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Abstract

This paper is a review of some of the techniques that can be used
to improve the performance of spoken dialogue systems in noisy envi-
ronments. We will look at methods to improve the quality of the input
signal by filtering out additive noise in different ways. We will also
look at methods to improve a dialogue system’s capability of choos-
ing the correct recognition hypothesis and how to identify recognition
errors by prosodic as well as NLU (Natural Language Understanding)
features.

1 Introduction

The traditional input and output devices keyboard, mouse and screen have
in recent years entered into competition with devices like speakers, micro-
phones and touch screens as ubiquitous computing has become more com-
mon. This trend will continue in the future. Instead of typing, the user - who
might be driving a car or walking down the street carrying her hand-held
device - will probably speak to the computer, possibly in combination with
pointings at a touch screen. This means that the user will not always sit in a
quiet room, but instead talk to the computer in an environment with other
people speaking or shouting, cars driving by etc. This puts heavy demands
on the speech recognizer being robust. Not only does it have to be able to
recognize the user’s way of pronouncing the words (even if she happens to
be for example hoarse, under stress or speaking a language other than her
native language), the system also has to be able to disregard everything that
is considered to be “noise”, i.e. everything that is not relevant words spoken
by the user.

2 Background

Basically, ASR (Automatic Speech Recognition) research is about building
systems that maps the input, i.e. an acoustic signal, into a string of words.
For the system to be able to interpret the acoustic wave the wave is sampled,
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quantized and converted to some sort of parametric representation, e.g. an
LPC (Linear Predictive Coding) cepstrum which provides a vector of fea-
tures for each time-slice of the input wave. The feature vectors are used to
estimate the phonetic likelihoods, i.e. the system compares the input with
the stored acoustic and language models to find a model that matches the
input and thereby recognize the spoken word. The technique for this match-
ing often uses HMM’s (Hidden Markov Model). To decode, or search for,
the sequence of model states that optimize the sequence of input observa-
tions the Viterbi algorithm is often used. Early ASR systems could only
recognize a few words, for example any of the 10 digits, spoken by a single
speaker. The words had to be spoken one at a time, with pauses in between.
Nowadays the technique has advanced in a way that it is possible for ASR
systems to have a vocabulary of thousands of words, and the speaker can
use natural speech instead of short commands.

An ASR system can be speaker dependent or speaker independent. A
speaker dependent system, e.g. a dictation system, has to be trained (since
it might have a vocabulary of hundreds of thousands of words) by the user
so that the system learns how to recognize that unique user. The more
training the system gets the better it becomes at recognizing that user.
The advantage of these systems is the high recognition rate the system
eventually gets, the disadvantage is that every user who wants to use the
system has to spend time training the system. Speaker independent systems
on the other hand can be used by any user without any training time at all,
which is suitable for public systems, e.g. telephone services like timetable
information. The challenge for these systems is to be able to recognize all
kinds of voices; male, female, young, old, different dialects etc.

(Jurafsky and Martin, 2000)

3 Methods for handling noisy speech signals in a
dialogue system

Current speech recognition systems often work quite well in quiet settings,
e.g. used by a single user in an office, but for the systems to be able to man-
age noisy settings there is still some work left to be done. The market for
speech applications that can handle conversational speech is fast growing.
Robust speech recognition in all practical acoustic environments are there-
fore crucial, since environmental noise has become one of the primary causes
that limit speech system performance in real world environments. Current
systems are usually customized to operate under specific environments. If
the device is hand-held and the surrounding noise therefore changes, there
is often a rapid decrease in system performance. For speech recognition to
be robust the accuracy needs to be good even when the quality of the input
speech is degraded, or when the characteristics of the training and testing
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Figure 1: Schematic representation of some of the sources of variability that
can degrade speech recognition accuracy, along with compensation procedures
that improve environmental robustness.

environments differ in any sense. (Deng and Huang, 2004), (Krishnamurthy
and Hansen, 2006)

Figure 1 shows how the clean speech signal is degraded by various sources
of variability. Acoustic degradations can be caused by the effects of linear
filtering, non-linearities in transduction or transmission, impulsive interfer-
ing sources or additive noise. The accuracy can also be reduced by changes
in articulation, e.g. increased intensity, produced by the presence of high-
intensity noise sources (the so-called Lombard effect).

