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1 Introduction

The problem under study may be described as follows:

Input: A speech signal of appropriate duration representing a Swedish phoneme.

Output: The phoneme-class of the phoneme that the signal represents

It is important to note that the signals are assumed to be segmented into
phoneme-duration already.

The Waxholm-database (from Speech, KTH) was available for training
and testing. It contained about 60 000 phoneme-signal pairs and distin-
guishes between initial and non-initial phoneme occurrences.

Given the availability of this dataset, the idea was to attack the problem
using supervised (and unsupervised) methods from machine learning. It was
judged infeasible to attain phoneme-recognition, so phoneme-class recogni-
tion was chosen as the target instead.

2 Related Work

The present author is too little familiar with the area to comment on related
work. This is an important weakness of the present study, especially as the
problem appears to be general and interesting enough that there must be a
lot of relevant work.
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3 Experiments

3.1 Background

For (�nal) testing, 10 000 phoneme-signal pairs were selected from the data-
base at random. This set will be refered to as the test set. The remaining
ca 50 000 pairs was used for training and development. All subsequent men-
tions of training data refer to this set. The random selection of testing data
ensures that testing and training data have similar distributions, and, in
particular, entails that the same speaker may well be represented in both
training and testing data. If phoneme-classes are thought of as something
even more speaker independent than what can be inferred from the multitude
of speakers in the Waxholm pairs, then this division is unfortunate � accord-
ingly, in such a case, entirely di�erent speakers should have been used for
testing. Here however, the learning of phoneme-classes is to be understood
as �learning whatever phoneme-class-like entities the annotated segments of
the Waxholm speakers represent�.

The Snack Sound Toolkit1 2.2.10 for Python was used to extract the power
spectrum of a speech signal (at a given time or time-interval)2. The default
values were taken for all parameters required � these and other acoustic
data are shown in Table 1. In particular, this means that a spectrum is
represented as a vector of length 256. Thus, a phoneme is represented as a
series of logarithmic FFT power spectra of its speech signal, taken through its
duration (in milliseconds). For some classes of phonemes, e.g. monophthong
vowels, it makes sense to simplify the series into one average power spectrum,
but for others, e.g. plosives, this is a very brutal assumption. Nevertheless,
we will use average spectra in some experiments in order to get a tractable
size of data to calculate with.

Somewhat unorthodoxically, a power spectrum vector (whether it is an
average spectrum or taken at some instant in time) will be regarded as a
function with 256 frequency values on the x-axis and the amplitude on the
y-axis. (We will often refer to this kind of function as a curve). We will
never be interested in the absolute values either of frequency or amplitude �
only the general appearance of this curve. Therefore, each curve f will be

1http://www.speech.kth.se/snack
2In 116 cases (which have been subsequently ignored) I get an error that I don't under-

stand when trying to extract a power spectrum �TclError: FFT window out of bounds�.
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Sampling Frequency 16 kHz
FFT length 512
Windowlength 128
Windowtype Hamming
Skip 512
Preemphasis factor 0.0

Table 1: Summary of acoustic data.

normalized3 to its average favg, or to put it mathematically:

favg(x) =
f(x)

avgzf(z)
(1)

Accordingly, the simplest kind of similarity metric between two phonemes
will be the sum di�erence at each point of their respective normalized curves:

diff(f1, f2) =
∑
x

|favg
1 (x) − favg

2 (x)| (2)

The training data contains about 200 di�erent types of phonemes, in-
cluding di�erentiation over stressed/unstressed vowels, tonal-accent 1/2 for
unstressed vowels, length (all phonemes), and also the distinction between
inital and non-initial occurrences. (Most of these ca 200 types are vowels.)
These can be grouped into the �ve phoneme-classes shown in Table 2, to-
gether with their occurrence-distribution in the training set.

Table 3 sum up the spectral heuristics I have been able to gather from
overview/introductory books on acoustic phonetics (Ladefoged 2005 etc.)
that were relevant for di�erentiating the Swedish phoneme-classes in ques-
tion.

