conducted on the Mixed Corpus of
Estonian (MCE) – a set of written texts collected and maintained by University
of Tartu [Computer Linguistics Group]. The training part of the corpus con-
sists of articles from the daily newspapers ”Eesti Express” (6.5M), ”Postimees”
(32M) and magazine ”Horizont” (0.25M). Another significant part constitute
translations of European Union and Estonian laws (9.5M), shorthand records
from the state’s assembly (12M) and a corpus of written language from the years
1890–1990 (4M). The total size of training corpus is approximately 64M words
excluding such special tags like sentence beginning (<s>) and ending (</s>)
symbols. The testing part of MCE is composed from the articles of ”Postimees”
from the year 1995 (0.5M) and 2001 (0.5M).

A single preprocessing strategy is applied throughout the corpora. Sentence
boundaries are determined heuristically. All numbers are mapped to a common
tag <NUMBER> since there is no known to us application capable of expanding
them into verbal representations. For inflectional languages like Estonian this
is not a trivial task since all numbers like any other part of speech should agree
in number, case and gender with corresponding nouns.

Basic corpus statistics is given in Table 1. Average sentence length is 13.4
words for the training part of MCE and 14.2 for the testing part. The number of
unique words in the training part is higher than the size of a typical vocabulary
(65,000) by more than one order of magnitude.

2.2 Trigram Language Models

A number of competitive trigram language models is created and evaluated
using the HTK toolkit [Young et al., 2006]. But first, the vocabulary is fixed to
65,000 most frequent words with addition of all words found in the transcriptions
of training audio data. All the diversity of language models is obtained by
application of different cut–off values to the number of bigrams and trigrams
left in the model. The cutoff value specifies the least number of times any n–
gram should have been seen in the training corpus to be included in the model.
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Name Cut–off Bigrams Trigrams Size PP
– 0 11,676,757 34,166,450 – –

tg1-1 1 3,855,881 5,760,565 111.7 992.1
tg2-2 2 2,318,933 2,759,140 58.9 1067.6
tg3-3 3 1,697,321 1,814,180 41.0 1132.3
tg6-6 6 974,714 872,274 22.2 1278.8

tg10-10 10 635,555 507,714 14.3 1415.0
tg20-20 20 340,807 239,389 7.9 1640.4
tg30-30 30 230,928 152,495 5.6 1793.6

tg100-100 100 66,440 38,885 2.4 2317.3

Table 2: Parameters of trigram language models

Standard Good–Turing discounting is applied to refine parameters of language
models. The discounting factor k is kept greater from the cutoff value by seven
for both bigrams and trigrams.

Evaluation of language models is performed on the testing part of MCE. Ta-
ble 2 provides information about number of n–grams, size in megabytes (ARPA–
compatible textual representation) and perplexity for each created model. The
first unnamed row in the table provides a reference for the total number of
different n–grams found in the training corpus. The out–of–vocabulary (OOV)
rate is 11.2% which means that on average each testing sentence contains at
least one unknown word. High perplexities and OOV ratio originate from the
well–known fact that for inflectional and agglutinative languages a sub–word
language modeling as a rule is more appropriate in terms of memory size and
perplexity figures [Whittaker and Woodland, 1998, Maučec et al., 2003, Hir-
simäki et al., 2005].

3 Acoustic Modeling

3.1 Babel Multi–Language Speech Database

Experimental work on acoustic modeling is conducted on Estonian part of Babel
speech database [Eek and Meister, 1998]. The database consists of three subsets:

• very few talker set – 2 talkers (1 male and 1 female)

• few talker set – 8 talkers (4 male and 4 female)

• many talker set – 60 talkers (30 male and 30 female)

The recordings are made from a set of 40 text passages, 2 sets of numbers and 4
sets of sentences with multiple occurrence of acoustically confusable words (e.g.,
Lina and liina, türi and tüüri) in a clean recording environment. The recorded
speech is sampled at 20,000 Hz and digitized using 16-bit integers.

The training part in this study is composed from the very few and many
talker sets. The few talker set is used for testing. Basic statistics for training
and testing parts is summarized in Table 3.
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no. Training Part Testing Part
passage sets 163 80

sentence sets 67 8
number sets 64 8

hours 7.4 1.2

Table 3: Statistics of training and testing parts of Babel Speech Corpus

3.2 Data Preprocessing

All data in this study is preprocessed using Mel–Frequency Cepstral Coefficients
(MFCC) feature extraction scheme. Each audio data file is split into a number
of speech segments with 10 ms duration called frames. A composite speech
structure called window is constructed around any given frame. Each window
consists of samples from previous, current and next frames. 7.5 ms of samples
from previous frame is appended with 10 ms of samples from current frame and
terminated by 7.5 ms samples from the next frame.