To adapt an ASR system to different environments and speakers Stern
(1996) brings up three major approaches; optimal parameter estimation
(where one either use a formal statistical model to describe the difference be-
tween speech used to train and speech used to test the system or use knowl-
edge of background noise to estimate how the clean speech signal changes
in noisy environments), empirical feature comparison (where features de-
rived from high-quality speech is compared with features of simultaneously
recorded speech under degraded conditions) and cepstral high-pass filter-
ing (where a high-pass filter passes high frequencies but reduces frequencies
lower than the cut-off frequency).

Next follows a review of techniques to improve the ASR in dialogue
systems. First we will explore techniques to improve the quality of the
input signal by filtering out additive noise from the speech signal, then look
at dialogue management techniques to choose among recognition hypotheses
and finally look at techniques for error identification.

3.1 Filtering the speech signal

ASR front-ends usually do not have the ability to compensate the effects
of noise on feature extraction. This means that there is a risk that they
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Figure 2: Front-end processing which incorporates spectral subtraction, spec-
tral flooring and cumulative distribution mapping for noise compensation.

extract more information about the noise than the speech, if the speech
signal is noisy.

Choi (2004) uses spectral subtraction, spectral flooring and cumulative
distribution mapping (CDM) to compensate the effects of additive noise
during the front-end processing. The spectral subtraction is used to sub-
tract the estimated noise from the noisy signal spectrum by assuming that
the first 10 frames of each utterance are noise only. These 10 frames are
used to compute the average noise spectrum. Spectral flooring masks out
the potential effect of noise by limiting the lower-bound of a Mel-filterbank
output to an appropriate value. Looking at the output sequences for a clean
model set (speech data with high SNR1) and noisy data (speech data with
low SNR) reveals a large mismatch. By spectral flooring one can maintain
the dynamic range of a feature component in the model set to a desired
level and thus help to reduce the potential mismatch between a noisy ut-
terance and the acoustic models. The CDM method is based on the use of
histogram equalisation in image processing described by (Russ, 1995) and
the idea is to map the distribution of a time sequence of noisy speech fea-

1Signal-to-noise ratio (SNR) is an engineering term for the power ratio between a signal
and the background noise, i.e. the ratio of useful information to false or irrelevant data.
A low SNR implies a low level of useful information and a high level of noise. The noise
robust front-end needs to have knowledge about the noise in order to extract only relevant
information about the speech, and not the noise.
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tures into a target distribution with a pre-defined PDF2. A diagram of the
processing flow is shown in Figure 2. An evaluation was performed on the
Aurora II database (Pearce and Hirsch, 2000), which is a database developed
to be used for testing a defined HMM recognition back-end or a complete
automatic speech recognition system under noisy conditions. The database
contains connected digit tasks spoken by American English speakers. 8 dif-
ferent real-world noises (including subway, babble, car and exhibition noise)
have been added to the speech with controlled filtering of the speech and
noise. The evaluation demonstrated that the CDM provided the greatest
improvement in recognition accuracy and even better results were obtained
using CDM with spectral flooring.

In demanding environments hands-free devices are sometimes necessary,
e.g. in a car the driver needs to keep her hands on the steering wheel and the
eyes on the road. Hands free cellphones are therefore frequent in vehicles,
but the poor sound quality and acoustic feedback (echo) of the far-end speech
signal produced by the loudspeaker are disadvantages that come in addition.
In environments with low SNR microphone arrays (multiple microphones
placed at different locations) may be effective for filtering out noise and
for echo cancelling. By directing the microphones towards the user they can
increase sensitivity to the speaker, and reduce sensitivity of competing sound
sources. The individual microphone signals can be filtered and combined to
enhance the speech signal of the user. Microphone arrays enable for hands-
free devices to use speech as an input modality. (Stern, 1996). Dahl and
Claesson (1999) proposes a method of using microphone arrays for echo
cancelling. The method is divided into two phases; the gathering phase and
the continuous filtering and adaption phase. The gathering phase takes place
while the car is parked, by sending representative sequences from each hands
free loudspeaker and target position in order to get a fair SNR during data
collection. This data is stored and will be used for training. In phase 2 the
multichannel calibration signals that contain information on the acoustical
environment, the variations in the electrical equipment and the spatial and
frequency responses will be used to form the input and reference for the echo
canceller. The evaluation of the method revealed that the placement of the
microphones seems to be very important, more important than the quality of
the microphones. The number of microphones was also essential, the target
distortion decreased when the number of microphones was increased. The
method yielded good suppression, 19 dB, of the hands free loudspeaker with
two microphones and 256 filter taps, and good suppression of the ambient
noise in the car.