3.2 Orthodox Supervised Learning

I performed one baseline experiment using a traditional supervised learning
method � to be more speci�c, an instance of a memory-based method (Duda,

3A more conventional normalization would have been to substract by average (loga-
rithmic) spectrum. This was not used in the experiment due to a misunderstanding on
the part of the author.
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Plosive 18243 37.3%

Vowel 15054 30.7%

Approximant 6086 12.4%

Fricative 5329 10.8%

Nasal 4180 8.5%

Table 2: Distribution of phoneme-classes in the training set. There were also
some 4000 annotations which do not represent phonemes of these classes,
i.e. pause marks, sentence boundaries etc. Annotations of this kind will be
grouped under a label 'None' subsequently.

Plosive Weak energy/silence followed by a wide fre-
quency band of energy

(Monophthong) Vowel Strong Stable Voicing. (No movement of the
formants over frequency.)

Approximant Weak Stable Voicing. (No movement of the
formants over frequency.)

Fricatives High frequency-regions with random energy.
Nasal Stable voicing. Formant structure similar to

vowels but weaker and with extra resonances
and anti-resonances

Table 3: Spectral heuristics as used in this study.
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Class # Cases Accuracy
Plosive 38 78.9%

Vowel 20 90.0%

Fricative 13 53.8%

Approximant 12 66.6%

None 9 33.3%

Nasal 8 100.0%

100 74.0%

Table 4: Accuracy broken up by phoneme-class for a memory based super-
vised learner (working on average spectra and a naïve similarity measure).

Hart, and Stork 2001). Average normalized power spectra (as above) were
used as representation.

All the ca 50 000 examples of the training data were stored. In order to
classify a previously unseen phoneme, all training examples are searched and
the new instance is classi�ed according to the one training example with the
smallest di�erence to it. The measure for di�erence, or equivalently, highest
similarity, was that of Equation 2.

Since the time for searching through all training data is prohibitive, I was
only able to test this method with a random selection of a 100 cases from
the test set. Identi�cation of the phoneme could be done with 22% accuracy,
whereas the accuracy for identi�cation of phoneme-class is shown in Table
4.

74% accuracy is well beyond random (ca 17%) and frequency-baseline (ca
37%) and we can explain the low score for the 'None'-class as members of this
�class� can't be expected to have a positive diagnostic in common. Because
we use duration-averaged spectra, I expected e.g. the plosive class to be hard
to distinguish from the vowel class, but such a tendency was not evidenced
in the inspection of the corresponding confusion matrix. (In fact, I failed to
detect any interesting patterns in a confusion matrix at all.) In no cases was
there a zero-di�erence between a member of the test set and the training set,
so true learning is going on.

3.3 Orthodox Unsupervised Learning

I performed one baseline experiment using a traditional unsupervised learn-
ing method � to be more speci�c, k-means clustering (Duda, Hart, and Stork
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2001). Average normalized power spectra (as above) were used as represen-
tation.

The idea was the following, if the training examples are clustered into 6
classes (again, using the similarity measure of Equation 2), possibly, the six
linguistically motivated phoneme-classes will emerge.

The results, given in Table 5, show that this is hardly the case. 1000
training examples (time prohibited no more) were k-means clustered into k =
6 classes. The six outcome clusters, when plotted on the background of the
�true� classes of their members4, turn out to have rather mixed membership.
Therefore, it made little sense to try to turn the clustering outcome into a
classi�er of unseen phonemes.

The discrepancy between this clustering experiment and the previous su-
pervised experiment, using the same similarity measure, is not so easy to un-
derstand. Perhaps the similarity measure is better suited to measure whether
two phonemes are the same, and less well-suited to measure whether two dif-
ferent phonemes are of the same class.

3.4 Classi�cation Using High-Low Sequences

One major drawback of traditional general-purpose machine learning meth-
ods is their unability to explain the results. The inner workings with all their
intermediate numbers, usually as well as in the present study, shed no light
on what assumptions or data items fail the intended generalizations. For
this reason, usually as well as in the present study, I make experiments with
hybrid methods where some assumptions are made explicit. It has an advan-
tage in that assumptions that are interpretable can be discarded/revised/kept
afterwards.

