Automatic speaker verification

Outline

- Introduction
- Speaker identification vs verification
- Speaker verification overview
- The parts of a speaker verification system
- Evaluation of speaker verification performance

Speaker vs speech recognition

Speaker identification

- Determine the speaker identity
- Selection between a set of known voices
- The user does not claim an identity
- Closed set identification
 - Assume that all speakers are known to the system
- Open set identification
 - Possibility that speaker is not among the speakers known to the system

Speaker verification

- Synonyms: authentication, detection
- User claims an identity
- System task: Accept or reject identity claim
- The voice can come from outside the set of known speakers
 - All speakers known: closed set
- Imposter: All voices but the true identity

Identification vs verification

6

Speech modalities

- Text-dependent speaker verification
 - The word sequence is (assumed) known to the system
 - E.g. prompted phrase, password phrase, fixed phrase
 - Knowing the text can improve system performance
 - Prompting may reduce risk of imposters using voice recordings
- Text-independent speaker verification
 - The uttered word sequence is unknown to the system
 - E.g. user initiated phrase, conversational speech
 - Less restrictions on user
 - Increased risk of imposters
 - ASR can be used for transcription

Speech for identification

- Speech is easily produced
- It does not require advanced input devices
- Can be applied using telephones, PCs
- Can be supplied with
 - Password phrase
 - Personal knowledge
 - to improve security

Speaker verification

- Which features?
- How to model the speaker
- How to model the imposters
- How to make the decision to minimize probability of error

Enrollment and verification

Features

- Desirable attributes (Wolf, '72)
 - Occur naturally and frequently in speech
 - Easily measurable
 - Not change over time or be dependent on health condition
 - Be unaffected be environmental and transmission noise
 - Not be subject to mimicry
- A tall order
- Interestingly, the same, or similar features used as in speech recognition
 - Low-level, acoustic cues
 - Spectrum based
 - Typically: MFCCs

Models

- Hidden Markov models are predominantly used
- Type of HMM depends on application
 - Fixed phrase: Word or phrase models
 - Prompted phrase: Utterance models bulit from phone models
 - Text-independent: Single-state HMM Gaussian Mixture model (GMM)

Text-independent speaker verification

- The imposter model is built using speech from all speakers
- GMM with high number of mixture components
- The speaker model is built using speaker adaptation
 - Relatively small amount of speech
 - MAP adaptation from the imposter model

Decision

- The decision is a 2-class hypothesis test
 - H0: The speaker is an imposter
 - H1: The speaker is the claimed speaker
- Based on the log likelihood ratio
 - $\Lambda = Log\{(p(speech | speaker model)/p(speech | imposter model)\}$
- Desicion by threshold
 - $\Lambda < \Theta$ reject identity claim
 - $-\Lambda > \Theta$ accept identity claim

Evaluation of performance

- System limitations
 - Speech quality (noise, variability, microphone...))
 - Speech modaluty (text dependent/independent...)
 - Speech duration (more speech -> more reliable)
 - Number and type of speakers
- Performance measure:
 - Two types of errors:
 - Accept imposter
 - Reject true speaker
 - Single number
 - Equal errror rate (EER)
 - Better picture: Detection Error Tradeoff (DET-curve)

DET-curve

Importance of the error types depend on application!