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Speaker 1dentification

e Determine the speaker identity
e Seclection between a set of known voices
e The user does not claim an identity
e Closed set identification
— Assume that all speakers are known to the system
e Open set identification
— Possibility that speaker is not among the speakers known to the system




Speaker verification

e Synonyms: authentication, detection

e User claims an identity

e System task: Accept or reject identity claim

e The voice can come from outside the set of known speakers

— All speakers known: closed set

e Imposter: All voices but the true identity




Identification vs verification
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Speech modalities

* Text-dependent speaker verification

— The word sequence is (assumed) known to the system
e E.g. prompted phrase, password phrase, fixed phrase
— Knowing the text can improve system performance

— Prompting may reduce risk of imposters using voice recordings
e Text-independent speaker verification

— The uttered word sequence is unknown to the system
e E.g. user initiated phrase, conversational speech

— Less restrictions on user

— Increased risk of imposters

— ASR can be used for transcription




Speech for 1identification

e Speech is easily produced

e It does not require advanced input devices
e Can be applied using telephones, PCs

e Can be supplied with

— Password phrase
— Personal knowledge

to improve security




Speaker verification
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e  Which features?

 How to model the speaker

Speaker

model

e How to model the imposters
 How to make the decision to minimize probability of error




Enrollment and verification
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Features

e Desirable attributes (Wolf, ’72)

— Occur naturally and frequently in speech
— Easily measurable
— Not change over time or be dependent on health condition
— Be unaffected be environmental and transmission noise
— Not be subject to mimicry
e A tall order
* Interestingly, the same, or similar features used as in speech
recognition
— Low-level, acoustic cues

— Spectrum based
— Typically: MFCCs




Models

e Hidden Markov models are predominantly used
e Type of HMM depends on application
— Fixed phrase: Word or phrase models
— Prompted phrase: Utterance models bulit from phone models
— Text-independent: Single-state HMM - Gaussian Mixture model (GMM)




Text-independent speaker verification

e The imposter model is built using speech from all speakers
e GMM with high number of mixture components

e The speaker model is built using speaker adaptation
— Relatively small amount of speech
— MAP adaptation from the imposter model




Decision

e The decision is a 2-class hypothesis test

— HO: The speaker is an imposter

— HI1: The speaker is the claimed speaker
e Based on the log likelihood ratio

— A =Log{(p(speech | speaker model)/p(speech | imposter model)}
e Desicion by threshold

— A < O reject identity claim

— A > 0 accept identity claim




Evaluation of performance

e System limitations
— Speech quality (noise, variability, microphone...))
— Speech modaluty (text dependent/independent...)
— Speech duration (more speech -> more reliable )
— Number and type of speakers

e Performance measure:

— Two types of errors:
e Accept imposter
e Reject true speaker
— Single number
e Equal errror rate (EER)
— Better picture: Detection Error Tradeoff (DET-curve)




DET-curve
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Importance of the error types depend on application!