Average normalized power spectra (called curves) were used as represen-
tation in the �rst part of the experiment, and in the second we also look at
variations over time inside the phoneme.

First, let's introduce the notion of a High-Low sequence, abbreviated
HL-sequence. A HL-sequence the name for a string of H:s and L:s. Use hl[i]
denote the i + 1th character in a string hl, and len(hl) to denote the length
of the string. Thus, e.g. if hl = HHHL then hl[0] = H and len(hl) = 4.

4The true classes are known from the training data but this information is, of course,
not available to the clustering algorithm.
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Cluster 0
Plosive 157 65.4%

None 45 18.7%

Fricative 27 11.2%

Approximant 8 3.3%

Vowel 2 0.8%

Nasal 1 0.4%

Cluster 1
Plosive 84 38.3%

Vowel 32 14.6%

None 29 13.2%

Nasal 27 12.3%

Approximant 24 10.9%

Fricative 23 10.5%

Cluster 2
Vowel 91 46.6%

Nasal 44 22.5%

Approximant 24 12.3%

Plosive 21 10.7%

Fricative 11 5.6%

None 4 2.0%

Cluster 3
Fricative 42 58.3%

Plosive 28 38.8%

None 1 1.3%

Approximant 1 1.3%

Cluster 4
Vowel 54 46.1%

Approximant 26 22.2%

Plosive 24 20.5%

Fricative 7 5.9%

Nasal 5 4.2%

None 1 0.8%

Cluster 5
Vowel 108 68.7%

Approximant 27 17.1%

Nasal 10 6.3%

Plosive 8 5.0%

Fricative 4 2.5%

Table 5: The membership of six outcome clusters in an experiment with
unsupervised learning.
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A high-low sequence hl may be said to �t a curve favg according to the
following metric.

fit(f, hl) =
∑
z

penalty(favg(z), hl[z/r]) (3)

penalty(x, v) =


|1 − x| if v = H and x < 1
|1 − x| if v = L and 1 < x
0 otherwise

(4)

Where / is shorthand for integer division and r = len(f)/len(hl) (the
len(f) here means the number of z-values for which the function f is de�ned).

In other words, we are only concerned with locating above-average and
below-average regions, not other �uctuations that do not cross the average
mark. If a region is correctly matched as above/below average we do not care
by how much below or above they are. If a region is incorrectly matched as
above/below we penalize by how much o� the mark it was. For example, a
perfect �t (score 0) to the sequence LH is any function f whose f(x) values
are all below average for its �rst half, and all above average in the second
half.

The intuition behind all this is to capture power spectra heuristics that
are visible to the (trained) human eye in a noise-robust way. For example,
(monophthong) vowels should have a two or three important H(igh):s in
their curves, corresponding to their formants, whereas fricatives ought to
have alternating H:s and L:s throughout. This suggests that working with
HL-sequences of length 8 should be enough.5

Now let's look at some experimental data. Each phoneme with over 100
occurrences in the database was classi�ed as to which of the 256 high-low
sequence best described a set of 100 randomly selected occurrences of that
phoneme. To be more precise, the sequence that �best describes� a set of
occurrences was de�ned to be the sequence with smallest sum �t for all
the occurrences. This was also a very time-consuming experiment so all
(rather than 100) could not be used. However, it could be observed that
the best-�tting high-low sequence for a phoneme appears to be consistent
over several di�erent 100 training-samples. This suggests that the high-low
characterization-approach is not spurious.

5Though we will only use high-low sequences of length 8, some such sequences have
straightforward abbreviations with each H or L are shrunk to a �x appropriate number of
copies, e.g. HL = HHLL = HHHHLLLL and HLHL = HHLLHHLL.