Many dialogue systems placed in noisy environments use a push-to-talk
(PTT) button to reduce the amount of noise from the speech signal. The

2Probability Density Function is a function that is non-negative everywhere and
presents a probability distribution in terms of integrals.
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user pushes a button to switch from transmit mode to voice reception mode.
It is only in the voice reception mode that the system listens, which reduces
the amount of noise in the speech signal (Wikipedia, 2006). A PTT button
simplifies barge-in since the system does not have to listen while talking.
Instead the user interrupts the system by pushing the button which decreases
the risk of a noisy speech signal due to the system listening at itself.

3.2 Choosing correct recognition hypothesis

In a dialogue system a parser makes semantic representations of the user’s
input. A dialogue manager then chooses the right dialogue move to make
depending on the interpretation of the users utterance. However, as the
recognition is seldom perfect the parser might give several outputs with
different semantical representations, resulting in an N-best list where N is the
number of hypotheses. The hypotheses are ranked, the topmost hypothesis
is the one that the ASR system considers to be the most probable. It is,
however, not always so that the hypothesis chosen by the ASR system is the
best. To get a “second opinion” one might use linguistic knowledge such as
semantics, pragmatics, grammar etc. to get a better ranking. The baseline
way to choose between the hypotheses is to choose the one that gets the
highest score. The dialogue manager then decides how to react depending
on the recognition score of the chosen hypothesis; if the recognition score is
high enough the system will consider the utterance as correctly recognized
and accept the hypothesis, otherwise it might assume that the utterance is
misrecognised and reject it, or even ignore it as being noise or speech that is
not directed to the system. If accepted, the system can also choose whether
the utterance needs to be clarified or confirmed. (Jurafsky and Martin,
2000), (Meza-Ruiz and Lemon, 2005).

However, even if an interpretation has got the highest ranking it is not
always so that that hypothesis is the correct one, e.g. noise can make the
acoustic signal change considerably so that a hypothesis with a low ranking
is more correct than the highest ranked hypothesis. Another way of choosing
between the hypotheses is to look at the dialogue context to be able to decide
which hypothesis is the most likely to be correct. Gabsdil and Lemon (2004)
investigated the use of machine learners trained on a combination of acoustic
confidence (N-best recognition lists) and pragmatic plausibility features (di-
alogue context). The baseline is the WITAS dialogue system, a multi-modal
command and control system where the user interacts with the system by
combining GUI (Graphical User Interface) actions and spoken commands.
It uses the ISU (Information State Update) approach where information rel-
evant to dialogue context is collected in a central data structure. In WITAS
the speech recognition is context-sensitive, meaning that the system keeps
track of the “most active node” (i.e. conversational contributions that are
still in some sense open (under discussion) and hence new utterances are
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likely to attach) in the dialogue, and loads the grammar corresponding to
that node. E.g. if the most active node is a system yes/no-question, the
language model is defined by a grammar covering phrases such as “yes”,
“that’s right”, “okay”, “negative”, “maybe” and so on. To improve the
baseline system, N-best recognition hypotheses for each user utterance were
considered. Each hypothesis was classified by the memory-based learner
TiMBLE and the rule induction learner RIPPER as either correctly or in-
correctly recognized. A simple selection procedure was then made to choose
the “best” hypothesis, and decide whether to accept, clarify, reject or ig-
nore the utterance. The best results, using TiMBLE, show a 25% weighted
f-score improvement over the baseline system.

Jonson (2006) examined how well an automatic classifier could manage
to find the correct hypothesis compared to a human “classifier”. TiMBLE
was used to classify ASR hypotheses and re-rank the N-best list depend-
ing on these classifications. The classifier was used in the dialogue system
GoDiS (Larsson, 2002) to improve the grounding3 behaviour on the percep-
tion level. The classification was done using five classes (optimistic, positive,
pessimistic, negative, and ignoring). A comparison classification was made
with human classifiers; 16 subjects were asked to re-rank N-best lists given no
context at all, immediate context (i.e. the previous system utterance), close
context (i.e. the two dialogue moves before the recognition output made by
the system or the user) and dialogue context (larger portions of dialogue
giving the dialogue history). The classifier was tested on the same N-best
lists as the human subjects. The classifier reached 58% sentence accuracy
which was slightly better than the humans who got 51% and considerably
better than the baseline (which always chose the topmost hypothesis on the
N-best list) that only had 10% sentence accuracy.