A preemphasis (first–order finite impulse response (FIR) filter) is applied to
each window to increase amplitudes of high frequencies since laters are usually
suppressed by the following processing stages. The preemphasis is defined by:

yn = xn − 0.97 · xn−1

where each window sample yn is substituted by a weighted combination of two
adjacent window samples xn and xn−1. Each window is then multiplied by a
Hamming window to avoid introduction of non–existent frequencies due to the
adverse effect of cutting speech segments out of continuous waveforms. The
Hamming window is defined by

H(n;N) = 0.54 − 0.46 · cos
(

2πn

N − 1

)
where N = 400 is the length of window in samples. Finally, each window is
appended with 112 zeros to apply radix–2 Fast Fourier Transform.

The frequency spectrum is integrated with 26 Mel–spaced band–pass filters
to reduce the number of data points in each window from 256 to 26. The output
of each band–pass filter equals the amount of energy contained in the frequency
band where this filter is defined. Natural logarithm is taken from the output of
filter banks to make the energy statistics approximately Gaussian. Finally, the
Discrete Cosine Transform is applied to map the window into 13–dimensional
cepstral space. The first cepstral coefficient is substituted with the log–energy
value of current frame. The window is filtered (or liftered) for the final time
using the following filter formula:

yn =
(

1 +
L

2
sin

(πn

L

))
· xn

where L = 22 controls the amount of filtering, xn is initial and yn is filtered
coefficient.

The first (delta) and second order (delta–delta) derivatives are calculated
for each cepstral window using the following regression formula:

∆cn =
∑Θ

θ=1 θ · (cn+θ − cn−θ)

2 ·
∑Θ

θ=1 θ2
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Figure 1: 3-state left-to-right HMM

where Θ = 2 is a size of regression window. The final window called observation
vector is constructed from 13 cepstral, 13 delta (∆) cepstral and 13 delta–delta
(∆∆) cepstral coefficients. These 39–dimensional vectors are used for acoustic
model training in Section 3.4.

3.3 Unit Selection

The first step in acoustic modeling is to decide upon basic modeling units. There
are many options to choose from: words, syllables, phonemes. The large vo-
cabulary speech recognition is best done with phoneme units. There are two
possible phoneme sets: orthographic and phonetic set. Experiments conducted
on two different Estonian speech corpora revealed no preference in WER figures
between these two representations [Alumäe, 2006]. The orthographic represen-
tation used in this study is based on the letters of Estonian alphabet with some
minor modifications to the loaned letters such as c, q, x, etc. These letters are
substituted with a sequence of common letters following the generic rules of
Estonian pronunciation.

There are 32 letters in Estonian alphabet and 27 of them are considered to
be common letters. The remaining 5 letters are substituted with one or more
letters from the first set. In addition to these 27 models two models are created
for representing short pause (usually between two words) and silence (usually
between two phrases or sentences) events. Thus the monophone set consists of
29 models:

a, b, d, e, f, g, h, i, j,
k, l, m, n, o, p, r, s, sh,
z, zh, t, u, v, io, ae, oe, ue,
sp, sil

where sh corresponds to š letter, zh to ž, io to õ, ae to ä, oe to ö and ue to ü.

3.4 Acoustic Models

A single 3–state left–to–right hidden Markov model (HMM) is constructed for
each monophone except for short–pause (sp) model. Fig 1. shows the topology
of all 3–state HMM models. The mean and covariance are initialized from
the global mean and covariance computed from the all available training data.
Parameters of monophone models are reestimated using embedded Baum–Welch
training procedure three times. Once the models are trained the 1–state sp
model is created and its single state is tied with the center state of silence model
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Model Passages Numbers Sentences Total
tg100-100 56.2% 8.1% 41.2% 45.5%
tg30-30 55.7% 7.5% 41.0% 44.2%
tg20-20 55.5% 7.4% 40.6% 44.9%
tg10-10 55.3% 7.3% 40.5% 43.9%
tg6-6 55.2% 7.2% 40.1% 43.9%
tg3-3 54.8% 7.1% 40.0% 43.6%
tg2-2 54.6% 6.9% 39.9% 43.4%
tg1-1 54.5% 6.5% 39.6% 43.3%

Table 4: Word error rates for different parts of testing set

(sil). In the sp model there is a direct transition between initial and final state
so no observations need to be produced to traverse the model. Two additional
transitions are created for the sil model to connect the second and fourth states
in both directions. The parameters of monophone set are reestimated two more
times, however, pronunciation of each word is appended with the sp model.
For example, the vocabulary word isa will be transformed into the 4–phoneme
sequence i, s, a, sp.

Once the monophone models are trained, the next stage of training procedure
is to create a set of cross–word triphone models. Transcriptions of training
audio files are used to induce the initial set of triphone models the parameters
of which are re–estimated two times. The vocabulary of language model is
used to produce the additional set of models which may be required during the
recognition of test utterances. Parameters of all triphone models are tied using
a phonetic decision–tree state tying procedure [Young et al., 1994] implemented
in HTK. The tied set of triphones is trained twice to produce the final set of
single mixture models.