8



Sequence Phoneme(s)
HHHHLLLH #S

HLLH $2S

LH #. $'I: $E0 $g $d $"Y: $b $p: $"O: $'E:

$"\3 $v #']: $`A $'A: $"I $O $L $M $J $I

$"A $G $E $A >pm $] $"] $p $pa $V $'O:

$R #"]: $A: $']: $NG $[4 $'A #'I: $'[3

$"]: #'E #J #I #H OK #M $#H #L #'A $]: $'I

$'E #F $'U: #p: $"E: #'] $#`] $'U $'[ $`]

$"A: #V $'\ $']

LHHH $T $K

LHHHLLLH $S

LLHHLHHH $t

LLLHHHHH $N #K #N #B $D #G $2T #D $2N #R #P $2D $P

#T

LLLHLHHH #SJ

LLLLLHHH $F #pa #sm $k

9 87

Table 6: The best HL-sequence �t to 87 phonemes represented as normal-
ized frequency-amplitude curves of their average (over the duration) power
spectrum.

The HL-sequence categorizations for the di�erent phonemes are shown in
Table 6, using the transcription of theWaxholm data (Bertenstam, Blomberg,
Carlson, Elenius, Granström, Gustafson, Hunnicutt, Högberg, Lindell, Neovius,
Nord, Serpa-Leitao, and Ström 1995). (There were only 87 phonemes with
100 or more occurrences.) They are certainly not the sequences I expected
them to be, but I did not investigate the reason why since there appear to
be some interesting categorization in them anyway.

The natural point of continuation is, of course, to look at di�erentiation
within the large LH class. Here we can try to undo the intuitively infelicitous
simpli�cation of only looking at the duration average, rather than at �uctua-
tions throughout the duration. This would promise more as to distinguishing
e.g. plosives from vowels.

The way Swedish phonemes di�er duration-wise in the spectrum is ba-
sically that pressure comes and goes, e.g. for stops it goes out completely,
not anything more complicated (such as diphthongs or true a�ricates etc.).
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Thus we �nd ourselves in the same situation, namely, to seek a noise-robust
method to tell when the pressure is high and when it is low. Thus, perhaps
we can use HL-sequences for this too.

To be more precise, let's construct a function approximating a phoneme's
duration-wise di�erences the following way. For each phoneme, pick 256
evenly spaced points on its duration on the x-axis and take the average (over
256 points of frequencies) amplitude on the y-axis for each of these points.
The choice of 256 duration points, rather than each millisecond, was entirely
due to computational limitations (and even so, selecting 256 spectra for each
phoneme in the database takes half a day on my laptop). The decision for
an average amplitude did not seem dangerous (after all, silence is silence at
any frequency) and the HL-sequence approach requires a scalar value of some
kind.

Again, let's look at the experimental data. As above, I decided to use
high-low sequences of length 8. Intuitively, perhaps 4 or even 2 should be
enough, but I also have poor intuitions as to the possible impact of selecting
only 256-duration points (rather than all of them) � there might be a signi�-
cant risk that we pick too many duration points with local amplitude minima
� and length 8 did not seem too far o� on the safe side.6 Each phoneme with
over 100 occurrences in the database was classi�ed as to which of the 256
high-low sequence best described a set of 100 randomly selected occurrences
of that phoneme. To be more precise, the sequence that �best describes� a
set of occurrences was de�ned to be the sequence with smallest sum �t for
all the occurrences. This was also a very time-consuming experiment so all
(rather than 100) could not be used. However, it could be observed that the
best-�tting high-low sequence for a phoneme appears to be consistent over
several di�erent 100 training-samples. This suggests, again, that the high-
low characterization-approach is not spurious for duration-wise �uctuations
either.

The HL-sequence categorizations for the di�erent phonemes are shown in
Table 7. (They will be refered to as the duration-amplitude HL-sequence of
the phoneme, to be distinguished from the frequency-amplitude HL-sequence
that are shown in Table 6.) This time too, the sequences were not as I
expected them to be, but I did not investigate the reason why since there
appear to be some interesting categorization in them anyway. The important

6Though after seeing the results, there are good indications that 8 was too much � one
would have wanted LHHHHHLL and LHHHHLLL to go in the same class as HHHHHLLL.
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thing is that the stops come out quite well.
This is, so far, essentially an unsupervised approach and it is not straight-

forward to evaluate or to put together to produce a signal to phoneme-class
classi�er that can be compared with the one in Table 4. In contrast to the un-
supervised approach evaluated in Table 5, we do not have exactly 6 classes
� putting the two HL-characterizations together would yield a maximum
of 9x19 = 171 classes. However, luckily, only 31 classes naturally suggest
themselves the following way. Construct a matrix of the duration-amplitude
HL-sequences of Table 7 and the frequency-amplitude HL-sequences. Let
entries in the matrix be the intersection of the sets of phonemes for the HL-
sequences in question. From this we happen to get 31 non-empty classes and
all 87 phonemes end up in at least one class. They are shown in Table 8.

