Feature extraction - outline

* Desirable properties of features
e LPC based analysis

e Non-linear frequency scale

* Cepstrum

e Dynamic features




ASR step-by-step: Feature extraction
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Feature extraction/signal analysis

e Waveform is inappropriate for recognition
— Variability
— Dimensionality
e Need for a speech representation that is
— Suitable for discriminating phonetically different sounds
— Invariant to intra- and interspeaker variations
— Robust against noise
— Compact
— Suited for pattern classification method
e Speech production and perception are closely linked
— We do not make an articulary effort if difference cannot be perceived

— We do not listen for differences that are never produced




Speech analysis

Hearing: Ear performs short-time spectral analysis of sounds

Source-filter model

— Sound discrimination: “excitation information is not required”

e What about tonal languages?
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Spectral envelope

Spectrum estimation requires sufficently large time slice to be reliable
Speech is time varying - find suitable compromise

Typical: 25ms time window, analysis performed every 10 ms




Analysis based on speech production

Excitation Speech

'=[> Vocal tract filter '=D

e Vocal tract model of uniform, lossless tube sections lead to a vocal tract filter wich is an
all-pole filter
— le. can model resonances well, but not well suited to modeling spectral valleys, e.g. in nasals
— Inverse filter exists
— Speech spectrum estimated as the power transfer function of the VTS
e Simple mathematical formulation
— Linear Prediction, LPC coefficients

— Many equivalent representations of the coefficients that are well suited for recognition purposes
* Reflection coefficients, line spectral frequencies, log area ratios, ...




Alternative analyses

e LPC assumes specific model of speech production
— Parametric spectral estimation
— Model includes assumptions and justifications

e Non-parametric spectral estimation
— Periodogram

e Magnitude of short-time Fourier transform
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e Similar to a time slice in the spectrogram
e Not a very good spectrum estimate

e Can be interpreted (and implemented) as a filter bank




From linear to perceptual frequency
scale

e  Hearing/perception:
— Frequency dependent temporal resolution
— Frequency dependent loudness sensitivity
— Non-linear frequency resolution

e Non-linear frequency scale:
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Cepstrum

e Inverse discrete Fourier transform of the log magnitude spectrum
c(n) = IDFT{log[S (¢’ )}

e Efficient for decoupling source and filter due to the log operation

e Performs a decorrelation of the parameters
— Desirable for compactness

— In statistical pattern recognition, the correlation matrix of the parameter
vector is often used. Decorrelated parameters makes this matrix diagonal,
1.e. defined by N parameters instead of NxN

e The log magnitude spectrum is real and symmetric

— The inverse DFT can be implemented as the less computationally
demanding Discrete Cosine Transform




MFCCs and PLPs
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Dynamic features

e Feature vectors corresponding to a short time spectral estimate
represent a snap-shot of the speech signal

e Important information is contained in the temporal evolution of the
signal (cfr. spectrograms)

* Dynamic features are approximations to the time derivatives of the

spectrum/cepstrum
e Delta-coefficients (Furui): L i
( ) Ac, =( Eicnﬂ.)/( 21’2)
L . i=-W i=-W
e Similarly for acceleration 1
. =_ _[(Cn+1 - Cn l) + 2(Cn+2 - Cn—2)]
e RASTA-filtering w=210

* Time derivative + filtering of
band energies