The number of mixtures is gradually increased using the following strategy:
the probability density function (pdf) of each state is copied into a new mixture
component. Weights of both mixtures are divided by two and a mean vector of
pdf is shifted away by −0.2 and +0.2 standard deviations for the first and second
mixture component. Each time a new mixture is created the parameters of
triphone models are reestimated three times. We have created 8 sets of triphone
models each with a distinct number of mixture components in it (1, 2, . . . , 8
mixtures).

4 Experiments

We have conducted a number of experiments for exploring different language
models built in Section 2. The testing set of Babel multi–language database (see
Section 3.1) is split in parts to evaluate the performance of speech recognizer
on different types of speech data: text passages, numbers, random sentences.
A large vocabulary speech recognizer implemented in HTK toolkit (HDecode) is
used to transcribe test sentences. Table 4 gives WER figures for different parts
of the testing set. As it can be noted the lowest error rates are obtained on the
set of numbers (WER < 9%). Sets of passages and sentences have the WER
figure of the same order of magnitude (40% < WER < 60%). The difference in
size between the first and last language model is more than 100 MB, however,
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Model Deletions Substitutions Insertions WER
tg100-100 312 2428 578 45.5%
tg30-30 417 2366 439 44.2%
tg20-20 320 2390 562 44.9%
tg10-10 418 2350 431 43.9%
tg6-6 418 2348 429 43.9%
tg3-3 419 2330 426 43.6%
tg2-2 418 2321 422 43.4%
tg1-1 422 2309 421 43.3%

Table 5: Number of deletion, substitution and insertion errors

the improvement in WER is only 2.2% absolute or 4.8% relative.
The most number of errors in recognizing test data comes from substitution

of correct word with any other word in the vocabulary. This amounts to ap-
proximately 75% of all errors made by recognizer (see Table 5). The number
of insertions and deletions can be controlled by tuning a word insertion penalty
parameter available in the recognizer. The word insertion penalty is a fixed
value added to each token when it transits from the end of one word to the be-
ginning of another [Young et al., 2006]. By penalizing inter–word tokens we can
force introduction of new words only when their probability becomes sufficiently
high. However to reduce the number of substitution errors we need to construct
better acoustic and language models. This means more training audio data and
more appropriate and careful language modeling.

We have performed a number of experiments with different values of word
insertion penalty parameter. Table 6 summarizes the results of this evaluation.
The first row in the table (with 5 subrows) shows the performance of recognizer
when the word insertion penalty varies between 0.0 and −100.0. The optimal
value of parameter lies somewhere between 0.0 and −50.0 which gives the im-
provement in WER around 5%. The remaining rows show the performance of
recognizer for the rest of models when the word insertion penalty is 0.0 and
−50.0. The results show that the WER can be lowered by 3% when the word
insertion is penalized (penalty 6= 0).

The best recognition accuracy is obtained when the recognizer uses trigram
language model with cutoff value 20 for both bigrams and trigrams, and the
word insertion is penalized by −50.0 log probability. This gives word error ratio
of 40.4%.

5 Conclusions

In this paper we described briefly the initial set of experiments on Estonian
speech recognition using multi–language Babel speech database. Word–based
modeling of inflectional and agglutinative language reveals very high perplexity
and WER figures. So the future set of experiments will be focused on a subword
language modeling.

The best accuracy reported in this paper (WER = 40.4%) can be compared
to a recently reported value of 36.2% [Alumäe, 2006] if we account for the
reduced amount of training data used in our set of experiments. Some minor
improvement can be obtained by constructing language models more carefully –
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Model Penalty Deletions Substitutions Insertions WER
tg100-100 0.0 312 2428 578 45.5%
tg100-100 -25.0 503 2208 259 40.8%
tg100-100 -50.0 660 2193 129 40.9%
tg100-100 -75.0 831 2430 98 46.1%
tg100-100 -100.0 1031 2815 82 53.9%

tg30-30 0.0 417 2366 439 44.2%
tg30-30 -50.0 562 2210 253 41.5%
tg20-20 0.0 320 2390 562 44.9%
tg20-20 -50.0 660 2164 122 40.4%
tg10-10 0.0 418 2350 431 43.9%
tg10-10 -50.0 563 2192 248 41.2%

tg6-6 0.0 418 2348 429 43.9%
tg6-6 -50.0 563 2183 245 41.1%
tg3-3 0.0 419 2330 426 43.6%
tg3-3 -50.0 567 2172 241 40.9%
tg2-2 0.0 418 2321 422 43.4%
tg2-2 -50.0 567 2169 241 40.9%
tg1-1 0.0 422 2309 421 43.3%
tg1-1 -50.0 568 2157 240 40.7%

Table 6: The effect of penalizing word insertion probability on the number of
errors and WER

training corpus used in this paper contains a lot of non–linguistic entries which
should be removed but frequently appear at the output of recognizer. This has
a clear influence on WER figures.

The recognition of test data is performed using a single–pass best hypothesis
strategy which generally loses considerably to multi–pass N–best list strategies
with a lattice stage rescored using more comprehensive language models. How-
ever, this is an example of things needed to be done in the future using baseline
systems built and described in this paper.
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