These categories could be evaluated in terms of precision and recall over
the six linguistically motivated categories, and we'd get some numbers to try
to interpret. A more interesting kind of evaluation seems to be to benchmark
it against the clustering experiment in Table 5. However, this would be
an unfair comparison as one has 31 classes whereas the other has 6. To
overcome this imbalance I tried clustering the 31 classes into 6 using only the
labels for the categories, i.e. the HL-sequences. This is intuitively justi�ed
because of the meaning that the HL-sequences are intended to carry. After k-
means clustering on the labels (using the Hamming distance as the similarity
measure), the six classes in Table 9 emerge. These six classes can now be
evaluated on the same scale as the previous unsupervised approach, as shown
in Table 10.

To my eye, the HL-approach fares signi�cantly better on this compar-
ison. It still remains, however, to transform the outcome into a signal to
phoneme-class classi�er. One other way to benchmark it against the super-
vised classi�er is to pick n test pairs, some of them will belong to the same
true class and some not, in order to check how well they predict the same-
class property of the pair. But this has not been done yet due to lack of
time.
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Sequence Phoneme(s)
HHHHHLLL #H #N #M #L #p: $V $#H #P #V

HHHL #K $K $2T #B $D #G $p: #D $2N $T $2D $P #T

HHHLLLHL #SJ

HHHLLLLL #F

HHLLLLLH $']:

HL #R $d #J

HLLLLLHH #S $'[3 $"\3 $#`] $'E

HLLLLLLH $`]

LH #sm $'U: $M #. $"Y: $"O: $'O:

LHHHHHLL $G

LHHHHLLL $p

LHHL $k

LLHHHHLH $J

LLHHHLHH $g

LLLH $"I $O #I $'A $`A #'A $"E: #"]: $'I #'E

$'E: $A $]: $[4 $] $A: $'[ $2S $S $'\ $"A:

LLLHHHHH $N $R

LLLHHHHL $t $L $NG

LLLLLHHH $E $'I: $I $"A #pa $'U $E0 $"] #'I: $v #']

$'A: $']

LLLLLLLH $F $"]:

19 87

Table 7: The best HL-sequence �t to 87 phonemes represented as normalized
duration to average-amplitude (average over 256 frequency points) of their
power spectrum.
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('HHHHHLLL', 'LH') #H #M $#H #L #p: $V #V

('HHHHHLLL', 'LLLHHHHH') #P #N

('HHHL', 'LH') $p:

('HHHL', 'LHHH') $T $K

('HHHL', 'LLLHHHHH') #K #B $D #G $2T #D $2N $2D $P #T

('HHHLLLHL', 'LLLHLHHH') #SJ

('HHHLLLLL', 'LH') #F

('HHLLLLLH', 'LH') $']:

('HL', 'LH') #J $d

('HL', 'LLLHHHHH') #R

('HLLLLLHH', 'HHHHLLLH') #S

('HLLLLLHH', 'LH') $'[3 $"\3 $#`] $'E

('HLLLLLLH', 'LH') $`]

('LH', 'LH') $'U: $M #. $"Y: $"O: $'O:

('LH', 'LLLLLHHH') #sm

('LHHHHHLL', 'LH') $G

('LHHHHLLL', 'LH') $p

('LHHL', 'LLLLLHHH') $k

('LLHHHHLH', 'LH') $J

('LLHHHLHH', 'LH') $g

('LLLH', 'HLLH') $2S

('LLLH', 'LH') $"I $O #I $'A $`A #'A #"]: $'I #'E $[4 $A

$'E: $"E: $'\ $'[ $] $]: $A: $"A:

