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Feature extraction - outline

• Desirable properties of features
• LPC based analysis
• Non-linear frequency scale
• Cepstrum
• Dynamic features
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ASR step-by-step: Feature extraction

Signal
analysis

Acoustic
match

Linguistic
scoring

Pronunciation
lexicon

Acoustic
models

Language
model

Speech
Recognized words



3

Feature extraction/signal analysis

• Waveform is inappropriate for recognition
– Variability
– Dimensionality

• Need for a speech representation that is
– Suitable for discriminating phonetically different sounds
– Invariant to intra- and interspeaker variations
– Robust against noise
– Compact
– Suited for pattern classification method

• Speech production and perception are closely linked
– We do not make an articulary effort if difference cannot be perceived
– We do not listen for differences that are never produced
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Speech analysis
• Hearing: Ear performs short-time spectral analysis of sounds
• Source-filter model

– Sound discrimination: ”excitation information is not required”
• What about tonal languages?

Power spectrum Spectral envelope

• Spectrum estimation requires sufficently large time slice to be reliable
• Speech is time varying - find suitable compromise
• Typical: 25ms time window, analysis performed every 10 ms
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Analysis based on speech production

• Vocal tract model of uniform, lossless tube sections lead to a vocal tract filter wich is an
all-pole filter

– I.e. can model resonances well, but not well suited to modeling spectral valleys, e.g. in nasals
– Inverse filter exists
– Speech spectrum estimated as the power transfer function of the VTS

• Simple mathematical formulation
– Linear Prediction, LPC coefficients
– Many equivalent representations of the coefficients that are well suited for recognition purposes

• Reflection coefficients, line spectral frequencies, log area ratios, ...

 Vocal tract filter
 

Excitation Speech  
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Alternative analyses

• LPC assumes specific model of speech production
– Parametric spectral estimation
– Model includes assumptions and justifications

• Non-parametric spectral estimation
– Periodogram

• Magnitude of short-time Fourier transform

• Similar to a time slice in the spectrogram
• Not a very good spectrum estimate
• Can be interpreted (and implemented) as a filter bank
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From linear to perceptual frequency
scale
• Hearing/perception:

– Frequency dependent temporal resolution
– Frequency dependent loudness sensitivity
– Non-linear frequency resolution

• Non-linear frequency scale:
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Mel-skala 

mel(f)=2595*log10(1+f/700) 
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Bark-skala 

B(f) = 13*arctan(0.76*f/1000)+3.5*arctan((f/7500)2)

B(f) ~ 26.81*f/(1960+f)-0.53 
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Cepstrum

• Inverse discrete Fourier transform of the log magnitude spectrum

• Efficient for decoupling source and filter due to the log operation
• Performs a decorrelation of the parameters

– Desirable for compactness
– In statistical pattern recognition, the correlation matrix of the parameter

vector is often used. Decorrelated parameters makes this matrix diagonal,
i.e. defined by N parameters instead of NxN

• The log magnitude spectrum is real and symmetric
– The inverse DFT can be implemented as the less computationally

demanding Discrete Cosine Transform
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MFCCs and PLPs

• Perceptually based
frequency scale

• Perception based power
compression (log or
cubic root)

• Spectral smoothing
(truncation of cepstrum
or LPC)

• ~ Decorrelated
parameters

• Increased robustness
through mean
subtraction or ”Rasta”
filtering
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Dynamic features

• Feature vectors corresponding to a short time spectral estimate
represent a snap-shot of the speech signal

• Important information is contained in the temporal evolution of the
signal (cfr. spectrograms)

• Dynamic features are approximations to the time derivatives of the
spectrum/cepstrum

• Delta-coefficients (Furui):
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•    Similarly for acceleration

•    RASTA-filtering
• Time derivative + filtering of
band energies