3.3 Error identification

Litman et al. (2006) have identified certain prosodic features that pre-
dict recognition errors better than acoustic confidence scores. They found
that speaker turns containing recognition errors are higher in pitch, louder,
longer, follow longer pauses and are slower than the turns that are correctly
recognized by the system. This points at the fact that there is a strong
association between misrecognition and hyperarticulation. It is common
that users of a dialogue system start hyperarticulate if the system mishears
a word, not knowing that this behaviour will make it even harder for the
system to recognize since hyperarticulated words differs considerably from
the trained words. Litman et al. showed that the standard use of ASR
confidence scores predicted misrecognitions at word level with an error rate
of 19%, adding new ASR features (including acoustic confidence score, rec-

3Grounding refers to the interaction between dialogue participants that tells whether
they perceive, understand and accept each others dialogue moves or not.
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ognized string, grammar and features derived from these data) reduced the
error rate to 15%, and adding prosodic features further reduced the error
rate to 9%.

Improving the NLU performance further increases the ability to recog-
nize early signs of misunderstanding. Walker et al. (2000) tried to identify
which of 15 possible tasks the user was attempting, and to detect any items
of information that are relevant to that task in the user utterance using RIP-
PER. The study showed that adding NLU features to measure which task
is the most likely improved the accuracy with 21 percentage units compared
to the baseline (85% compared to 63%). The NLU features was:

• confidence measure for all of the possible tasks that the user could be
trying to do

• salience-coverage (measures the proportion of the utterance which is
covered by the salient grammar fragments

• inconsistency

• context-shift (shift of context away from the current task focus)

• top-task (the task with the highest confidence score)

• nexttop-task (second highest confidence score)

• top-confidence (value of the highest confidence score)

• diff-confidence (difference in values between the top and next-to-top
confidence score)

4 Discussion and conclusion

ASR techniques has now improved so much that it is reasonable to believe
that dialogue systems can be used in many everyday environments. But
even though the quality of ASR has improved a good deal the recognition
rate is still not sufficient to be reliable, especially when it comes to difficult
conditions like noisy environments. Although the accuracy will continue to
improve, there will never be 100% accuracy for every user utterance; not
even humans achieve this. What humans have, though, is the capability
of fast error recognition and error recovery. The challenge now is to make
dialogue systems that can handle misrecognition in a way that feels natural
and as less distracting as possible for the user. The dialogue system must
be able to identify early clues in the dialogue that indicate that there might
be a misrecognition and handle the misunderstanding in a proper way.

A study carried out by Skantze (2005) shows that when subjects face
speech recognition problems, a common strategy is to ask task-related ques-
tions that confirm their hypothesis about the situation instead of signalling
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non-understanding. A recent, however not yet finished, study carried out by
Fernandez et al. (2007) seems to be confirming these results. More studies
need to be done to find out how dialogue partners make implicit corrections
and confirmations, and whether the behaviour is different in different envi-
ronments, in order to let the dialogue run smoothly without to many tedious
clarifying questions.

5 Future Work

There is a need to make ecologically valid user tests to discover signs of
misrecognition, since laboratory tests do not always reflect the reality. For
example in-vehicle tests are often carried out in a simulator. The test persons
then might be more concerned about carrying out fictive tasks (e.g. different
math tasks) than to make sure that they are not causing any accidents,
since it does not really matter if you crash the car in a simulator. To
make the tests ecologically valid they should be carried out in real traffic,
preferably with everyday tasks that are natural for the test person to carry
out while driving. Misrecognition might occur for several reasons, from the
basic level of not hearing the spoken words at all, to hearing the words
but not understand them (out-of-vocabulary errors) or understanding the
word but not the meaning (out-of-grammar errors). Techniques for handling
noise, and for adapting the dialogue when one dialogue partner is occupied
with something else but the dialogue (driving a car) will be investigated in
the ongoing Vinnova project DICO in cooperation with Volvo, KTH and
TeliaSonera.
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