('LLLH', 'LHHHLLLH') $S

('LLLHHHHH', 'LH') $R

('LLLHHHHH', 'LLLHHHHH') $N

('LLLHHHHL', 'LH') $L $NG

('LLLHHHHL', 'LLHHLHHH') $t

('LLLLLHHH', 'LH') $'I: $I $"A $E #'I: $E0 $"] $'U $v #']

$'A: $']

('LLLLLHHH', 'LLLLLHHH') #pa

('LLLLLLLH', 'LH') $"]:

('LLLLLLLH', 'LLLLLHHH') $F

Table 8: Outcome classes by combining the duration-amplitude HL-
sequences with the frequency-amplitude HL-sequences.
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Cluster Classes Merged
0 ('HHHHHHLL', 'LLHHHHHH') ('HHHHHHLL', 'LLLHHHHH')

('LHHHHLLL', 'LLLLHHHH') ('HHHHHLLL', 'LLLHHHHH')
('LHHHHHLL', 'LLLLHHHH') ('HHHHHHLL', 'LLLLHHHH')
('HHHHHLLL', 'LLLLHHHH')

1 ('LLLLLLLH', 'LLLLHHHH') ('LLLLLLHH', 'LLLLHHHH')
('HHLLLLLH', 'LLLLHHHH') ('HLLLLLLH', 'LLLLHHHH')
('LLLLLLLH', 'LLLLLHHH') ('HLLLLLHH', 'LLLLHHHH')

2 ('LLHHHHLL', 'LLLLLHHH') ('LLLHHHHL', 'LLHHLHHH')
3 ('HLLLLLHH', 'HHHHLLLH') ('LLLLLLHH', 'LHHHLLLH')

('LLLLLLHH', 'HHLLLLHH')
4 ('LLLHHHHL', 'LLLLHHHH') ('LLLLHHHH', 'LLLLHHHH')

('LLLLHHHH', 'LLLLLHHH') ('LLHHHLHH', 'LLLLHHHH')
('LLLHHHHH', 'LLLHHHHH') ('LLLLLHHH', 'LLLLLHHH')
('LLHHHHLH', 'LLLLHHHH') ('LLLHHHHH', 'LLLLHHHH')
('LLLLLHHH', 'LLLLHHHH')

5 ('HHHHLLLL', 'LLLLHHHH') ('HHHLLLHL', 'LLLHLHHH')
('HHHLLLLL', 'LLLLHHHH') ('HHHHLLLL', 'LLLHHHHH')

Table 9: Outcome of clustering the combined HL-classes into six larger
classes, based on the hamming distance between the (names of the) com-
bined HL-classes.
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$2T $2N $#H $2D $p $K #K

#H #N #M #L $G $D #G $p:

#D #p: #B $V $T #P #V $P

#T

0

Plosive 16 66.6%

Fricative 4 16.6%

Nasal 3 12.5%

Approximant 1 4.1%

#"]: $#`] $[4 $"\3 $'[3

$] $"]: $"I $O #I $'A $`A

$'E #'A $]: $'I #'E $'E:

$A $F $"E: $A: $'[ $`]

$']: $'\ $"A:

1

Vowel 26 96.2%

Fricative 1 3.7%

$t $k 2
Plosive 2 100.0%

#S $2S $S 3
Fricative 3 100.0%

$N $E #. $'I: $E0 $g $NG

#'] $"O: #'I: $v $'A: #sm

$L $M $J $"Y: $"A #pa $I

$'U: $'O: $'U $"] $R $']

4

Vowel 15 57.6%

None 3 11.5%

Nasal 3 11.5%

Approximant 3 11.5%

Fricative 1 3.8%

Plosive 1 3.8%

#J $d #R #F #SJ 5
Fricative 2 40.0%

Approximant 2 40.0%

Plosive 1 20.0%

Table 10: The membership of six outcome clusters consisting of combined
HL-classes. Each double-lined box is a cluster. The membership, cluster
id-number (1-6) and phoneme class composition is given.
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